Bumblebee DocuSign Campaign

¥ oxtoxin-labs.gitbook.io/malware-analysis/malware-analysis/bumblebee-docusign-campaign

In this blog post | will be going through a recent bumblebee campaign that impersonates DocuSign, | will be going through the execution chain,
the powershell loader and some I0C extractions

The Phish

The email delivered to the user simply tells the user that an invoice is waiting to be paid and that a "unique HTML code" was created for him to
download and view the invoice on the user's computer. Additionally a password was provided: RD4432

1/12

https://0xtoxin-labs.gitbook.io/malware-analysis/malware-analysis/bumblebee-docusign-campaign

ct DocuSign Documents sent

Hi Guys,

We hope this letter finds you well. We recently noticed that you have yet to view an invoice that is due for payment. To
make it easier for you to view and pay your invoice, we have created a unique HTML code that will download and view
the invoice on your computer.

Password: RD4432

Thank you so much,

Docu%

You should read and authorize the document.

SEE THE DOCUMENT

Dear Recipient,

Kindly check this statement
Invoice you see is generated automatically.

Phishing Mail

Hovering over the the "See The Document” can help us to see what is the click on action URL:

Docugigm*

You should read and authorize the document.

SEE THE DOCUMENT

Dear Recipient,

Kindly check this statement
Invoice you see is generated automatically.

2/12

OneDrive Embedded URL
The URL is:
https://onedrive.live[.com/download?cid=0F6CD861E2193F6E&resid=F6CD861E2193F6E%21118&authkey=ALbZV_c_Tn70-0OA

so instead of going to the actual DocuSign site, the file will be hosted on onedrive which once clicked will trigger an auto download of an
archive file.

Execution Chain

Below you can see a diagram of the execution chain from the moment the phishing mail was opened:

B
6 . uested inforfhation Shortcut

— _ Passwnrd Protected Zi Img File
Phishing Mail OneDrive Password: RD4432 ’ I \

Hidden .ps1 File Embedded DLL BumbleDee

Execution Flow
Lets go quickly through this chains:

1.1
Downloaded archive is being opened by the user, in order to extract the IMG file the user will have to enter the given password: RD4432

T |% 2. requested_documents_714407544541 zip - ZIP archive, unpacked size 3,604,480 bytes

-

Name B# Enter password % | CRC32
8702268950347 .img * 3.6l Enter password for the encrypted file 90B93891
C:\UsersYigal\AppData\Local{Temp'\Rar 2DIb. .. \8702268950347.img
in archive 2. requested_documenits_714407544541.7ip
Enter password
| RD4432] "

Show password

Use for all archives

Organize passwords. ..

Password Protected Archive

3/12

2.2.
Once the IMG file is opened the user will see only the LNK file requested information (because the .ps1 is hidden)

5 List E Details Ml Add columns ~ +| File name ex

ra large icons @ Large icons E Medium icons . M| Group by ™ Item check '
= it
E Content = !

cted Options

all columns to fit Hidden items

p DVD Drive (E) »

Name
8 documents

B2 requested information
B8 > DVDDrive (E) » documents

MNarne

der is empty.

small icons B8 st B Details I Add columns
[EB iles B content

Layout

\!‘ Extra large icons @ Large icons E Medium icons . M| Group
— rt

all columns to fit

@8 > DVDDrive (E) 5> documents

Name

umer

Hidden Powershell Script

3.3.
The LNK file will execute the hidden .ps1 script

Rela
Arguments:

LNK Target Command

Bumblebee Ps1 Loader

| will be focusing now on what is going on in the script and what I've done to extract the payload out of it. So | know that there are about 42
base64 encoded strings (that are actually archives) each one of them stored in variable with the name elem{X} , for example:

Broken B64 Variables

The script then removes the first char in the encoded string and replace it with H to match the . gz magic bytes: 1f sb.

First Char Swap

This script will extract each string variable, decode it and save in the selected folder
from base64 import b64decode
import re

import os

4/12

PS1_FILE_PATH = '/Users/igal/malwares/bumblebee/21-02-2023/documents.ps1’

OUTPUT_FOLDER = '/Users/igal/malwares/bumblebee/21-02-2023/archives/'

REG_PATTERN = "M$elem.*\=\"(.*)\"$'

archivelndex = 0

if not os.path.exists(OUTPUT_FOLDER):

os.makedirs(OUTPUT_FOLDER)

ps1File = open(PS1_FILE_PATH, 'rb').readlines()

for line in ps1File:

regMatch = re.findall(REG_PATTERN, line.replace(b'\x00',b").decode('iso-8859-1"))
if regMatch:

varData = b64decode('H' + regMatch[0][1:])
open(f{OUTPUT_FOLDER}/archive{archivelndex}.gz', 'wb").write(varData)
print(f[+] gz archive was created in:{OUTPUT_FOLDER}/archive{archivelndex}.gz')

archivelndex += 1

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive0.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive1.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive2.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive3.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive4.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive5.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive6.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive7.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive8.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive9.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive10.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive11.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive12.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive13.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive14.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive15.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive16.gz

5/12

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive17.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive18.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive19.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive20.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive21.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive22.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive23.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive24.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive25.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive26.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive27.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive28.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive29.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive30.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive31.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive32.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive33.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive34.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive35.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive36.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive37.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive38.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive39.gz
[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive40.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive41.gz

Each archive contains code parts of a bigger powershell script, | will extract the content of those archives and concatenate them to one big

powershell script.

import gzip

ARCHIVES_FOLDER = '/Users/igal/malwares/bumblebee/21-02-2023/archives'

OUTPUT_FILE = '/Users/igal/malwares/bumblebee/21-02-2023/powershellCommand.txt'

countArchives = sum(1 for file in os.scandir(ARCHIVES_FOLDERY))

finalString ="

6/12

for x in range(0,countArchives):
with gzip.open(f{ARCHIVES_FOLDER}/archive{x}.gz', 'rb') as f:

finalString += f.read().decode('utf-8')

open(OUTPUT_FILE, 'w').write(finalString)
2074441

Once again the script contains a huge amount of b64 encoded strings that once concatenated they create an executable.

4String(

Broken B64 Strings

ps1FileContent = open(OUTPUT_FILE, 'r').readlines()

REG_PATTERN = "\$mbVar.*FromBase64String\(\"(.*)\"\)$'

OUTPUT_PAYLOAD = '/Users/igal/malwares/bumblebee/21-02-2023/payload.bin’
finalPayload = b"

for line in ps1FileContent:

regMatch = re.findall(REG_PATTERN, line)

if regMatch:

finalPayload += b64decode(regMatch[0])

open(OUTPUT_PAYLOAD, 'wb').write(b"\x4d' + finalPayload[1:])
print(f[+] Payload was extracted to the path:{OUTPUT_PAYLOADY}')
[+] Payload was extracted to the path:/Users/igal/malwares/bumblebee/21-02-2023/payload.bin

Investigating the extracted binary, | found out it's 64bit DLL, I've opened the DLL in IDA to see what is being executed from DLLMain:

_ stdcall D11Main(HINSTANCE hinstDLL,

712

DLLMain will execute the function sub_180001050 which contains interesting array variable, which has in it's first value a pointer to Mz blob and
in the second value what seems like the size of the blob:

bEmbeddedBin

MZ Blob
| took the starting offset of the blob (6x180007320) and added the possible length (0x169400) (wrote it in the IDA output window)
print(hex(0x180007320 + 0x169400))

And by double-clicking on the printed value it jumped to the offset which was the actual end of the blob data:

End Of Blob

I've opened the binary in x64Dbg and set a breakpoint at the array assign of the blob and dumped the embedded binary:

8/12

https://x64dbg.com/

Address

Payload Dumping

Now we can investigate the embedded binary.

BumbleBee Payload

In this part | will going over a quick triage process of extracting encrypted configs located in the BumbleBee payload.

First of all by simply uploading the payload to Tria.ge we get a static incrimination that the payload is indeed BumbleBee payload:

Submission

Target
payload_00007FFEAE9S87000.bin

Filesize
1.5MB

Completed
6-2-2023 10:0

bumblebee

File tree

payload_00007FFEAE9S87000.bin

Files selected: 1/32
Tria.ge Incrimination
Additionally Tria.ge shows us the botnet ID which is: 2021g.

Going through what possibly can be the main function of the loader | saw pretty at the beginning of the function a call to a function which pass
as an argument an hardcoded strange looking string:

Rc4 Key

The function contains inside of it RC4 encryptions routines that will use the hardcoded passed argument as a key and will pass alongside with
it encrypted blob of data and the length of the data

9/12

https://tria.ge/dashboard

Config Decryption Function

So now that we know what the data is let's implement a quick decryption script:
from Crypto.Cipher import ARC4

import binascii

KEY = "XNgHUGLrCD"

BLOB_CONFIG_PORT =
"0b002425baa537efd52¢f61f683f8116bc994d01c892b9c140f4a29¢3f8a0b823f5a65b8dc08bb73c1e7ec5f5ch40ca4adbear41c5367ad2368ea826¢

BLOB_CONFIG_BOTNET =
"0d042549dda537efd52¢f61f683f8116bc994d01c892b9c140f4a29¢3f8a0b823f5a65b8dc08bb73c1e7ec5f5ch40ca4adbear41c5367ad2368ea826¢

BLOB_CONFIG_C2 =
"0e00260b8b9306c1e418¢531590ch72c8eae7f2dfaa38def77c38ca50cad39b30a60578eef248a43f5c9dd69649a3d9193709574f60c4ee605a29911

def toRaw(hexVal):

return binascii.unhexlify(hexVal.encode())

def initCipher():

return ARC4.new(KEY.encode())

cipher = initCipher()

plainPort = cipher.decrypt(toRaw(BLOB_CONFIG_PORT)).split(b"\x00\x00\x00\x00')[0].decode()
cipher = initCipher()

plainBotnet = cipher.decrypt(toRaw(BLOB_CONFIG_BOTNET)).split(b"\x00\x00\x00\x00")[0].decode()
cipher = initCipher()

plainC2List = cipher.decrypt(toRaw(BLOB_CONFIG_C2)).split(b"x00\x00\x00\x00")[0].decode().split(’,")

print(f[+] Botnet:{plainBotnet}')

print(f'[+] Port:{plainPort}')

10/12

print('[+] C2 List:")
for c2 in plainC2List:

print(f\t[*] {c2}")

[+] Botnet:202Ig

[+] Port:443

[+] C2 List:

[*] 141.161.143.136:272
[*]1214.77.93.215:263
[*] 104.168.157.253:443
[*] 196.224.200.10:482
[*] 254.65.104.229:127
[*] 209.141.40.19:443
[*] 107.189.5.17:443

[¥] 44.184.236.94:128
[*] 60.231.88.20:422
[*]210.38.79.54:319

[*] 23.254.167.63:443
[*]1 91.206.178.234:443
[¥] 72.204.201.249:374
[¥] 146.19.173.86:443
[*] 103.175.16.104:443
[*] 138.133.49.46:211

[*] 150.18.156.130:256
[*] 93.216.14.249:213
[¥] 73.73.80.51:127
[*]216.73.114.69:379
[*] 58.249.161.153:350
[*] 140.157.121.40:433
[*] 194.135.33.85:443
[*] 6.66.255.6:433

[*] 173.234.155.246:443
[*] 179.55.218.145:322
[*] 241.163.228.200:362
[¥] 38.174.252.233:131
[¥] 146.29.236.141:457

[] 32.234.39.72:191

11/12

[*] 181.87.160.175:479
[*] 114.70.235.72:357
[¥] 51.68.144.43:443
[*] 172.86.120.111:443
[*] 160.20.147.242:443
[*] 207.12.58.212:419
[*] 51.75.62.204:443
[*] 174.72.94.173:309
[*] 205.185.113.34:443
[*] 194.135.33.184:443
[*] 246.6.106.79:340
[*] 23.82.140.155:443
[*] 185.173.34.35:443
[*] 255.115.3.251:370
[* 177.232.32.155:257
[*] 122.125.104.16:475
[*] 24.64.127.190:229

The retrieved botnet ID is: 2021g which is fairly correlated with a recent tweet coming from k3dg3 regarding BumbleBee activity utilized by
TA579:

K3dg3 Tweet

Summary

In this blogpost we went over a recent BumbleBee campaign that uses multi layered powershell script in order to load the BumbleBee loader.

I've mainly focused on breaking down the powershell script part rather then focusing on the loader capabilities, if you want to learn more about
the BumbleBee Loader, check this blog written by Eli Salem

Update 1

During my writing i found yet another campaign with the botnet ID of 190203 I've run my scripts on the hidden powershell script and managed
to extract the DLL without any problem :)

I0C's

Samples:

requested_documents_714407544541.zip - d4a358c875ab55c811368eabe8fa33d09fe67f2d3beafa97b9504bf800a7a02d
8702268950347.img - a55979165779c3c4fc1bc80b066837df206d9621b0162685ed1a6f6a5203d8af

requested information.Ink - 6fb690fbeb572f4f8f0810dd4d79cff1ca9dbd2caa051611e98d0047{3f2aa56

documents.ps1 - b6d05d8f7f1f946806cd70f18f8b6af1b033900cfaad4ab7b7361b19696be9259

LoaderDLL.bin - 2d5c9b33ed298f5fb67ce869c74b2f2ec9179a924780dab5fcbc1a0e0463c5d0

BumbleBeeloader.bin - 4a5d5e6537044cdbf8de9960d79c85b15997784ba1b74659dbfcb248ccc94f59

12/12

https://twitter.com/k3dg3
https://elis531989.medium.com/the-chronicles-of-bumblebee-the-hook-the-bee-and-the-trickbot-connection-686379311056
https://twitter.com/elisalem9
https://tria.ge/230303-kvklvsgc4x/behavioral2
https://bazaar.abuse.ch/sample/d4a358c875ab55c811368eabe8fa33d09fe67f2d3beafa97b9504bf800a7a02d/
https://bazaar.abuse.ch/sample/a55979165779c3c4fc1bc80b066837df206d9621b0162685ed1a6f6a5203d8af/
https://bazaar.abuse.ch/sample/6fb690fbeb572f4f8f0810dd4d79cff1ca9dbd2caa051611e98d0047f3f2aa56/
https://bazaar.abuse.ch/sample/b6d05d8f7f1f946806cd70f18f8b6af1b033900cfaa4ab7b7361b19696be9259/
https://bazaar.abuse.ch/sample/2d5c9b33ed298f5fb67ce869c74b2f2ec9179a924780da65fcbc1a0e0463c5d0/
https://bazaar.abuse.ch/sample/4a5d5e6537044cdbf8de9960d79c85b15997784ba1b74659dbfcb248ccc94f59/

