
1/12

Bumblebee DocuSign Campaign
0xtoxin-labs.gitbook.io/malware-analysis/malware-analysis/bumblebee-docusign-campaign

In this blog post I will be going through a recent bumblebee campaign that impersonates DocuSign, I will be going through the execution chain,
the powershell loader and some IOC extractions

The Phish

The email delivered to the user simply tells the user that an invoice is waiting to be paid and that a "unique HTML code" was created for him to
download and view the invoice on the user's computer. Additionally a password was provided: RD4432

https://0xtoxin-labs.gitbook.io/malware-analysis/malware-analysis/bumblebee-docusign-campaign

2/12

Phishing Mail

Hovering over the the "See The Document" can help us to see what is the click on action URL:

3/12

OneDrive Embedded URL

The URL is:

https://onedrive.live[.com/download?cid=0F6CD861E2193F6E&resid=F6CD861E2193F6E%21118&authkey=ALbZV_c_Tn7O-OA

so instead of going to the actual DocuSign site, the file will be hosted on onedrive which once clicked will trigger an auto download of an
archive file.

Execution Chain

Below you can see a diagram of the execution chain from the moment the phishing mail was opened:

Execution Flow

Lets go quickly through this chains:

1. 1.
Downloaded archive is being opened by the user, in order to extract the IMG file the user will have to enter the given password: RD4432

Password Protected Archive

4/12

2. 2.
Once the IMG file is opened the user will see only the LNK file requested information (because the .ps1 is hidden)

Hidden Powershell Script

3. 3.
The LNK file will execute the hidden .ps1 script

LNK Target Command

Bumblebee Ps1 Loader

I will be focusing now on what is going on in the script and what I've done to extract the payload out of it. So I know that there are about 42
base64 encoded strings (that are actually archives) each one of them stored in variable with the name elem{X} , for example:

Broken B64 Variables

The script then removes the first char in the encoded string and replace it with H to match the .gz magic bytes: 1f 8b.

First Char Swap

This script will extract each string variable, decode it and save in the selected folder

from base64 import b64decode

import re

import os

5/12

PS1_FILE_PATH = '/Users/igal/malwares/bumblebee/21-02-2023/documents.ps1'

OUTPUT_FOLDER = '/Users/igal/malwares/bumblebee/21-02-2023/archives/'

REG_PATTERN = '^\$elem.*\=\"(.*)\"$'

archiveIndex = 0

if not os.path.exists(OUTPUT_FOLDER):

os.makedirs(OUTPUT_FOLDER)

ps1File = open(PS1_FILE_PATH, 'rb').readlines()

for line in ps1File:

regMatch = re.findall(REG_PATTERN, line.replace(b'\x00',b'').decode('iso-8859-1'))

if regMatch:

varData = b64decode('H' + regMatch[0][1:])

open(f'{OUTPUT_FOLDER}/archive{archiveIndex}.gz', 'wb').write(varData)

print(f'[+] gz archive was created in:{OUTPUT_FOLDER}/archive{archiveIndex}.gz')

archiveIndex += 1

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive0.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive1.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive2.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive3.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive4.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive5.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive6.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive7.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive8.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive9.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive10.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive11.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive12.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive13.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive14.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive15.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive16.gz

6/12

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive17.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive18.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive19.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive20.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive21.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive22.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive23.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive24.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive25.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive26.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive27.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive28.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive29.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive30.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive31.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive32.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive33.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive34.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive35.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive36.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive37.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive38.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive39.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive40.gz

[+] gz archive was created in:/Users/igal/malwares/bumblebee/21-02-2023/archives//archive41.gz

Each archive contains code parts of a bigger powershell script, I will extract the content of those archives and concatenate them to one big
powershell script.

import gzip

ARCHIVES_FOLDER = '/Users/igal/malwares/bumblebee/21-02-2023/archives'

OUTPUT_FILE = '/Users/igal/malwares/bumblebee/21-02-2023/powershellCommand.txt'

countArchives = sum(1 for file in os.scandir(ARCHIVES_FOLDER))

finalString = ''

7/12

for x in range(0,countArchives):

with gzip.open(f'{ARCHIVES_FOLDER}/archive{x}.gz', 'rb') as f:

finalString += f.read().decode('utf-8')

open(OUTPUT_FILE, 'w').write(finalString)

2074441

Once again the script contains a huge amount of b64 encoded strings that once concatenated they create an executable.

Broken B64 Strings

ps1FileContent = open(OUTPUT_FILE, 'r').readlines()

REG_PATTERN = '^\$mbVar.*FromBase64String\(\"(.*)\"\)$'

OUTPUT_PAYLOAD = '/Users/igal/malwares/bumblebee/21-02-2023/payload.bin'

finalPayload = b''

for line in ps1FileContent:

regMatch = re.findall(REG_PATTERN, line)

if regMatch:

finalPayload += b64decode(regMatch[0])

open(OUTPUT_PAYLOAD, 'wb').write(b'\x4d' + finalPayload[1:])

print(f'[+] Payload was extracted to the path:{OUTPUT_PAYLOAD}')

[+] Payload was extracted to the path:/Users/igal/malwares/bumblebee/21-02-2023/payload.bin

Investigating the extracted binary, I found out it's 64bit DLL, I've opened the DLL in IDA to see what is being executed from DLLMain:

DllMain

8/12

DLLMain will execute the function sub_180001050 which contains interesting array variable, which has in it's first value a pointer to MZ blob and
in the second value what seems like the size of the blob:

MZ Blob

I took the starting offset of the blob (0x180007320) and added the possible length (0x169400) (wrote it in the IDA output window)

print(hex(0x180007320 + 0x169400))

And by double-clicking on the printed value it jumped to the offset which was the actual end of the blob data:

End Of Blob

I've opened the binary in x64Dbg and set a breakpoint at the array assign of the blob and dumped the embedded binary:

https://x64dbg.com/

9/12

Payload Dumping

Now we can investigate the embedded binary.

BumbleBee Payload

In this part I will going over a quick triage process of extracting encrypted configs located in the BumbleBee payload.

First of all by simply uploading the payload to Tria.ge we get a static incrimination that the payload is indeed BumbleBee payload:

Tria.ge Incrimination

Additionally Tria.ge shows us the botnet ID which is: 202lg.

Going through what possibly can be the main function of the loader I saw pretty at the beginning of the function a call to a function which pass
as an argument an hardcoded strange looking string:

Rc4 Key

The function contains inside of it RC4 encryptions routines that will use the hardcoded passed argument as a key and will pass alongside with
it encrypted blob of data and the length of the data

https://tria.ge/dashboard

10/12

Config Decryption Function

So now that we know what the data is let's implement a quick decryption script:

from Crypto.Cipher import ARC4

import binascii

KEY = "XNgHUGLrCD"

BLOB_CONFIG_PORT =
"0b002425baa537efd52cf61f683f8116bc994d01c892b9c140f4a29c3f8a0b823f5a65b8dc08bb73c1e7ec5f5cb40ca4a45ea741c5367ad2368ea826d

BLOB_CONFIG_BOTNET =
"0d042549dda537efd52cf61f683f8116bc994d01c892b9c140f4a29c3f8a0b823f5a65b8dc08bb73c1e7ec5f5cb40ca4a45ea741c5367ad2368ea826d

BLOB_CONFIG_C2 =
"0e00260b8b9306c1e418c531590cb72c8eae7f2dfaa38def77c38ca50ca439b30a60578eef248a43f5c9dd69649a3d9193709574f60c4ee605a2991f

def toRaw(hexVal):

return binascii.unhexlify(hexVal.encode())

def initCipher():

return ARC4.new(KEY.encode())

cipher = initCipher()

plainPort = cipher.decrypt(toRaw(BLOB_CONFIG_PORT)).split(b'\x00\x00\x00\x00')[0].decode()

cipher = initCipher()

plainBotnet = cipher.decrypt(toRaw(BLOB_CONFIG_BOTNET)).split(b'\x00\x00\x00\x00')[0].decode()

cipher = initCipher()

plainC2List = cipher.decrypt(toRaw(BLOB_CONFIG_C2)).split(b'\x00\x00\x00\x00')[0].decode().split(',')

print(f'[+] Botnet:{plainBotnet}')

print(f'[+] Port:{plainPort}')

11/12

print('[+] C2 List:')

for c2 in plainC2List:

print(f'\t[*] {c2}')

[+] Botnet:202lg

[+] Port:443

[+] C2 List:

[*] 141.161.143.136:272

[*] 214.77.93.215:263

[*] 104.168.157.253:443

[*] 196.224.200.10:482

[*] 254.65.104.229:127

[*] 209.141.40.19:443

[*] 107.189.5.17:443

[*] 44.184.236.94:128

[*] 60.231.88.20:422

[*] 210.38.79.54:319

[*] 23.254.167.63:443

[*] 91.206.178.234:443

[*] 72.204.201.249:374

[*] 146.19.173.86:443

[*] 103.175.16.104:443

[*] 138.133.49.46:211

[*] 150.18.156.130:256

[*] 93.216.14.249:213

[*] 73.73.80.51:127

[*] 216.73.114.69:379

[*] 58.249.161.153:350

[*] 140.157.121.40:433

[*] 194.135.33.85:443

[*] 6.66.255.6:433

[*] 173.234.155.246:443

[*] 179.55.218.145:322

[*] 241.163.228.200:362

[*] 38.174.252.233:131

[*] 146.29.236.141:457

[*] 32.234.39.72:191

12/12

[*] 181.87.160.175:479

[*] 114.70.235.72:357

[*] 51.68.144.43:443

[*] 172.86.120.111:443

[*] 160.20.147.242:443

[*] 207.12.58.212:419

[*] 51.75.62.204:443

[*] 174.72.94.173:309

[*] 205.185.113.34:443

[*] 194.135.33.184:443

[*] 246.6.106.79:340

[*] 23.82.140.155:443

[*] 185.173.34.35:443

[*] 255.115.3.251:370

[*] 177.232.32.155:257

[*] 122.125.104.16:475

[*] 24.64.127.190:229

The retrieved botnet ID is: 202lg which is fairly correlated with a recent tweet coming from k3dg3 regarding BumbleBee activity utilized by
TA579:

K3dg3 Tweet

Summary

In this blogpost we went over a recent BumbleBee campaign that uses multi layered powershell script in order to load the BumbleBee loader.

I've mainly focused on breaking down the powershell script part rather then focusing on the loader capabilities, if you want to learn more about
the BumbleBee Loader, check this blog written by Eli Salem

Update 1

During my writing i found yet another campaign with the botnet ID of lg0203 I've run my scripts on the hidden powershell script and managed
to extract the DLL without any problem :)

IOC's

Samples:

requested_documents_714407544541.zip - d4a358c875ab55c811368eabe8fa33d09fe67f2d3beafa97b9504bf800a7a02d
8702268950347.img - a55979165779c3c4fc1bc80b066837df206d9621b0162685ed1a6f6a5203d8af
requested information.lnk - 6fb690fbeb572f4f8f0810dd4d79cff1ca9dbd2caa051611e98d0047f3f2aa56
documents.ps1 - b6d05d8f7f1f946806cd70f18f8b6af1b033900cfaa4ab7b7361b19696be9259
LoaderDLL.bin - 2d5c9b33ed298f5fb67ce869c74b2f2ec9179a924780da65fcbc1a0e0463c5d0
BumbleBeeLoader.bin - 4a5d5e6537044cdbf8de9960d79c85b15997784ba1b74659dbfcb248ccc94f59

https://twitter.com/k3dg3
https://elis531989.medium.com/the-chronicles-of-bumblebee-the-hook-the-bee-and-the-trickbot-connection-686379311056
https://twitter.com/elisalem9
https://tria.ge/230303-kvklvsgc4x/behavioral2
https://bazaar.abuse.ch/sample/d4a358c875ab55c811368eabe8fa33d09fe67f2d3beafa97b9504bf800a7a02d/
https://bazaar.abuse.ch/sample/a55979165779c3c4fc1bc80b066837df206d9621b0162685ed1a6f6a5203d8af/
https://bazaar.abuse.ch/sample/6fb690fbeb572f4f8f0810dd4d79cff1ca9dbd2caa051611e98d0047f3f2aa56/
https://bazaar.abuse.ch/sample/b6d05d8f7f1f946806cd70f18f8b6af1b033900cfaa4ab7b7361b19696be9259/
https://bazaar.abuse.ch/sample/2d5c9b33ed298f5fb67ce869c74b2f2ec9179a924780da65fcbc1a0e0463c5d0/
https://bazaar.abuse.ch/sample/4a5d5e6537044cdbf8de9960d79c85b15997784ba1b74659dbfcb248ccc94f59/

