
1/5

September 1, 2020

An Exhaustively-Analyzed IDB for ComRAT v4
msreverseengineering.com/blog/2020/8/31/an-exhaustively-analyzed-idb-for-comrat-v4

September 1, 2020 Rolf Rolles

This blog entry announces the release of an exhaustive analysis of ComRAT v4. You can
find the IDBs here.

More specifically, an IDB for the sample with hash
0139818441431C72A1935E7F740A1CC458A63452, which was mentioned in the ESET
report (see especially its attached PDF), and which is available online on Hybrid Analysis.
All of the analysis has been performed in Hex-Rays 64-bit, so the results will be less
interesting to IDA users who do not own Hex-Rays 64-bit. That is to say, if you open the
IDB, you should definitely use Hex-Rays to view the function decompilations, as that is
where all of the naming and commenting has taken place. It is rich with detail, in
comparison to the disassembly listing's barrenness.

This analysis took roughly six weeks of full-time work. I have spent the pandemic working
on a new training class on C++ reverse engineering; part of the preparation includes large-
scale analysis of C++ programs. As such, ESET's report of ComRAT's use of C++ caught
my eye. ComRAT has a beautiful architecture, and many sophisticated components, all of
which I believe deserve a detailed report unto themselves. I had begun writing such a
report, but decided that it was side-tracking me from my ultimate goals with my new training
class. Hence, I had decided to wait until the class was ready, and release a collection of
reports on the software architectures of C++ malware families (perhaps as a book) after I
was done. Thus, my write-up on ComRAT's architecture will have to wait. You can consider
this release, instead, as a supplement to the ESET report.

(Note that if you are interested in the forthcoming C++ training class, it probably will not be
available for roughly another year. More generally, remote public classes (where individual
students can sign up) are temporarily suspended; remote private classes (multiple students
on behalf of the same organization) are currently available. If you would like to be notified
when public classes become available, or when the C++ course is ready, please sign up on
our no-spam, very low-volume, course notification mailing list. (Click the button that says
"Provide your email to be notified of public course availability".) )

(Note also that I have more analyses like this waiting to be released. FlawedGrace and
XAgent are ready; Kelihos is in progress. If you can provide me with a bundle of Careto
SGH samples, preferably Windows 64-bit, please get in touch.)

https://www.msreverseengineering.com/blog/2020/8/31/an-exhaustively-analyzed-idb-for-comrat-v4
http://10.10.0.46/blog?author=5111cf9ee4b0a36262da10df
https://github.com/RolfRolles/IDBs/tree/master/ComRAT%20v4
https://www.welivesecurity.com/2020/05/26/agentbtz-comratv4-ten-year-journey/
https://www.welivesecurity.com/wp-content/uploads/2020/05/ESET_Turla_ComRAT.pdf
https://www.hybrid-analysis.com/
http://10.10.0.46/training-classes


2/5

About the Analysis

This analysis was conducted purely statically, without access to RTTI, or any other form of
debug information. The only external information I had was the ESET report. I have reverse
engineered every function in the binary that is not part of the C++ standard library, and
some of those that are. To get an idea of what the sample looks like before and after
analysis, here's a screenshot of the binary freshly loaded into IDA on the left, versus the
analyzed one on the right. See if you can spot the difference:

Although I believe that the IDB could probably be loaded in versions of IDA prior to 7.5, I
nevertheless recommend using IDA 7.5 to view it. The reason for that is because I have
made extensive use of 7.5's new "folders" feature to organize the functions and local types
windows, which I found massively useful for large-scale reverse engineering. Those two
windows have a nearly identical organization; if you were to dock the windows side-by-side,
you would see something like this:



3/5

As a result of this analysis, I wrote many Hex-Rays plugins, and devised a number of
techniques in C++ reverse engineering that were new to me. Eventually, I will publish on
topics such as the following:

A Hex-Rays plugin for navigating virtual function cross-references

Reverse engineering STL containers, the easy way

A Hex-Rays plugin for virtual inheritance

Tips for reverse engineering multiple inheritance

Automated creation of VTable structure types

Automation for detecting inlined functions, and the addition of stock comments

ComRAT uses a lot of C++ features; a mostly complete list follows. If you're interested in
learning how to reverse engineer C++ programs, you might do well to study how I analyzed
the parts of the binary that interact with them.

Inheritance

Polymorphism (virtual functions)

Custom templates

Multiple and virtual inheritance (due to iostreams)



4/5

STL, listed in descending order of usage frequency:

shared_ptr<T>

vector<T>

string

wstring

locale

unique_ptr<T>

wstringstream

stringstream

fstream

list<T>

map<K,V>

regex

wstring_convert

random

Notes on the Sample

1. Although the use of Gmail as a covert channel was a major aspect of the ESET
report, I could not get my hands on any samples that had that feature. However, this
sample does contain some of the Gmail communication code -- the Gumbo library is
compiled into it, and the configuration in the virtual file system contains a "mail"
subdirectory, with similar entries to those in the ESET report. Perhaps that feature was
still in development, or was deliberately not compiled into my sample for whatever
reason.

2. One striking feature of the ESET report was that their sample had RTTI information
compiled into it, which provided the names of many of the classes used within
ComRAT. I.e., section 4.3 of the ESET report mentions specific class names, as
created by the ComRAT programmers. However, my sample had no such RTTI
information. Therefore, all of my analysis had to be done from scratch. I used the few
names provided in the report as a guide when creating my own.



5/5

3. To the extent I was able to verify their claims, everything in the ESET report is
accurate. There are a few minor technical details in my sample that were different, but
are barely worth mentioning, and might have legitimately changed between the
creation of my sample and the non-public one they analyzed.


