
Emotet Exposed:
A Look Inside
the Cybercriminal
Supply Chain

2 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

EXECUTIVE SUMMARY 4

EMOTET: HISTORY AND BACKGROUND 6

NEW EMOTET WAVES 8

UNDERSTANDING EXECUTION CHAINS 16

MAPPING THE EMOTET INFRASTRUCTURE 22

Encryption keys and Epoch distribution 23

IP address:port analysis 24

IP count distribution 24

IP address:port pair set distribution 25

Network infrastructure reuse across payloads 26

Network infrastructure reuse across time 26

IP geographic distribution 28

Port distribution 28

JARM fingerprint distribution 29

AS number distribution 31

Execution chains and infrastructure 32

EMOTET RELOADED 34

VMWARE RECOMMENDATIONS 39

BIBLIOGRAPHY 43

APPENDIX 45

IoCs 45

Emotet activity timeline notes 45

Extracting the Emotet configuration 46

Step 1: Decrypting and dumping the internal DLL 46

Step 2: C2 configuration extraction 49

Downloading updates and plug-in modules 60

Table of contents

3 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Emotet is one of the most evasive and destructive malware
delivery systems ever deployed.

Throughout its eight-year history, Emotet has caused substantial damage. Now it has
resurrected itself following a takedown by law enforcement. Emotet is the very definition of an
advanced persistent threat, causing substantial damage during its earlier reign and continuing
to pose a danger to organizations everywhere. As such, the VMware Threat Analysis Unit™ is
releasing insights learned from Emotet’s most recent resurgence in hopes that organizations
will be able to better understand and defend themselves against this resilient risk.

With telemetry from VMware Contexa™ cloud-delivered threat intelligence, the VMware
Threat Analysis Unit first observed the newest waves of Emotet attacks in January 2022. By
analyzing Emotet’s software development lifecycle, we were able to dissect how it quickly
changes its command and control (C2) infrastructure, obfuscates its configuration, adapts and
tests its evasive execution chains, deploys different attack vectors at different stages, laterally
propagates, and continues to evolve using numerous tactics and techniques.

EXECUTIVE SUMMARY

This report covers these findings,
providing comprehensive information
on the exploitation chains and the inner
workings of the malware deployed by the
most recent Emotet attacks.

The report also provides the samples and
network indicators of compromise (IoCs)
(see the IoCs section of the Appendix) that
were observed, including the samples'
configurations and any additional
components related to our research. The
report reveals never-before-exposed
insights into Emotet, including large-scale,
detailed analysis of:

• The modules Emotet delivers

• Emotet’s execution chains and
their evolution

• Emotet’s multiple attack waves, campaigns,
and network infrastructure

• How to create an Emotet sock puppet to
fetch modules

• How to extract the recently updated
Emotet configuration

• How infection techniques and Emotet’s
network infrastructure are correlated,
revealing the agile-like software
development lifecycle of Emotet

4 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Key highlights and takeaways from the report

Emotet’s attack patterns are in continuous
evolution: Awareness at initial stages is key.
The VMware Threat Analysis Unit clustering
analysis, based on a new similarity metric,
was able to identify various stages of Emotet
attacks with a number of initial infection
waves that change the way in which the
malware is delivered. The ongoing
adaptation of Emotet’s execution chain is
one reason the malware has been successful
for so long. This report is the first to
characterize Emotet’s different execution
chains, describing infection techniques and
characterizing the evolution of Emotet’s
tactics, techniques and procedures (TTPs) to
make them easier to identify in
your environment.

Emotet can serve a number of attack
objectives. This report details an analysis of
Emotet's updates and additional modules, in
terms of the functionality they provide, their
sources, and their evolution through time.
They demonstrate just how expansive
Emotet attacks can be. For instance, the
VMware Threat Analysis Unit intercepted
two recently updated modules: The first
targets Google Chrome browsers and is
designed to steal credit card information,
while the second leverages the SMB
protocol and is designed to spread laterally.

Emotet authors try hard to hide their C2
infrastructure. The actors behind Emotet go
to great lengths to make the information
about the malware’s C2 infrastructure
difficult to extract. The VMware Threat
Analysis Unit developed a tool to bypass the
anti-analysis techniques employed by
Emotet's authors. Consequently, this new
tool is capable of obtaining the same
updates that are pushed to infected hosts.
We found there were two separate ways that
Emotet used to try to obfuscate this
information. In this report, the VMware
Threat Analysis Unit shares how to extract
the IP addresses and ports of the C2 servers
from Emotet samples, so that you can
understand the attack’s infrastructure.

Emotet's infrastructure is constantly
shifting. The VMware Threat Analysis Unit
developed techniques and tools to extract
the configuration files used by Emotet
samples to better understand the C2
infrastructure of the Emotet botnets. By
analyzing the network endpoints involved in
this C2 infrastructure, the VMware Threat
Analysis Unit was able to track and
document the Emotet botnets’ evolution.
Historically, Emotet has had several
infrastructures, called Epochs. Prior to the
law enforcement takedown in January 2021,
Epochs 1, 2 and 3 were the infrastructures
mostly used by attackers, while Epochs 4
and 5 are the infrastructures that have
surfaced in Emotet’s resurgence.

EXECUTIVE SUMMARY

5 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Emotet is one of the most notorious and long-lived botnets
in existence.

It is controlled by a group called Mummy
Spider, also known as MealyBug or TA542.1
Emotet first appeared on the threat
landscape in 2014 as a banking Trojan.2
Instead of injecting content into the
webpages of financial institutions, which was
the standard approach to data theft at the
time, it monitored and stole the raw network
traffic directed at financial institutions.

Since its emergence, Emotet has evolved
into one of the largest malware-as-a-service
(MaaS) infrastructures. The threat actors
behind Emotet are behind a series of attack
waves that delivered a variety of different
payloads, including IcedID, TrickBot,
UmbreCrypt and QakBot, along with
additional threats, such as the Ryuk
ransomware. Often, periods of inactivity are
interspersed within the waves, which help it
to remain undiscovered and persist.

In Emotet’s first years, the authors focused
on improving Emotet's evasion techniques
and expanding its targets beyond the DACH
region (Germany, Austria, Switzerland) to be
more global, including an emphasis on North
America and China.3 Around 2017, the
authors of Emotet fully embraced their role
of malware distributor, focusing more on

advancing initial infection techniques to
improve their success rates.

Often, Emotet attacks rely on waves of spam
emails designed to entice readers to open
malicious documents or click malicious links.
Once a target is infected, access to the
compromised machine is sold to one of the
groups within Emotet’s ecosystem, who then
monetizes the access. Typically, these
groups leverage this access to steal valuable
information or deploy ransomware for
financial gain.4

While there were unexplained periods of
inactivity (such as summer 2019),5 Emotet
was active6 until early 2021. During this time,
Emotet used three Epochs (e.g., Epochs 1, 2
and 3).

In January 2021, the botnet’s infrastructure
was targeted by law enforcement in a
coordinated takedown effort called
Operation Ladybird. Authorities from the
Netherlands, Germany, the United States,
the United Kingdom, France, Lithuania,
Canada and Ukraine, under the coordination
of Europol,7 all participated in the operation,
which for a time successfully halted
Emotet’s operations.8

EMOTET: HISTORY AND BACKGROUND

6 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Ukraine’s law enforcement apprehended
two individuals who were responsible for
deploying and managing Emotet’s network
infrastructure. In addition, the takedown
team hijacked the controlling hosts and
pushed a new update that would uninstall
Emotet on a specific date. For a while, the
void left by Emotet was filled by other
malware distributors, such as BazarLoader
and IcedID,9 but it was only temporary.

In November 2021, the TrickBot botnet
started distributing a DLL that turned out to
be Emotet. This resulted in the rebooting of
the Emotet botnet infrastructure.10 It’s a
comeback that many believe was pushed by
members of the Conti ransomware gang.11

Since then, the botnet has been operating
with two new infrastructures: Epochs 4 and
5. Figure 1 shows a timeline of Emotet’s
activity (see the Emotet activity timeline
notes in the Appendix for more details).

Becomes
loader

Humboldt
Univ. attack

COVID-19-
themed emails

IRS-
themed
emails

Quebec
DOJ
attack

City of
Frankfurt
attack

Deploys TrickBot,
IcedID and
UmbreCrypt

Emotet V4

Emotet V2

Emotet appears

Emotet V3

Emotet returns

Allentown attack

Deploys Panda

Heise attack

Operation
Ladybird

Lake City attack

Berlin Superior
Court attack

Drops
Cobalt Strike

June
2014 2015 2016 2017 2018 2019 2020 2021 2022

Figure 1: Emotet activity timeline.

EMOTET: HISTORY AND BACKGROUND

7 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

NEW EMOTET WAVES

In early 2022, the VMware Threat Analysis Unit observed waves of new Emotet attacks in
VMware Contexa (Figure 2). We investigated each wave to identify the infection mechanisms,
map the attack’s C2 infrastructure, and document the components that were delivered to
comprehensively understand the latest reincarnation of this dangerous threat.

5,000

4,500

4,000

3,500

3,000

2,500

C
ou

nt

2,000

1,500

1,000

500

0

utc_timestamp per day
2022-01-01 2022-02-01 2022-03-01 2022-04-01 2022-05-01 2022-06-01

Figure 2: Recent Emotet attack waves in VMware Contexa.

The general workflow of the recent Emotet infections is fairly standard: Spam emails deliver
Microsoft documents with malicious macros to target users. The documents lure the user into
enabling macro execution, which results in a series of PowerShell commands being launched
and used to download the Emotet payload. Emotet, in turn, downloads additional module
updates or other threats, such as TrickBot and QakBot. Figure 3 shows a typical Emotet
payload delivery chain.

Documents
A Word or Excel document with social

engineering texts shown on the
opening page to entice users to

enable macro execution.

Spam emails
Typical examples such as
shipment/invoice themed

spam emails with malicious
attachments or links.

Emotet payload
The Emotet Trojan can serve as
a downloader to spread other

malware such as banking
Trojans TrikBot and Qakbot,
and the Ryuk ransomware.

Macros
If VBA or Excel 4.0 (XL4) macro execution

is enabled, the embedded malicious
macro code in the document gets

executed for further malicious actions
like invoking PowerShell execution.

PowerShell
Highly obfuscated malicious

PowerShell scripts get executed
to download payload(s) for
further malicious actions.

Figure 3: Typical Emotet payload delivery chain.

8 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Note that this infection chain is not the only one the VMware Threat Analysis Unit observed;
we also saw that Emotet uses malicious URLs embedded in emails to infect its victims.
However, for the purposes of this report, we will mainly focus on the attack waves that relied
on Microsoft documents as the initial infection vector.

In January 2022, the VMware Threat Analysis Unit observed new waves that used Excel
attachments containing Excel macros.12, 13

800

600

400

200

0

C
ou

nt

2022-01-11 00:00 2022-01-13 00:00 2022-01-15 00:00 2022-01-17 00:00 2022-01-19 00:00 2022-01-21 00:00 2022-01-23 00:00 2022-01-25 00:00

utc_timestamp per 12 hours

A B C

Figure 4: Emotet attack waves observed in January 2022.

The VMware Threat Analysis Unit classified these attacks into three waves (Figure 4):

• A – Emotet payload via an XL4 macro directly

• B – Emotet payload via an XL4 macro with PowerShell

• C – Emotet payload via a Visual Basic Application (VBA) macro with PowerShell

The rest of this section discusses waves A and B. More details on these waves, including wave
C, can be found in our previous reports.12, 13

The samples analyzed from wave A are all Microsoft Office 97–2003 Excel documents, with a
relatively small file size (between 110KB and 120KB). This is an old version of Office documents,
as compared to more recent versions, such as the Microsoft Office 2007 file format.

The samples in this wave of attacks have some peculiarities: First, instead of using VBA
macros, these files use XL4 macros, which is an older format that allows for more direct access
to the underlying operating system.14,15 Second, the malicious XL4 macros use some anti-
analysis techniques to try to avoid detection. They employ environmental fingerprinting, which
allows them to detect if they are being analyzed in a sandbox, and several obfuscation
techniques to prevent static analysis. Figure 5 shows the macro contained in sample
7c0d0a80e7ebb3af7ce549df78a5a68cbd5debb5.

Figure 5: A highly obfuscated XL4 macro.

NEW EMOTET WAVES

9 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Fortunately, the VMware Threat Analysis Unit has a tool at its disposal, called Symbexcel, that
applies symbolic execution techniques to the analysis of Excel macros.16 Using this tool, we
can automatically de-obfuscate the XL4 macros and identify the additional components being
downloaded (see Figure 6).

Figure 6: A de-obfuscated XL4 macro.

The functionality of the macro is threefold:

1. Download the next stage payload from one of the payload hosts. The attackers may
choose to use multiple hosts to increase the chances to download the payload and
improve success rates in the event that one or more hosts are taken down.

2. Execute the downloaded payload by running rundll32.exe.

3. Gain registry persistence by running DllRegisterServer (the de-obfuscated version of D"&"l
"&"lR"&"egister"&"Serve"&"r from the EXEC command line is shown Figure 6).

The payload is a DLL file, which (unsurprisingly) is the main Emotet DLL. In the case of the
Excel document with hash 7c0d0a80e7ebb3af7ce549df78a5a68cbd5debb5, the DLL is
88cf39a587aeb8f075aa0ae23a42e16ce3656e71. When we explored both the Excel sample
and the DLL payload on VirusTotal, it revealed that similar files and URLs were used from the
same campaign (shown in Figure 7).

NEW EMOTET WAVES

10 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Figure 7: The correlation of IoCs from this attack, created with VirusTotal Graph, visualizes the relationships
between similar samples and the contacted hosts. Explore the graph to see the meaning of each node.

A new Emotet wave (B in Figure 4) was
observed in late January 2022.13 This new
wave introduced the use of the mshta.exe
application to carry out the infection.

The mshta tool is a Windows-native utility
that executes Microsoft HTML Application
(HTA) files. Tools such as mshta and
PowerShell, which are sometimes referred to
as living-off-the-land binaries (LOLBINs), are
very popular among threat actors because
they are signed by Microsoft and trusted by
Windows. This allows the attacker to

perform a confused deputy attack, in which
legitimate tools are fooled into executing
malicious actions. The MITRE ATT&CK
Framework17 lists two techniques, namely
T1218: System Binary Proxy Execution and
T1216: System Script Proxy Execution, that
detail how trusted components can be used
to perform malicious actions.

In this new wave, mshta is used to execute
an HTA file that was delivered from a remote
location (see Figure 8).

NEW EMOTET WAVES

11 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Figure 8: An HTA file downloaded to a local directory.

At first glance, the HTA file (sha1: 2615f7aa2141cc1cb5d0c687bc3396981c2c68dc) does not
appear to contain anything. It is empty when opened in a common editor because of the use
of newlines and whitespace that hide the file’s contents from a casual viewer. An attacker can
use tools, such as js-beautify, to remove the empty lines and “prettify” the script inside. Figure
9 shows the first and last parts of the prettified JScript code contained in the HTA file.

NEW EMOTET WAVES

https://github.com/beautify-web/js-beautify

12 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Figure 9: The JScript code contained in the HTA file.

This JScript code is highly obfuscated. To see what we are dealing with, we called the
unescape() and eval() functions (highlighted in Figure 9) to decode and execute the
obfuscated script. When we executed the JScript sample within the VMware NSX® Sandbox™,
we observed that it spawned a new process to invoke PowerShell execution.

NEW EMOTET WAVES

13 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Our analysis revealed the PowerShell process delivers the final Emotet payload in two stages:

1. The PowerShell script contained in the HTA file downloads an additional PowerShell
payload from a remote URL.

2. The second downloaded PowerShell script downloads the Emotet DLL payload.

Figure 10 shows the PowerShell payload contained in the HTA file.

Figure 10: The PowerShell script extracted from the HTA file.

After removing the obfuscating strings, the purpose of the script becomes more obvious: The
executed PowerShell script attempts to download another payload using the .NET WebClient.
DownloadString method (highlighted in Figure 11). The IEX command (shown at the end of
Figure 11) is an alias for the Invoke-Expression cmdlet, which evaluates and runs the string
specified by the $JI variable. You can ignore the backticks as they are just used to obfuscate
the command.

Figure 11: The de-obfuscated, first-stage PowerShell script.

While the payload (sha1: dcc120c943f78a76ada9fc47ebfdcecd683cf3e4) downloaded from the
previous stage has an image file extension (PNG), it is actually another PowerShell script but
without obfuscation (see Figure 12). This script calls the .NET WebClient.DownloadFile
method to download the Emotet DLL payload from one of 10 hosts and save it to C:\Users\
Public\Documents\ssd.dll (sha1: e597f6439a01aad82e153e0de647f54ad82b58d3).

NEW EMOTET WAVES

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-expression?view=powershell-7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webclient.downloadfile?view=net-6.0

14 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Figure 12: The second-stage PowerShell script.

At the end, the process pauses for four seconds by running Sleep -s 4. This is to make sure
the payload is properly saved before calling cmd.exe to launch rundll32.exe and execute the
Emotet DLL payload.

These waves are examples of how the Emotet actors continuously change the way in which
they download and install their main component, which is the DLL responsible for contacting
the C2 server and downloading additional modules.

The following section presents an analysis of the various tools and techniques used to deliver
the Emotet payload in the thousands of samples analyzed by the VMware Threat Analysis
Unit. Following this analysis, the focus will revolve around what C2 information can be
extracted from the main Emotet DLL and how the C2 infrastructure of this complex botnet
evolves over time.

NEW EMOTET WAVES

15 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

The process of compromising a machine very seldom
involves a single step.

In most cases, it is a series of events that results in the installation and execution of a malicious
payload. These multiple, intermediate steps are used to make it more difficult to identify the
malicious actions involved.

Emotet infections are not substantially different from other infection processes. However, it is
interesting to observe how different techniques are used across waves, so one can better
characterize the threat actors’ TTPs and support more effective detection.

In this section, the VMware Threat Analysis Unit provides an analysis of execution chains,
which represent how various components are executed to achieve the final infection.
For example:

• The opening of a malicious attachment might result in the execution of Excel.

• A spreadsheet loaded into Excel might contain a malicious macro that executes
using the Windows Script Host executable (wscript.exe).

• The script may invoke a PowerShell script, using cmd.exe, which in turn
invokes powershell.exe.

• This script may download a DLL component, which is executed by the Excel
macro using rundll32.exe, invoked through cmd.exe.

The NSX Sandbox can capture execution chains, such as the one shown in Figure 13,
presenting them to the user in a visual flow.

Characterizing the evolution
of execution chains requires
being able to model how
different execution chains
are similar to one another.
Because execution chains
are technically execution
trees, with a component
spawning or executing
multiple subcomponents,
the VMware Threat Analysis
Unit developed an execution-
chain-similarity metric
based on the edit distance
between trees.

The edit distance between two trees is the number of changes that must be applied to one
tree to make it identical to another tree. For example, if considering trees (a) and (b) in
Figure 14, one would only need to change a single element in tree (a) to make it
identical to tree (b), and vice versa. On the other hand, tree (c) is made up of a
number of different operations that would need to be changed to make it
identical to either tree (a) or (b). Therefore, trees (a) and (b) are considered
more similar than trees (a) and (c) or trees (b) and (c).

Figure 13: The execution chain for an Emotet sample.

UNDERSTANDING EXECUTION CHAINS

16 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

UNDERSTANDING EXECUTION CHAINS

excel.exe

cmd.exe

rundll32.exe

cmd.exe

powershell.exe

excel.exe

cmd.exe

rundll32.exe

cmd.exe

regsvr32.exe

excel.exe

cmd.exe

ping .exe

cmd.exe

mshta.exetimeout .exe

powershell.exe

rundll32.exe
(a) (b) (c)

Figure 14: The execution-chain-similarity metric based on tree edit distance.

When looking at execution chains, one may limit the analysis to the program being used (e.g.,
rundll32.exe), or one may consider the parameters being passed to the program (e.g.,
rundll32.exe ‘C:\Users\Public\Documents\ssd.dll’,Install). The first execution chains are
referred to as program chains, while the latter are invocation chains.

Our dataset includes 19,791 samples with non-trivial execution chains, which is a subset of the
VMware Threat Analysis Unit dataset of 47,240 samples. We chose this subset to understand
the execution chains because final Emotet DLLs made up the rest of the samples, so they
didn’t have the associated malicious document(s) used to distribute them.

In the dataset, we identified 139 unique program chains and 20,955 unique invocation chains.
This is not surprising because samples often make minor changes to the invocation
parameters to make each infection process unique. This makes detection via static signatures
alone more challenging. The reason why the number of invocation chains is bigger than the
total number of samples with non-trivial execution chains is because a sample might produce
different chains whether it is executed in Windows 7 or in Windows 10.

Figure 15 shows the percentage of samples that belong to the top program chains. Each
program chain is characterized by a unique hash that is the result of applying a hashing
function to the string representations of the programs involved and their subsequent
relationships. In essence, this is the tree structure in canonical format. Note that the
distribution shows the top four execution chains account for approximately 80 percent of
the samples.

17 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

UNDERSTANDING EXECUTION CHAINS

Others

000e7...b23e1

00041...652eb

00242...75a72

00412...ee8d8

000a1...651e0

00c1a...fcae0

00b45...f3c91

004c3...abb67

00092...d79cb

00363...b975f

03539...2cc54

0517a...92adc

0308d...6a518

003f9...a4e42

00dc4...c5560

05b2f...70c48

06df6...ab816

007d3...5c6f4

07a2f...1aa5c

00b60...8f600

07a0e...89c77

092be...78334

17e10...27c56

06897...d301b

30.50%

23.30%

17.60%

9.30%

2.60%

2.30%

2.20%

2.20%

1.60%

1.50%

1.50%

0.60%

0.40%

0.40%

0.30%

0.30%

0.30%

0.30%

0.30%

0.20%

0.20%

0.20%

0.10%

0.10%

0.10%

Figure 15: The distribution of samples across the top program chains.

Figure 16: The most popular program chain.

Figure 17: The second most popular program chain.

Figures 16, 17 and 18 show that the
complexity of the program chains
are inversely proportional to the
distribution in the dataset. For
example, the most popular chain
shows a simple three-stage attack
involving the execution of Excel and
regsvr32.exe. The second most
popular chain shows the same attack
chain as the first but with an additional
stage (regsvr32.exe). Finally,
examining the fifth most popular chain
shows a much more complex attack.

The top four execution chains account for
approximately 80 percent of the samples.

18 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

UNDERSTANDING EXECUTION CHAINS

Figure 18: The fifth most popular program chain.

To highlight the clusters of program chains, the VMware Threat Analysis Unit used a sampling
mechanism to make sense of the large sample size.

19a. 19b.

Figure 19: The confusion matrix and clustering dendrogram for the program chains (a) and invocation chains (b)
of a random sampling of Emotet samples.

In Figure 19, (a) shows that there are large clusters of similar program chains with only small
changes between the major clusters. It is interesting to notice the size of the cluster shown in
Figure 19 is directly proportional to the distribution of the program chains shown in Figure 15.
More specifically, clusters a1, a2 and a3 correspond to the first, second and third most popular
program chains, respectively.

If we take into account the parameters passed to the various programs, the analysis shows a
more diverse set of patterns, as expected (see (b) in Figure 19). For example, within cluster a1,
there are two subclusters (b1 and b2) that show the same program chain but with slightly
different invocation chains. In particular, the payload executed by regsvr32.exe differs within
the two subclusters.

19 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

UNDERSTANDING EXECUTION CHAINS

If we look at the execution chains and their appearance in chronological order (see Figure 20),
we notice a similar pattern of clusters, showing the evolution of the infection techniques
through time.

20a. 20b.

Figure 20: The confusion matrix of the program chains (a) and invocation chains (b) of a random sampling of the
dataset, in chronological order.

It is interesting to notice that just by ordering the program and invocation chains produced by
the samples over time, various patterns emerged without having to resort to clustering. The
temporal relationship between clusters is better captured with a diagram that shows the
appearance of samples belonging to the identified clusters.

20 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

UNDERSTANDING EXECUTION CHAINS

C
lu

st
er

s

Feb 2022 Mar 2022 Apr 2022 May 2022 Jun 2022 Jul 2022

-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Figure 21: The timeline of samples observed from the top clusters of execution chains.

Figure 21 shows that, in the second half of January, there was a very diverse set of execution
chains, which means that Emotet was pushing samples with very different execution
behaviors. This might be an attempt to evade detection by diversifying the exploitation
process, or it could be the result of a vast affiliate program that has many different actors
spreading Emotet via various techniques.

21 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

To track the evolution of Emotet’s C2 infrastructure,
the VMware Threat Analysis Unit developed techniques and
tools to extract the configuration files used by the samples.18
We also programmatically queried the
malware distributors for updates and
additional samples, which is detailed later.

Historically, Emotet has had several
infrastructures, called Epochs. Epochs 1,
2 and 3 were mostly seen before the
January 2021 takedown. Epochs 4 and 5
were introduced after Emotet resurfaced.
The Epoch number of a sample is typically
identified by the public encryption keys
contained in the C2 configuration of
the sample.

Though Emotet samples of different
Epochs keep their configuration data in
different formats, they all share one common
approach: They all store their configuration
in an encrypted DLL (the internal DLL).
This internal DLL is embedded into the
executable payload.

Emotet uses a number of techniques to
resist analysis, both static and dynamic,
as well as to prevent the extraction of
the configuration file, which contains the
endpoints that are going to be used to
upload information about the compromised
hosts and receive updates with the threats
to be installed.

In the Extracting Emotet configuration
section of the Appendix, the VMware Threat
Analysis Unit presents the technical details
on how to extract the Emotet configuration
data. During the analysis period (January 1,
2022–June 30, 2022), Emotet radically
changed the way in which the configuration
data was obfuscated. We have provided the
analysis in the Appendix that covers
both techniques.

The ability to de-obfuscate the configuration
data allowed us to perform an analysis of the
endpoints used by Emotet to control and
update its botnet. The evaluation dataset
we used for the analysis contained 24,276
unique Emotet DLL payloads. In this dataset,
26.7 percent of the payloads were dropped
by Excel documents, which we observed in
the VMware Contexa customer telemetry
(see (A) in Figure 22). The rest of the
payloads were manually submitted by
customers using the NSX Sandbox API.
We also looked at the instruction set
architecture (ISA) of the DLLs; the dataset
comprises both 32-bit and 64-bit payloads
(see (B) in Figure 22). As we reported
earlier,19 Emotet started to migrate to 64-bit
modules in April 2022.

MAPPING THE EMOTET INFRASTRUCTURE

22 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

MAPPING THE EMOTET INFRASTRUCTURE

(A): DLL Origin (B): DLL Target ISA

DLL by doc, 26.7% (6493)
DLL direct, 73.3% (17783)

32bit, 23.0% (5574)
64bit, 77.0% (18702)22a. 22b.

Figure 22: (A) shows the DLL payload origin breakdown: 26.7 percent of the evaluated DLLs were dropped by
Excel documents that were observed in the VMware Contexa customer telemetry, and 73.3 percent were
submitted by customers through the NSX Sandbox API. (B) shows the ISA distribution of the DLLs.

Using the VMware Threat Analysis Unit C2 configuration extraction tool, we successfully
extracted the C2 configuration data from 24,276 Emotet DLL payloads (98 percent of the
dataset shown in Figure 22). The C2 configuration data extracted from each DLL payload
sample comprises a pair of encryption keys and a list of IP address:port pairs.

Encryption keys and Epoch distribution
Prior to its takedown,8 Emotet had three sub-botnets: Epochs 1, 2 and 3. All of them leveraged
a single hard-coded RSA public key. This key was used to encrypt an AES encryption key that
was generated on-the-fly to encrypt the network traffic between an infected machine and the
C2 servers. In the samples from recent attacks, we found the attackers evolved the
architecture to use two keys in the communication protocols, labeled ECK1 and ECS1.
According to an early report,20 these are two elliptic curve cryptography (ECC) public keys
used for asymmetric encryption. ECK1 is a hard-coded elliptic-curve Diffie-Hellman (ECDH)
public key for encryption, and ECS1 is a hard-coded elliptic-curve digital signature algorithm
(ECDSA) public key for data validation. There are two distinct pairs of such public keys
extracted from our dataset, which correspond to Epoch 4 and 5 botnets:*

Epoch 4

ECK1: RUNLMSAAAADzozW1Di4r9DVWzQ
pMKT588RDdy7BPILP6AiDOTLYMH
kSWvrQO5slbmr1OvZ2Pz+AQWzRM
ggQmAtO6rPH7nyx2

ECS1: RUNTMSAAAABAX3S2xNjcDD0fBn
o33Ln5t71eii+mofIPoXkNFOX1Meiw
Ch48iz97kB0mJjGGZXwardnDXKxI8
GCHGNl0PFj5

Epoch 5

ECK1: RUNLMSAAAADYNZPXY4tQxd/N4
Wn5sTYAm5tUOxY2ol1ELrI4MNhH
Ni640vSLasjYTHpFRBoG+o84vtr7A
JachCzOHjaAJFCW

ECS1: RUNTMSAAAAD0LxqDNhonUYwk8s
qo7IWuUllRdUiUBnACc6romsQoe1Y
JD7wIe4AheqYofpZFucPDXCZ0z9i+
ooUffqeoLZU0

*ECK1/ECS1 keys are Base64 encoded

23 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

MAPPING THE EMOTET INFRASTRUCTURE

Figure 23 shows the breakdown of IP addresses, DLL payloads, and corresponding
documents for Epochs 4 and 5. There were 328 unique IP addresses extracted from the DLL
payloads. 60.8 percent of them belong to the Epoch 4 botnet, while 38.6 percent belong to
the Epoch 5 botnet. There is only one IP address (217.182.143[.]207, with port 443) that
appears in both botnets (see (A) in Figure 23). This largely confirms the findings of a Bleeping
Computer report stating that each Epoch has different C2 servers.21 A distinct C2 infrastructure
used by each Epoch not only greatly increases the overall redundancy, it also makes its
tracking more challenging. For instance, if one Epoch is taken down or is under maintenance,
the Emotet actors can keep the other Epoch running. They can even move bots from one
Epoch to another, according to the Bleeping Computer report.

(A): IP

200
(60.8%)

127
(38.6%)

1
(0.3%)

epoch4
epoch5

epoch4, 43.2% (10295)
epoch5, 56.8% (13516)

epoch4, 80.8% (15967)
epoch5, 19.2% (3804)

(B): DLL (C): Document

Figure 23: The IP address distribution between Epochs.

The IP address distribution shown in (A) in Figure 23 suggests that the Epoch 4 botnet has
more C2 servers than Epoch 5. (B) in Figure 23 shows the DLL distribution based on different
Epochs, which implies that nearly 57 percent of the Emotet DLLs were associated with Epoch
5. Of the DLLs dropped by Excel documents (26.7 percent of all evaluated DLLs, as shown in
(A) in Figure 22), more than 80 percent of the documents were associated with the Epoch 4
botnet (see (C) in Figure 23).

IP address:port analysis

IP count distribution

The VMware Threat Analysis Unit analyzed the number of IP address:port pairs extracted from
the C2 configuration data of the DLL payloads and found it varies from 20 to 63. This means
47 IP address:port pairs were generated on average per DLL.

In terms of IP address count distribution among all the DLL payloads, the top count goes to IP
address 217.182.143[.]207, which appeared nearly 14,000 times out of the 23,811 DLLs. This
is the same IP address seen in Epochs 4 and 5, as discussed earlier. According to RiskIQ’s
IP address lookup,22 there are currently no hostnames resolving to this IP address.
Though we don’t know the underlying reason why this IP address has been included

23a. IP 23b. DLL 23c. Document

24 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

MAPPING THE EMOTET INFRASTRUCTURE

in so many DLLs, it could be that this host remained compromised during all the attacks, or it
may have been added by accident to both Epoch botnets. Figure 24 shows the full distribution
of the 328 IP addresses contained in the 23,811 DLL payloads.

IP address:port pair set distribution

Apart from analyzing the distribution of individual IP addresses, the VMware Threat Analysis
Unit also examined how often a full set of C2 server IP address:port pairs within a DLL payload
appeared across all DLL payloads. We did this by linking the sorted IP address:port pairs
extracted from the DLL payload as a string and then hashing the string. There were 89 unique
hashes of the IP address:port strings.

As Figure 25 shows, there are four sets of IP address:port pairs that appeared more than
1,000 times in all DLL payloads. The most common set, which has been used more than 4,500
times, contains the following 44 IP address:port pairs:

185.148.168.220:8080
210.57.209.142:8080
104.248.225.227:8080
103.133.214.242:8080
116.124.128.206:8080
45.71.195.104:8080
88.217.172.165:8080
78.46.73.125:443
78.47.204.80:443
37.59.209.141:8080
54.37.106.167:8080

93.104.209.107:8080
178.62.112.199:8080
202.28.34.99:8080
196.44.98.190:8080
217.182.143.207:443
134.122.119.23:8080
37.44.244.177:8080
103.56.149.105:8080
103.41.204.169:8080
139.196.72.155:8080
68.183.91.111:8080

103.85.95.4:8080
175.126.176.79:8080
59.148.253.194:443
207.148.81.119:8080
85.25.120.45:8080
103.8.26.17:8080
54.38.242.185:443
51.68.141.164:8080
54.38.143.246:7080
194.9.172.107:8080
190.90.233.66:443

203.153.216.46:443
68.183.93.250:443
5.56.132.177:8080
118.98.72.86:443
54.37.228.122:443
195.154.146.35:443
202.29.239.162:443
110.235.83.107:7080
103.42.58.120:7080
66.42.57.149:443
159.69.237.188:443

C
ou

nt
5000

4000

3000

2000

1000

0 Hash of C2 IP-port set string

Figure 25: The distribution of hashes of C2 IP address
set strings.

C
ou

nt

14000

12000

10000

8000

6000

4000

2000

IP address0

Figure 24: IP address distribution.

25 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Network infrastructure reuse across payloads

To get a better understanding of how IP addresses are recycled across different payloads and
campaigns, the VMware Threat Analysis Unit clustered all DLL payloads by the list of
embedded network IoCs using a TF-IDF vectorizer, DBSCAN, and a cosine distance metric.
We also kept track of the time when each sample was seen in the wild to better understand
the duration of each single campaign. As Table 1 shows, there are 13 clusters. The largest one
(cluster 0) contains 10,235 samples, which is more than 40 percent of the whole dataset, and
spans a time horizon of almost three months. The two smallest clusters (11 and 12) contain only
a handful of payloads (three and four, respectively). They likely represent early attempts to
resurrect both Epochs, as the earliest time stamp was November 15, 2021.

Cluster Epoch Number of payloads First time stamp Last time stamp

0 5 10,235 March 15, 2022 June 18, 2022

1 5 1,289 Jan. 11, 2022 May 23, 2022

2 4 7,387 Jan. 11, 2022 May 23, 2022

3 4 2,511 June 3, 2022 June 30, 2022

4 5 661 June 27, 2022 June 30, 2022

5 5 433 June 2, 2022 June 13, 2022

6 5 795 June 13, 2022 June 29, 2022

7 4 188 May 17, 2022 May 20, 2022

8 4 201 May 20, 2022 May 23, 2022

9 5 100 Jan. 26, 2022 Feb. 4, 2022

10 4 4 May 20, 2022 May 22, 2022

11 4 3 Nov. 15, 2021 Dec. 7, 2021

12 4 4 Nov. 15, 2021 Jan. 4, 2022

Table 1: Payloads and clusters by IP addresses.

Network infrastructure reuse across time

The VMware Threat Analysis Unit further explored the time dimension by assigning each
network indicator the set of time stamps when a DLL payload was seen in the wild. This gave
us an approximation of the period during which a given network indicator was active.

For example, if a given IP address was included in the configuration data used by three
different samples in January, February and March, it is fair to assume that the host was indeed
compromised during this time.

We used this approach to determine a liveliness timeline. We then sorted and plotted the
resulting liveliness timelines into clusters of DLL payloads (see Table 1) that included a
specific IP address. IP addresses that were included in the same DLL payloads are also
displayed, juxtaposed and colored with the same hue, so we could observe how the
participation of network indicators lived and died during different campaigns.
Figures 26 and 27 show the timelines for Epochs 4 and 5, respectively.

MAPPING THE EMOTET INFRASTRUCTURE

26 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

MAPPING THE EMOTET INFRASTRUCTURE

Figure 26: Timeline of liveliness of network indicators belonging to Epoch 4 samples.

Figure 27: Timeline of liveliness of network indicators belonging to Epoch 5 samples.

27 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

IP geographic distribution

The VMware Threat Analysis Unit analyzed the geographic distribution of the 328 IP addresses
(see Figure 28) to understand which countries were used to host the Emotet infrastructure.
The analysis shows that more than 18 percent of the IP addresses were in the U.S., followed
by Germany and France. Other popular regions included South Asia, Brazil, Canada, and the
United Kingdom.

MAPPING THE EMOTET INFRASTRUCTURE

Figure 28: IP distribution map.

2

4

6

8

10

12

14

16

18

Percentage (%)

port 8080, 54.1% (178)
port 443, 33.7% (111)

port 7080, 8.5% (28)
port 80, 3.6% (12)

Figure 29: Port distribution.

The most common
port was 8080, which
accounted for more
than 50 percent of
all the ports counted,
followed by port 443
(HTTPS).

Port distribution

Every C2 server IP address comes with a specific
port number. There were four commonly used
ports found in the 329 IP address:port pairs of
the 328 unique IP addresses (see Figure 29).

The most common port was 8080, which
accounted for more than 50 percent of all the
ports counted, followed by port 443 (HTTPS).
Port 8080 is commonly used as a proxy port,
suggesting that most of the C2 servers
associated with the IP addresses were likely to
be compromised legitimate servers used to
proxy traffic to the real C2 servers. Using proxies
to hide actual C2 servers is common in Emotet
attacks. According to the findings of a report
published in 2017,23 Emotet actors run an Ngnix
reverse proxy on a secondary port (e.g., 8080)
of a compromised server, which then relays
requests to the actual sever. There was only one
IP address (185.244.166[.]137) associated with
two different ports: 443 and 8080.

28 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

JARM fingerprint distribution

The Joint Architecture Reference Model (JARM) is an active Transport Layer Security (TLS)
server fingerprinting tool used to identify and cluster servers based on their TLS
configuration.24 The VMware Threat Analysis Unit examined the distribution of JARM
fingerprint hashes for the Emotet C2 server IP addresses.

At the time of this report, we were able to obtain JARM fingerprints for 297 of the 328 IP
addresses by querying the IP addresses on VirusTotal. The remaining 31 IP addresses were
missing the JARM fingerprint. The likely reason is that those C2 servers were offline at the time
when VirusTotal checked their JARM fingerprints.

We assume that the JARM fingerprint hashes obtained from VirusTotal were based on the C2
servers’ default HTTPS port (443). To verify this assumption, we scanned one of the C2 IP
address:port pairs, 135.148.121[.]246:8080, with the JARM fingerprinting tool25 (see Figure 30).
The tool allows you to specify a specific port (with option -p) when fingerprinting a server. If a
port is not specified, it uses the default port of the server.

Figure 30: JARM fingerprinting IP address 135.148.121[.]246 with different ports.

As you can see from the Figure 30, the fingerprint hash
15d3fd16d29d29d00042d43d0000009ec686233a4398bea334ba5e62e34a01 is the same
when scanning with the default port and port 443. This is the same JARM hash returned from
VirusTotal when querying for the IP address.

However, when scanning the IP address with port 8080 (as highlighted in Figure 30), JARM
failed to fingerprint the server (the fingerprint hash string was all zeros). In essence, the server
refused to respond to JARM fingerprinting messages on port 8080, which we inferred to
mean the port typically used for proxy service was closed. We confirmed this assumption with
Nmap port scanning (see Figure 31).

MAPPING THE EMOTET INFRASTRUCTURE

29 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Figure 31: Port scanning with Nmap.

By using the RiskIQ Community tool, the VMware Threat Analysis Unit determined the IP
address belongs to OVH (highlighted in Figure 32). OVH is a European internet service
provider (ISP) that delivers server rental services. This ISP is not well known for abuse.
As we can see from Figure 32, there are a few domains currently pointing to the IP address
since July 2021, which existed before Emotet resurfaced. So, we have a good reason to
believe that this is probably a legitimate web server that has been compromised.

Figure 32: The RiskIQ lookup on IP 135.148.121[.]246.

The findings from the investigation in Figure 32 show that using JARM to fingerprint a server
without specifying a port number can generate misleading results. Different services running
on the same server but with different ports can lead to different JARM fingerprints. This
reinforces how important it is to specify the corresponding port numbers identified from the
C2 configuration when using JARM in threat hunting (such as hunting for C2 servers).

Because of these limitations, we only used the subset of C2 IP address:port pairs that
referenced port 443 when analyzing the JARM fingerprints obtained from VirusTotal.
According to the port distribution in Figure 29, there were 111 such IP addresses, with 92
having JARM fingerprints from VirusTotal. As Figure 33 shows, there are 14 unique JARM
fingerprint hashes in total, and 75 IP addresses with port 443 that share the same hash:
2ad2ad0002ad2ad0002ad2ad2ad2ade1a3c0d7ca6ad8388057924be83dfc6a.

MAPPING THE EMOTET INFRASTRUCTURE

30 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

MAPPING THE EMOTET INFRASTRUCTURE
C

ou
nt

70

60

50

40

30

20

10

0

IP JARM fingerprint hash

2ad2a...d
fc6a

15d3f...d
5947

29d29...a
fd5c

2ad2a...9
2a2b

05d02...c
dc13

05d13...c
dc13

20d08...8
5841

2ad2a...4
dc8d

40d1d...5
f0eb

2ad2a...4
5f27

15d2a...4
cbe2

21d19...3
ff65

05d10...2
a827

21d19...fa
b7f

Figure 33: The JARM fingerprint hash distribution for IP addresses with port 443.

It is worth noting that although JARM can be used to identify and cluster servers, including
malware C2 servers, it can lead to false positives (FPs) if not combined with other intelligence,
such as IP address/domain history and reputation. For instance, a report from Cobalt Strike
found the JARM fingerprint of a Cobalt Strike server was the same as a Java server.26
In addition, JARM fingerprinting can be evaded by changing the server-side configuration
using a proxy,27 so it should be used with caution.

AS number distribution

An autonomous system (AS), which is identified by a unique number, refers to a large network
or group of networks typically operated by a single large organization, such as an ISP or a
large enterprise. For example, OVH’s AS number is 16276, as shown in Figure 32. Therefore,
by examining the distribution of AS numbers of the C2 IP addresses, the VMware Threat
Analysis Unit tried to reveal the organizations that own or operate the corresponding servers
used in the attacks.

There are 144 unique AS numbers associated with the 328 IP addresses in our dataset (see
Figure 34). As the distribution shows, the most common AS number (14061 – DigitalOcean) is
related to 44 IP addresses, and most of the AS numbers only have one IP address each. The
detailed AS numbers for all IP addresses can be found in the IoCs section of the Appendix.

31 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

MAPPING THE EMOTET INFRASTRUCTURE

C
ou

nt

AS number

40

30

20

10

0

Figure 34: IP address AS number distribution.

Execution chains and infrastructure

In the previous sections, the VMware Threat Analysis Unit observed that both execution chains
and C2 IP addresses changed over time as new DLL updates were distributed. In both cases,
the underlying reason was often an external event. For example, in the case of execution
chains, the main drivers for change were the advent of new infection vectors and the need to
evade detection. In the case of C2 IP addresses, changes occur often because compromised
hosts are ephemeral, as ISPs continuously identify, disinfect and restore (or just denylist)
affected hosts.

To explore the relationship between these two types of updates, Figure 35 shows the
intersections between execution chain clusters and C2 IP address clusters. While we see many
more execution chain clusters than C2 IP address clusters, some of the mappings are
remarkably injective. For example, network cluster 4 maps almost entirely to DLL cluster 0,
meaning that a specific set of network indicators was always used by samples exercising a
very specific infection chain (in this example, excel.exe -> regsvr32.exe -> regsvr32.exe ->
regsvr32.exe). Similarly, we see the C2 IP addresses in clusters 1, 5 and 7 are (almost) uniquely
used by DLL payloads using yet another unique infection chain (DLL cluster 3): excel.exe ->
regsvr32.exe -> regsvr32.exe.

The VMware Threat Analysis Unit speculates this is an artifact of the software development
lifecycle adopted by Emotet. It increasingly resembles how modern applications are
developed with new features or with updates implemented as needed, and releases
issued periodically.

32 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Figure 35: The relationships between execution chain clusters and network infrastructure.

MAPPING THE EMOTET INFRASTRUCTURE

33 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

To map the evolution of the Emotet threat, the VMware
Threat Analysis Unit created an analysis pipeline.
This pipeline continuously analyzes new samples observed in our telemetry, extracts the
C2 configuration, and uses a modified Emotet sample to connect to the C2 endpoints to
obtain updates.

In the Downloading updates and plug-in modules section of the Appendix, we provide a
detailed analysis of how Emotet updates its components and distributes plug-ins with
specific functionality. This is how we were able to collect various artifacts through time.

Emotet has been known to use a few modules during its infection chain, most notably:

• The core module (the Emotet payload) downloads additional modules or
malware from a C2 server.

• Credential stealing modules, specifically MailPassView and
WebBrowserPassView, are legitimate third-party tools from NirSoft that threat
actors use to steal credentials from web browsers and mail clients.28

• The spam module spreads malware.28

• The email harvesting module exfiltrates email credentials, contact lists,
and email contents from infected PCs to the C2 server.29

Other modules seen in early versions of Emotet included a distributed denial-of-service
(DDoS) module and a banking module, but neither are active anymore.30

During our analysis window, we observed eight different modules:

1. The core module
(the Emotet payload)

2. A spamming module

3. A Thunderbird email client
account stealer

4. An Outlook email client
account stealer

5. A credit card information stealer31

6. A spreader that leverages the
SMB protocol32

7. A module with an embedded
MailPassView application

8. A module with an embedded
WebBrowserPassView application

In addition to known modules and functionality seen in the past, the list highlights two
updated modules that we were able to intercept. These were a module that steals credit
card information, specifically targeting Google Chrome browsers, and a spreading module
that leverages the SMB protocol. Other researchers have validated they have seen similar
modules in recent Emotet attacks (see the references in the previous lists).

EMOTET RELOADED

34 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

EMOTET RELOADED

Figure 36: Emotet updates with unique builds grouped by color.

Figure 36 aggregates update information
pulled from the Emotet network
infrastructure. Every record represents
an update that was distributed by a C2
server to a bot (the system on which the
bot is running is uniquely identified by the
corresponding C: volume serial number and
computer name).

It is worth noting that the builds that are
delivered to different compromised hosts
have different file hashes. However, updates
of the same type have the same conceptual
hash. This concept was introduced when the
VMware Threat Analysis Unit noticed the
builds of the same type, delivered on the
same day, were almost identical except for
the 32 bytes of data stored within the .rdata
section of the file. By eliminating the .rdata
section from the SHA1 hash calculation, it is
possible to track unique builds of the
updates. For example, in Figure 36, we
group unique builds by color to show how
groups of samples with different SHA1
hashes have an identical conceptual hash.

During our analysis window (Figure 37),
we made the following observations:

• The first update delivered to a newly
installed bot of any Epoch is always (with
a very few exceptions) the core update.

• There were deliveries of the packed version
of the core update on June 3, 2022 and
June 7, 2022 (Epoch 5), and June 15, 2022
(Epoch 4). This is the same DLL that is
dropped by an Excel document in the initial
infection chain. It is unusual because the
updates are normally not packed.

• The core update is almost always
accompanied in both Epochs by
MailPassView, WebBrowserPassView,
OutlookStealer, and ThunderbirdStealer.

• The spam module was introduced on
May 26, 2022 by the Epoch 5 botnet, but
then a new version was delivered on June
8, 2022 to the bots of the Epoch 4 botnet
for testing.

• CreditCardStealer was introduced on June
7, 2022 by the Epoch 4 botnet for testing.
Almost a week later on June 13, 2022, the
component was delivered to the bots of the
Epoch 5 botnet.

35 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

EMOTET RELOADED

• SMBSpreader was introduced on June 13,
2022 in both the Epoch 4 and 5 botnets.
Since then, they have been pushing it to
every bot of both botnets.

• Since mid-May 2022, Emotet samples have
started transitioning to a new method of
storing the configuration data within the
binary. This broke our analysis pipeline for
approximately two weeks (between May
12–26, 2022), during which we were not
able to collect any updates.

• Short gaps in the charts represent when
our analysis broke down due to other
factors, including failures in the
configuration extraction pipeline or
broken VPN links.

In conclusion, Epochs 4 and 5 deliver the
same payloads, but early updates tend to
reach Epoch 4 first, confirming that Emotet
developers are using Epoch 4 as their test
botnet before deploying things more widely
through Epoch 5.

Core

Core Packed

CreditCardStealer

MailPassView

OutlookStealer

SMBSpreader

Spam

ThunderbirdStealer

WebBrowserPassView

M
od

ul
es

April 29 May 2 May 4 June 4-8 June 13-18 June 20-22 June 25 June 28-29

Core

Core Packed

CreditCardStealer

MailPassView

OutlookStealer

SMBSpreader

Spam

ThunderbirdStealer

WebBrowserPassView

M
od

ul
es

May 2 May 5-6 May 9 May 12 May 26 May 30-31 June 3-8 June 13-17 June 21-22 June 25 June 28-30

Figure 37: The timeline of the distribution of Emotet modules for Epoch 4 (top) and Epoch 5 (bottom).

36 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

EMOTET RELOADED

Figure 38 shows the network origin of the
Emotet modules. The y-axis represents the
autonomous systems of the IP addresses of
the servers hosting the Emotet modules,
while the x-axis represents the percentage of
the modules pushed from that AS (on the
left) and the count of these modules (on the
right). For example, AS52772 pushed 10
modules in total: one MailPassView, one
WebBrowserPassView, four spam, and four
ThunderbirdStealer.

Of note, AS14061 was the most active AS,
totaling 1,198 delivered modules, which

covered all known types. Overall, the most
delivered module was OutlookStealer; it
was delivered 1,093 times by 15 different
autonomous systems (out of 39). The rarest
module was the core module packed, which
was only delivered 17 times and only
delivered by six of the autonomous systems.
The most popular module was the core
module (unpacked), which was delivered by
31 autonomous systems. Nine autonomous
systems delivered only one module, six
delivered only the core module, and three
delivered only the spam module.

AS46606
AS60781
AS141147

AS62904
AS47330
AS137114
AS48275
AS52772

AS327814
AS4621

AS135161
AS14061
AS4766
AS9318

AS131293
AS16276

AS30083
AS9123

AS51582
AS9269

AS37963
AS51167

AS197695
AS24940
AS34119
AS12876
AS45291
AS16284
AS10143

AS7713
AS45293
AS24961

AS133496
AS269468

AS63949
AS61635
AS27951

AS53667
AS133296

0 20 40 60 80 100

Percentage

0 200 400 600 800 1000 1200

Count

Core
Core packed
CreditCardStealer
MailPassView
OutlookStealer
SMBSpreader
Spam
ThunderbirdStealer
WebBrowserPassView

Figure 38: Network origin distribution (autonomous system) of Emotet modules (percentages on the left, count
on the right).

37 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

The VMware Threat Analysis Unit
also analyzed the geographic
distribution of the IP addresses
of the servers (see Figure 39) to
reveal which countries were used
to host the Emotet modules.

The analysis shows that most of
the modules were hosted in India
(more than 26 percent), followed by
Korea, Thailand, and Ghana. Other
popular regions included France
and Singapore.

It is worth noting that the IP addresses of the servers hosting the Emotet modules can be
different from the IP addresses extracted from the initial Emotet payload configuration (see
Figures 28 and 29). As previously discussed, most of the IP addresses extracted from the
configuration were likely to be compromised legitimate servers used to proxy the actual
servers that hosted the Emotet modules.

EMOTET RELOADED

5

10

15

20

25

Percentage (%)

 Figure 39: Geographic distribution of the Emotet modules.

38 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

VMWARE RECOMMENDATIONS

The VMware Threat Analysis Unit recommends organizations implement the following
technologies, programs and processes to create a strong security foundation that can better
protect against Emotet and other nefarious malware strains.

Awareness and training programs

Ensure everyone in the organization is aware
of the phishing and social engineering tactics
attackers use to try to deliver their malware,
and knows what to do (and what not to do)
to make sure the attack tactics don’t work.

Network detection and response (NDR)

Provide signature-based detection as well
as identification capabilities, and counter
system-wide network threats with no
previous signature.

Email security

Provide a prevention, detection and
response framework for protecting email
accounts, content and communications.
Threat actors commonly use email to
proliferate malware, spam and phishing
attacks, so it’s important to protect email
privacy and integrity.

Next-generation firewalls

Enable traffic inspection at critical control
points, and leverage threat intelligence to
block traffic to and from known malicious
and C2 IP addresses.

Intrusion detection and prevention
systems (IDS/IPS)

Turn on IDS/IPS controls to detect and
block attacks using the signatures of known
malicious network activity.

Endpoint detection and response (EDR)

Provide malware protection that analyzes
and detects attacks, based on rule sets
(signatures) or heuristics (anomalies), and
then alerts and triages threats on endpoints.

Segment the network

Micro-segment the network, which splits the
network into multiple subnetworks designed
around business needs and technology
requirements, to contain threats that may
have already made it inside the network and
prevent their spread.

Inspect east-west traffic

Utilize east-west network traffic analysis to
identify patterns and abnormal behaviors
that could be indicators of compromise.

Scan network artifacts

Dynamically analyze file behaviors for threats
by using AI and machine learning (ML) to
detect malicious code.

Log aggregation

Collect logs from all critical devices, security
controls, and endpoints in a central location
for correlation and analysis that can uncover
TTPs.

Apply Zero Trust principles

Implement policy and technical controls that
enforce a Zero Trust model to restrict access
to all networks, systems, applications and
processes. Allow only the minimal access
required to perform assigned functions.

Implement robust password policies and
best practices

Remove all default, shared and hard-coded
authentication processes in place of stronger
authentication mechanisms. Encourage the
use of multifactor authentication practices
where feasible.

39 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

VMWARE RECOMMENDATIONS

Patch management

Apply security updates to the operating
systems, software, hardware and plug-ins
of your infrastructure in a regular, timely
manner to address vulnerabilities that
attackers could exploit to get into your
network.

Penetration and vulnerability testing

Conduct regular penetration testing and
vulnerability assessments to understand
and reduce your potential attack surface.

Active threat hunting

Monitor everyday activities and traffic across
the network, and investigate possible
anomalies to find any yet-to-be-discovered
threats that could lead to a security breach.

Lateral security

Secure end-to-end connectivity for
applications, including end users,
microservices, APIs and data, to reduce the
spread and lateral movement of threats.

How VMware can help
It is anticipated that Emotet will continue to
evolve its TTPs over time to remain pervasive
and evade detection. VMware can help by
delivering security as a built-in distributed
service to protect your users, devices,
workloads and networks. VMware Security
can help effectively detect, mitigate and
contain Emotet and its permutations, as well
as other polymorphic threats. The portfolio
includes full-fidelity telemetry collection,
sophisticated threat intelligence, and
anomaly detection capabilities paired with
security controls for endpoints, workloads
and networks.

With VMware, you can also implement a
Zero Trust strategy with fewer tools and
silos. You can scale responses to threats with
confidence, speed and accuracy to minimize
and prevent attack impacts. When you

embed security within the hypervisor, you
decrease your attack surface to reduce
security risks, ensure compliance, and
simplify security operations.

You can operationalize more of your security
through your IT and development teams
with VMware, dramatically increasing your
capacity to protect and defend your
infrastructure. The authoritative context
from the visibility, depth and accuracy of
VMware’s data collection enables security
teams to confidently respond to events
occurring within your organization’s assets.
This allows you to focus on high-value
activities, knowing VMware’s intelligent
risk correlation with proactive prevention,
detection and response capabilities is
protecting your assets and operations.

40 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

VMWARE RECOMMENDATIONS

VMware Security provides many capabilities to protect you from the advanced threats
targeting your multi-cloud environments, such as Emotet.

VMware Workspace ONE®
VMware Horizon®
VMware Carbon Black Cloud™

Stop advanced threats on end-user solutions
from entering the environment.

VMware vSphere®
VMware NSX® Advanced Threat Prevention™
VMware Carbon Black Cloud
VMware Aria Operations™ for Secure Clouds
(formerly CloudHealth® Secure State™)
VMware Tanzu®
VMware Aria Suite™ (formerly VMware vRealize®
Suite)
VMware NSX

Protect against, detect and respond to
advanced threats in on-premises, hybrid,
cloud and multi-cloud environments.

VMware Contexa See more and stop more. This full-fidelity
cloud-delivered threat intelligence from
VMware synthesizes inputs from human
experts and machine learning. By understand-
ing the inner workings of apps every step of
the way—from the user and device, to the
network, to the runtime and the data—VMware
Contexa enables you to close the adversarial
gap and defend your organization against
advanced threats.

41 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Ethem Bagci

Oleg Boyarchuk

Sebastiano Mariani

Stefano Ortolani

Giovanni Vigna

Jason Zhang

CONTRIBUTORS

42 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

BIBLIOGRAPHY

1 Malpedia. “Mummy Spider.” July 2022.

2 SecurityWeek. “‘Emotet’ Banking Malware Steals Data Via Network Sniffing.” Eduard Kovacs. June 30, 2014.

3 U.S. Department of Health and Human Services. “The Return of Emotet and the Threat to the Health Sector.” June 2,
2022.

4 VMware. “Defeat Emotet Attacks with Behavior-Based Malware Protection.” Jason Zhang. November 5, 2020.

5 Cisco Talos Intelligence Group. “Emotet is back after a summer break.” Colin Grady, William Largent, and Jaeson Schultz.
September 17, 2019.

6 VMware. “COVID-19 Cyberthreats and Malware Updates.” Jason Zhang, Subrat Sarkar, and Stefano Ortolani. November
9, 2020.

7 Europol. “World’s most dangerous malware EMOTET disrupted through global action.” January 27, 2021.

8 VMware. “Death of Emotet: The Takedown of The Emotet Infrastructure.” Stefano Ortolani and Giovanni Vigna. February
22, 2021.

9 Digital Shadows. “The Emotet Shutdown Explained.” April 22, 2021.

10 Cyber.wtf. “Guess who’s back.” Luca Ebach. November 15, 2021.

11 Bleeping Computer. “Emotet botnet comeback orchestrated by Conti ransomware gang.” Ionut Ilascu. November 19,
2021.

12 VMware. “Emotet Is Not Dead (Yet).” Jason Zhang. January 21, 2022.

13 VMware. “Emotet Is Not Dead (Yet) – Part 2.” Jason Zhang. February 7, 2022.

14 VMware. “Evolution of Excel 4.0 Macro Weaponization.” James Haughom and Stefano Ortolani. June 2, 2020.

15 VMware. “Evolution of Excel 4.0 Macro Weaponization – Part 2.” Baibhav Singh. October 14, 2020.

16 VMware. “Symbexcel: Bringing the Power of Symbolic Execution to the Fight Against Malicious Excel 4 Macros.” Giovanni
Vigna and Stefano Ortolani. September 30, 2021.

17 MITRE. “ATT&CK Framework.” June 2022.

18 VMware. “Emotet C2 Configuration Extraction and Analysis.” Oleg Boyarchuk and Jason Zhang. March 29, 2022.

19 VMware. “Emotet Moves to 64 bit and Updates its Loader.” Oleg Boyarchuk, Jason Zhang, and Stefano Ortolani. May 16,
2022.

20 Intel 471. “How the new Emotet differs from previous versions.” December 8, 2021.

21 Bleeping Computer. “Emotet Trojan Evolves Since Being Reawakend, Here is What We Know.” Lawrence Abrams.
September 19, 2019.

22 RiskIQ. “217.182.143.207.” June 2022.

23 MalwareTech. “Investigating Command and Control Infrastructure (Emotet).” November 13, 2017.

24 Salesforce. “Easily Identify Malicious Servers on the Internet with JARM.” John Althouse. November 17, 2020.

25 Salesforce. “salesforce / jarm.” October 2021.

26 Cobalt Strike. “A Red Teamer Plays with JARM.” Raphael Mudge. December 8, 2020.

27 Netskope. “JARM Randomizer.” May 2021.

28	 CERT	Polska.	“Analysis	of	Emotet	v4.”	Paweł	Srokosz.	May	24,	2017.

29 Kryptos Logic. “Emotet Awakens With New Campaign of Mass Email Exfiltration.” October 31, 2018.

30 Proofpoint. “Threat Actor Profile: TA542, From Banker to Malware Distribution Service.” May 15, 2019.

31 Bleeping Computer. “Emotet malware now steals credit cards from Google Chrome users.” Sergiu Gatlan. June 8, 2022.

32 Reversing.fun. “Emotet SMB spreader overview.” June 20, 2022.

33 Kaspersky. “The Banking Trojan Emotet: Detailed Analysis.” Alexey Shulmin. April 9, 2015.

34 SecurityWeek. “New Emotet Variant Targets Banking Credentials of German Speakers.” Eduard Kovacs. January 7, 2015.

35 Symantec. “The Evolution of Emotet: From Banking Trojan to Threat Distributor.” July 18, 2018.

36 Infosecurity. “Allentown Struggles with $1 Million Cyber-Attack.” Tara Seals. February 21, 2018.

37 BlackBerry. “Threat Spotlight: Panda Banker Trojan Targets the US, Canada and Japan.” October 9, 2018.

38 Heise. “Trojan infestation: Emotet at Heise.” Jürgen Schmidt. June 6, 2019.

43 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

BIBLIOGRAPHY

39 Malwarebytes. “Let’s talk Emotet malware.” November 2021.

40 Der Tagesspiegel. “Emotet warning ignored for days.” Robert Kiesel. February 12, 2020.

41 Archyde. “‘Emotet’ in Berlin: computer virus also affects Humboldt University – Berlin.” November 10, 2019.

42 ZDNet. “Frankfurt shuts down IT network following Emotet infection.” Catalin Cimpanu. December 19, 2019.

43 Check Point. “January 2020’s Most Wanted Malware: Coronavirus-themed spam spreads malicious Emotet malware.”
February 13, 2020.

44 ESET. “Emotet strikes Quebec’s Department of Justice: An ESET Analysis.” Gabrielle Ladouceur Despins. September 16,
2020.

45 Bleeping Computer. “Emotet starts dropping Cobalt Strike again for faster attacks.” Lawrence Abrams. December 15,
2021.

46 Bleeping Computer. “Emotet malware campaign impersonates the IRS for 2022 tax season.” Lawrence Abrams. March
16, 2022.

47 VMware. “Emotet Config Redux.” Oleg Boyarchuk and Stefano Ortolani. May 25, 2022.

48 QEMU. “QEMU: A generic and open source machine emulator and virtualizer.” June 2022.

49 Qiling. “Qiling Framework.” April 2022.

44 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

IoCs
The indicators of compromise identified from this report (including DLL samples,
configuration, and payload updates) can be found on the VMware Threat Analysis Unit-
Research GitHub repository.

Emotet activity timeline notes

June 2014 Emotet first emerged as a banking Trojan. The malware was initially
designed to steal banking credentials from banks mainly located
in Germany.2

September 2014 Emotet version 2 (v2). Emotet began to leverage a so-called automatic
transfer system (ATS) technology to automate money transfers from
victims’ bank accounts mainly from German and Austrian banks.33

January 2015 Emotet v3. The malware became stealthier as compared to its previous
versions to avoid being detected by antivirus scanners. It expanded its
targets to Swiss banks.33,34

2016 Emotet evolved into a loader, making it capable to download
second-stage payloads.

2017 Emotet began to deploy TrickBot, IcedID and UmbreCrypt (ransomware).35

September 2017 Emotet v4. This variant used a 128-bit AES algorithm instead of RC4 (used
in its previous releases) to encrypt communications between infected
machines and C2 servers.28

February 2018 Attack on Allentown, Pennsylvania, costing nearly $1 million to mitigate
the damage.36

October 2018 Emotet began to deploy the Panda banking Trojan.37

May 2019 Attack against Heise, Germany.38

July 2019 Attack against Lake City, Florida.39

September 2019 Attack against Berlin Superior Court, Germany.40

October 2019 Attack against Humboldt University, Germany.41

December 2019 Attack against City of Frankfurt, Germany.42

January 2020 Emotet uses COVID-19-themed emails to spread.43

September 2020 Attack against Quebec’s Department of Justice, Canada.44

January 2021 Emotet is taken down (Operation Ladybird).8

November 2021 Emotet comes back.10

December 2021 Emotet starts dropping Cobalt Strike.45

March 2022 Emotet used IRS-themed emails to spread.46

APPENDIX

https://github.com/vmware-samples/tau-research/tree/emotet-report/2022-H2-Emotet-Resurrection
https://github.com/vmware-samples/tau-research/tree/emotet-report/2022-H2-Emotet-Resurrection

45 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

Extracting the Emotet configuration
The process of extracting the C2 configuration from an Emotet sample has two main steps:

1. Decrypting and dumping the internal DLL from the initial DLL payload.

2. Scanning the decrypted internal DLL to extract the C2 configuration data, namely the C2
servers’ IP address:port pairs and the public encryption key(s).

Using manual analysis, we looked at these two steps.

Step 1: Decrypting and dumping the internal DLL

To demonstrate this step, we analyzed the Emotet sample with hash
63996a39755e84ee8b5d3f47296991362a17afaaccf2ac43207a424a366f4cc9.

The DllMain function of this sample (and many others) used the following algorithm to:

• Allocate approximately 100MB of memory
with malloc and fill it with random data.
This stops the analysis of weak emulators
not willing to allocate large amounts
of memory.

• Find the base address of kernel32.dll by
parsing the TEB, PEB, PEB_LDR_DATA,
and the like. While normally this method is
used to make the reverse engineering
process more difficult, statically imported
functions are still used later in the code.
We speculate this is a trick to also break
emulation, as references to internal OS
structures are seldom fully handled
by emulators.

• Find VirtualAlloc and VirtualAllocExNuma
with the help of an ad hoc version
of GetProcAddress.

• Allocate memory with either
VirtualAllocExNuma or VirtualAlloc,
depending on which one is available.
VirtualAlloc is supported starting with
Windows XP, whereas VirtualAllocExNuma
is supported starting with Windows Vista.
This looks like another trick to stop weak
emulators that do not support the
complete set of Windows APIs.

• Copy the internal DLL into the allocated
memory and then decrypt it.

• Map the sections of the internal DLL in
memory, and then fix relocations and
imports. This is achieved with the help
of the statically imported functions
VirtualAlloc, LoadLibrary,
and GetProcAddress.

To be able to decrypt and dump the internal
DLL, it is first necessary to load the original
DLL payload into a debugger, set
breakpoints on the invocation of
VirtualAllocExNuma and VirtualAlloc, and
then start execution. When the execution
reaches the breakpoint, you need to trace
the code until it returns a pointer to the
allocated memory.

46 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

In Figure 40, the address of the newly allocated memory is 0x00E7000.

Figure 40: Memory allocated with VirtualAllocExNuma.

The next step is to trace the code of DllMain until it copies the encrypted DLL into the allocated
memory. Figure 41 shows that the data of the Dump tab has changed from all zeros to
random bytes.

Figure 41: Embedded DLL copied into the allocated memory.

47 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

Next, the code of DllMain can be traced a bit further until the data of the Dump tab updates to
a PE file with the MZ signature at the very beginning and the text “This program cannot be run
in DOS mode” (see Figure 42).

Figure 42: Decrypted embedded DLL in allocated memory.

At this point, it is possible to dump the decrypted internal DLL.

48 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

Step 2: C2 configuration extraction

The next step is to locate the configuration
data. The DLL is supposed to be executed
with the help of rundll32. The following
command line can be used when debugging
this artifact:

"C:\Windows\system32\rundll32.exe"
"Path\to\dumped.dll",
DllRegisterServer

The internal DLL does not import any
function. Instead, it retrieves pointers to
the Windows API functions dynamically.
In addition, some of the core functionality
is obfuscated, which makes static analysis
challenging. Under the hood, the code
obfuscation includes mathematical
operations performed multiple times
(see Figure 43).

The result of such calculations is passed
to a function and then never used (see
Figure 44).

As Figure 45 shows, the obfuscation
also includes multiple conditional jumps
that break the control flow of the
decompiled code.

Figure 43: Mathematical operations on a number in
the obfuscated code.

Figure 44: The result of the mathematical operations
passed as the sixth parameter to a function.

Figure 45: Conditional jumps in the obfuscated code.

49 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

The abundance of jumps is translated into nested while loops in the decompiled
obfuscated code (see Figure 46).

Figure 46: Nested while loops in the obfuscated code.

50 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Each API function has a wrapper that is
called by the core functionality. For
example, Figure 47 shows how DllMain
calls the wrapper around the
ExitProcess API.

APPENDIX

Figure 47: DllMain of the embedded DLL with highlighted
wrapper over ExitProcess.

Figure 48: Wrapper over the ExitProcess API in the
embedded DLL.

Figure 49: Memory allocation function of the embedded
DLL.

Figure 48 shows the implementation
of the ExitProcess wrapper. It calls
FindProcAddress, which is also called
by every other API wrapper to retrieve
the API function address by hash.

By setting a breakpoint on
FindProcAddress, all the API wrappers
can be extracted and named. The
VMware Threat Analysis Unit was
particularly interested in the API
functions that work with memory.
They will help us find the key function
responsible for memory allocation.
This function is shown in Figure 49.

51 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

AllocateMemory is called by many functions, but we wanted to see its use within a function
that resembled a decoding cycle. Using manual analysis, the VMware Threat Analysis Unit
identified the function in Figure 50.

Figure 50: Config decryption function of the embedded DLL.

APPENDIX

52 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

By setting a breakpoint on this function, we can identify all the encrypted configs, which are
passed in ECX (see Figure 51).

Figure 51: Pointer to the encrypted config passed to the decryption function in ECX.

Once the execution of this function ends, it returns a pointer to the decrypted config. In this
case, we have the public key that is used in C2 communication, as highlighted in Figure 52.

Figure 52: A decrypted C2 public key.

APPENDIX

53 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

The encrypted data is stored in the format shown in Table 2 (this format was found in samples
belonging to Epochs 4 and 5).

Field Offset Size Description

Key 0 4 Decryption key, little endian

Length 4 4 Length of data, little endian

Data 8 Variable Encrypted data, split into DWORDs, little endian

Table 2: Encrypted data storage format

The length of the encrypted data can be retrieved by XORing the first DWORD of the
encrypted data blob with the second one. To decrypt the data with the retrieved data length,
you need to split the data into DWORDs and then XOR them with the same first DWORD.

This way, the network keys can be decrypted, which are stored in the .text section of the
extracted DLL. The keys we extracted from the sample under analysis
63996a39755e84ee8b5d3f47296991362a17
afaaccf2ac43207a424a366f4cc9 belonged to Epoch 4:

• ECK1 (base64 encoded):
RUNLMSAAAADzozW1Di4r9DVWzQpMKT588RDdy7BPILP6AiDOTLYMHkSWvrQO5slbmr1O
vZ2Pz+AQWzRMggQmAtO6rPH7nyx2

• ECS1 (base64 encoded):
RUNTMSAAAABAX3S2xNjcDD0fBno33Ln5t71eii+mofIPoXkNFOX1MeiwCh48iz97kB0mJjGGZ
XwardnDXKxI8GCHGNl0PFj5

APPENDIX

54 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Figure 53: Encrypted list of IP address:port pairs is stored at the beginning of .data section of the embedded DLL.

The decrypted configuration consists of an array of 8-byte elements, each with the format
shown in Table 3.

Field Offset Size Description

IP 0 1 First part of the IP address

1 1 Second part of the IP address

2 1 Third part of the IP address

3 1 Fourth part of the IP address

Port 4 2 Corresponding port, little endian

Valid 6 2 Always 1, presumably valid flag, little endian

Table 3: Element format.

APPENDIX

The configuration containing the C2 IP addresses and ports is normally stored at the very
beginning of the .data section of the extracted DLL (see Figure 53). This configuration is
encrypted with the same method described previously.

55 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Figure 54 shows the decrypted IP address:port pairs.

Figure 54: The decrypted list of IP address:port pairs in binary format.

The following is a complete list of the extracted IP address:port pairs from the sample:

131.100.24.231:80
209.59.138.75:7080
103.8.26.103:8080
51.38.71.0:443
212.237.17.99:8080
9.172.212.216:8080
207.38.84.195:8080
104.168.155.129:8080
178.79.147.66:8080
46.55.222.11:443
103.8.26.102:8080
192.254.71.210:443
45.176.232.124:443

203.114.109.124:443
51.68.175.8:8080
58.227.42.236:80
45.142.114.231:8080
217.182.143.207:443
178.63.25.185:443
45.118.115.99:8080
103.75.201.2:443
104.251.214.46:8080
158.69.222.101:443
81.0.236.90:443
45.118.135.203:7080
176.104.106.96:8080

212.237.56.116:7080
216.158.226.206:443
173.212.193.249:8080
50.116.54.215:443
138.185.72.26:8080
41.76.108.46:8080
212.237.5.209:443
107.182.225.142:8080
195.154.133.20:443
162.214.50.39:7080
110.232.117.186:8080

Since mid-May 2022, Emotet samples started to transition to a new method of storing the
configuration data within the binary. This new approach does not store the information as a
single blob of data but as a split collection of fragments, each obfuscated separately.47 These
new samples now feature an accumulator function (see Figure 55) that returns a pointer to an
array of function pointers, each returning to a single C2 IP address and port (see Figure 56).

APPENDIX

56 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Figure 55: The C2 accumulator function from the new wave (sample
b409ca9851fecca61e6cb0aaaa56fdaafc7242f5).

APPENDIX

57 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

Figure 56: The obfuscated C2 function from the new wave, which returns 212.24.98.99:8080
(b409ca9851fecca61e6cb0aaaa56fdaafc7242f5).

A straightforward approach to deal with this kind of obfuscation is to use code decompilers
(for example, Hex-Rays). An often-underestimated advantage of decompilers is the ability to
also reduce code complexity as a by-product of lifting the binary code to a higher-level
representation. Figure 57 shows an example of a decompiled and de-obfuscated code
fragment. While ideal for manual analysis, decompilers are not guaranteed to work in the
general case (de-obfuscation tends to be unreliable).

58 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Figure 57: The C2 function from the new wave de-obfuscated by Hex-Rays
(b409ca9851fecca61e6cb0aaaa56fdaafc7242f5).

Running the code in a code emulator, such as QEMU48 or Qiling49 (both are free for
commercial use), is often a more reliable way to extract the required data. This is because
they can emulate both the CPU and the underlying OS environment.

In this scenario, the starting point needs to be the inner DLL extracted as shown in Figures 40,
41 and 42. Once that is done, static analysis can be used to identify the accumulator function
and obtain the full list of functions used to decode the C2 data. The last step is to compute the
physical offset within the module and feed it to the emulator as a starting instruction. Figure 58
contains a quick implementation we wrote to decode the C2 data from the function that was
shown in Figure 57 (i.e., sub_7FFA1B6AEAA4). In this case, the physical offset was 0x1DEA4.

Figure 58: A small program to decode a single network indicator given a physical offset.

The new method of storing the config was described in a report the VMware Threat Analysis
Unit published recently.47

The steps of the extraction pipeline we’ve discussed are based on manual analysis. As our
analysis shows, even though it is possible to extract the decrypted payload and configuration
data statically, this process is not efficient and does not scale. Therefore, the VMware Threat
Analysis Unit decided to fully automate the process for both steps.

APPENDIX

59 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

We did this by leveraging the NSX Sandbox,18 which extracts and dumps the internal DLL
artifact from the original Emotet DLL payload during execution. (It is possible to use other
controlled environments, as well.) The dumped DLL can then be fed into the C2 configuration
extractor for scanning. The extractor supports different configuration formats seen
in various Epochs.

Downloading updates and plug-in modules
The VMware Threat Analysis Unit developed a tool to regularly connect to the Emotet
infrastructure to download updates and plug-in modules. We started by determining how the
updates were uploaded and executed.

As detailed in the Extracting Emotet configuration section of the Appendix, by setting a
breakpoint on FindProcAddress, you can extract all API wrappers of the sample and name
them. This helped us to find out that Emotet relies heavily on functions from wininet.dll and
bcrypt.dll to establish network communications and encrypts the traffic by performing API
calls in the following order:

bcrypt!BCryptCreateHash
bcrypt!BCryptHashData
bcrypt!BCryptFinishHash
bcrypt!BCryptDestroyHash
bcrypt!BCryptCloseAlgorithmProvider
bcrypt!BCryptEncrypt
bcrypt!BCryptEncrypt
…
wininet!InternetOpenW
wininet!InternetConnectW
wininet!HttpOpenRequestW
wininet!InternetSetOptionW
wininet!InternetQueryOptionW
wininet!InternetSetOptionW
wininet!HttpSendRequestW
wininet!HttpQueryInfoW
wininet!InternetReadFile
…
bcrypt!BCryptDecrypt

Investigating the updates delivered to the infected machine requires executing the DLL
sample in a controlled environment. The key here is to intercept BCryptDecrypt and monitor
every decryption a sample might attempt. To achieve this, it is necessary to run a sample with
the help of regsvr32.dll in a debugger with a breakpoint set on BCryptDecrypt. Because this
function is also used by other DLLs to decrypt the TLS traffic, it might take some number of
iterations to get to the code of the sample that calls BCryptDecrypt to decrypt the data
received from the C2 server.

60 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

The prototype of this function looks like this:

NTSTATUS BCryptDecrypt(
 [in, out] BCRYPT_KEY_HANDLE hKey,
 [in] PUCHAR pbInput,
 [in] ULONG cbInput,
 [in, optional] VOID *pPaddingInfo,
 [in, out, optional] PUCHAR pbIV,
 [in] ULONG cbIV,
 [out, optional] PUCHAR pbOutput,
 [in] ULONG cbOutput,
 [out] ULONG *pcbResult,
 [in] ULONG dwFlags
);

The seventh parameter, pbOutput, is a pointer to the buffer receiving the decrypted message
(see Figure 59). By following the address stored in the pbOutput parameter and then
executing BCryptDecrypt until return, we were able to get the actual answer of the C2 server,
which includes the delivered PE payload (see Figure 60).

Figure 59: Sample 4c92984f9ebbfac6c40c8fd775c3a357139944c9 calls BCryptDecrypt to decrypt the data
coming from the C2 server. The value of pbOutput is stored at rsp+7*8.

61 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

Figure 60: The result of the execution of BCryptDecrypt on the delivered PE payload (highlighted) called by
sample 4c92984f9ebbfac6c40c8fd775c3a357139944c9.

The Emotet actors likely implemented some anti-analysis techniques because after a series of
connections to the C2 servers in the infrastructure, the back-end stopped replying with updates
(as shown in Figure 61). We assumed this anti-analysis technique was based on both the
configuration of the host and the source IP address of the connection, which we verified by
running the same sample with the same VPN output node on different virtual machines (VMs).
Initially, we found that the same C2 server immediately replied with a fresh update. However,
after a few changes in the VM configuration, the VPN address was denylisted by the
botnet’s leaders.

Figure 61: Sample 4c92984f9ebbfac6c40c8fd775c3a357139944c9, being executed on a

62 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

denylisted VM, receives only the header (highlighted) of the answer without the PE payload.

Emotet forms the bot ID out of two components: the computer name returned by
the GetComputerNameA API and the C: volume serial number returned by the
GetVolumeInformationW API. The ID is sent by the bot to the C2 server to identify
itself during every communication. This ID can be denylisted by the botnet leaders.

For the purpose of automation, the VMware Threat Analysis Unit built a tool that intercepts
GetComputerNameA and GetVolumeInformationW, and returns random values. This helps to
bypass the denylisting mechanisms used by the botnet leaders. In addition to that, the tool
hooks many other functions for logging purposes, including BCryptDecrypt, to intercept the
PE files in the delivered updates (see Figure 62).

Figure 62: Dumping the core update delivered by the C2 server.

63 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

Figure 63: Dumping additional updates delivered by the C2 server.

These PE files are also DLLs but feature a custom entry point. While normal DLLs perform
their initialization during the DLL_PROCESS_ATTACH call and free their resources during the
DLL_PROCESS_DETACH call, the 32-bit DLLs distributed by the botnet (before the end of
April 2022) were different. They executed the initialization routine only when a custom value
(fdwReason=16) was given as an input (see Figure 64). Furthermore, the loading routine
required that custom data structures be passed via the lpReserved pointer. Failure to comply
with any of these requirements (e.g., loading the DLL using rundll32.exe) will either crash the
sample or make it skip the initialization routine. The updated 64-bit DLLs (after the end of
April 2022) retained this specific loading mechanism but now correctly initialize only when a
different value (i.e., 100) is given as an input (see Figure 65).

64 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Figure 64: Entry point of a 32-bit update (7d3f067f4b135a4a4d4b717bc7f7f4dd8e3a7ff8).

Figure 65: Entry point of a 64-bit update (3c729151d9d2d326a4a3772ee18a1c0ca5db55ce).

The VMware Threat Analysis Unit was able to partially reconstruct the data structure the core
module is passing to the custom entry point, consisting of 64-bit DLL updates. The purpose of
the Unk fields is still to be determined:

typedef struct {
 PCHAR pID; // Bot ID, e.g. "DESKTOPXHO47NFZ_1E62B7B" for
computer name "DESKTOP-HO47NFZ" and C: volume serial number 0x1E62B7B
 PBYTE pECK1; // ECK1 key in binary form
 ULONG64 ECK1_Size; // Size of the ECK1 key, always 0x48
 PBYTE pECS1; // ECS1 key in binary form
 ULONG64 ECS1_Size; // Size of the ECS1 key, always 0x48
 ULONG Unk1;
 ULONG Unk2;
 ULONG64 Unk3;
 ULONG64 Unk4;
} EMOTET_LOADER_DATA;

The module with the core functionality (the Emotet DLL) is always pushed first by the C2
server, as shown in Figure 62. Once the core module is successfully updated, it downloads
additional plug-ins with various functionality. They are given with some delay, as shown in
Figure 63.

APPENDIX

65 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

When the plug-ins are downloaded, they are not saved to disk, which helps them avoid being
detected by file system monitors. Instead, the core module allocates memory for the plug-in,
maps the PE sections, resolves the API imports (if any), and completes the load of the
executable in memory without involving the standard loading mechanism that might attract
the attention of anti-malware tools.

Every update the DLL makes contains its own C2 config but not the ECK1-ECS1 key pair. The
encryption keys are passed to the update during the DllEntryPoint in the EMOTET_LOADER_
DATA structure described earlier.

Updates may contain embedded executables in the .text section. Figure 66 shows that they
are encrypted.

Figure 66: The encrypted payload embedded into an old update, before mid-May 2022
(879868bf68f231bf68abf1c7cc7adbf958a90e3a).

The encryption method used to obfuscate the embedded payloads in the old updates (prior to
mid-May 2022) was the same encryption method of the C2 config described in the C2
configuration extraction section.

For example, consider the first three DWORDs of the encrypted payload from
Figure 66: 0x5F3A4D6A (encryption key), 0x5F3FE76A (encrypted payload length),
and 0x5FAA1727 (first encrypted DWORD of the payload). 0x5F3A4D6A XOR-ed
with 0x5F3FE76A gives 0x5AA00, which is the PE payload size.

66 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

0x5F3A4D6A XOR-ed with 0x5FAA1727 gives 0x905A4D, which is the beginning of a PE file
(bytes 0x4D and 0x5A are the M and Z characters, respectively, which are the first two bytes
of any PE file).

The encryption method used to obfuscate the embedded payloads in the new updates (after
mid-May 2022) is the same as in the old ones, but the encryption key is much harder to
retrieve. The payload is stored in the .data section of the update, as shown in Figure 67. The
decryption key is passed to the decryption routine as a parameter (see Figure 68).

For example, Figure 68 shows the fifth parameter of DecryptPayload has a value of
0x997E6BCA. The decryption key is XORed with the first DWORD of the payload 0x99EE3187
(highlighted in Figure 67), resulting in the value 0x905A4D, which is the beginning of a PE file,
as described previously.

In Figure 69, we see the encryption key is obfuscated through a series of mathematical
operations. Note that because the beginning of any PE file is always 4D 5A 90 00 or 4D 5A
00 00, XORing the first DWORD of the obfuscated data with 0x00905A4D or 0x00005A4D
will reveal the encryption key and de-obfuscate the rest of the embedded file, making it
unnecessary to emulate the code to extract the payload from the update.

Figure 67: The encrypted payload embedded into a new update, after mid-May 2022
(b5388c6aebbe6b125c4530e94ce7373e1aa06868).

67 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Figure 68: Payload decryption routines in a new update, after mid-May 2022
(b5388c6aebbe6b125c4530e94ce7373e1aa06868).

Figure 69: The obfuscated function that returns the embedded payload in a new update,
after mid-May 2022 (b5388c6aebbe6b125c4530e94ce7373e1aa06868).

APPENDIX

Copyright © 2022 VMware, Inc. All rights reserved. VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001
VMware and the VMware logo are registered trademarks or trademarks of VMware, Inc. and its subsidiaries in the United States and other jurisdictions. All other marks and names
mentioned herein may be trademarks of their respective companies. VMware products are covered by one or more patents listed at vmware.com/go/patents.
Item No: VMware TAU Emotet Threat Report 10/22

	Executive summary
	Emotet: History and background
	New Emotet waves
	Understanding execution chains
	Mapping the Emotet infrastructure
	Encryption keys and Epoch distribution
	IP address:port analysis
	IP count distribution
	IP address:port pair set distribution
	Network infrastructure reuse across payloads
	Network infrastructure reuse across time
	IP geographic distribution
	Port distribution
	JARM fingerprint distribution
	AS number distribution
	Execution chains and infrastructure

	Emotet reloaded
	VMware recommendations
	BIBLIOGRAPHY
	appendix
	IoCs
	Emotet activity timeline notes
	Extracting the Emotet configuration
	Step 1: Decrypting and dumping the internal DLL
	Step 2: C2 configuration extraction

	Downloading updates and plug-in modules

