Installer Package

Scripting

Making your deployments easier, one !# at a time

Before we get started, there’s two things I'd like to mention. The first is that, all of the sides, speakers’ notes and the
demos are available for download and I'll be providing a link at the end of the talk. | tend to be one of those folks who
can’t keep up with the speaker and take notes at the same time, so for those folks in the same situation, no need to

take notes. Everything I'm covering is going to be available for download.

You should:
Know the basics of writing

scripts.
eKnow the basics of building
an installer package.

To set some expectations management for this session, my assumption is that folks here already know the basics of
how to write scripts and build an installer package. We’re going to be discussing how to build on that foundation to
solve problems.

Now, installer packages are pretty great. They’re one of Apple’s two recommended ways to install software, with the
other method being dragging and dropping a self-contained application into place.

Installer Package Advantages

*Permissions Control

*File location control

*May not require logged-in user

eCan run scripts as part of the installation
process

| personally believe installer packages are the superior installation method. You can control the permissions on the
installed files. You can control where the installed files are placed. When properly built, a package can be installed with
nobody logged in. Last, but not least, you can run scripts as part of the installation process.

Another advantage, outside of the package itself, is that every Mac management system I've run into yet has the ability
to install an installer package. For folks who have to support multiple management systems, this common ability means
you can build one package and be confident that it will deploy the same regardless of the management system used to
install it.

Using Scripts

However, the real magic of using installer packages happens when you start using scripts as part of the installation process.

JavaScript

Python

Many More!

What languages can you use? Well, if a client Mac supports a language, the Installer tool should be able to support
running scripts written in that language on that client.

#!1/bin/bash

Probably the most common form is going to be shell scripting using the bash shell, though, so that’s what I’'m going to
focus on.

From there, your scripting options are going to depend on whether you’re using a bundle-style package or a flat
package.

Bundle-style package scripts

HOW USED

Preflight scripts are run before files are being installed. If the script does not return an exit status of
0, Installer will cancel the installation.

Preinstall scripts are run before files are being installed and after the preflight script if one is defined.
This script is run only if the component is being installed for the first time. If the script does not return
an exit status of 0, Installer will cancel the installation.

Preupgrade scripts are run before files are being installed and after the preflight script if one is
preupgrade defined. This script is run only if the component has been previously installed. If the script does not
return 0, Installer will cancel the installation.

Postinstall scripts are run after files have been installed and before the postfligt script if one is
defined. This script is run only if the component is being installed for the first time. If the script does
not return 0, Installer will declare the installation failed.

Postupgrade scripts are run after files have been installed and before the postfligt script if one is

postupgrade | defined. This script is run only if the component has been previously installed. If the script does not
return an exit status of 0, Installer will declare the installation failed.

- Postflight scripts are run after files have been installed. If the script does not return an exit status of
postflight)) N
0, Installer will declare the installation failed.

Bundle-style installer packages are created as a Mac OS X bundle that contains scripts and a description of the
package requirements and behavior. As part of creating a bundle-style package, you can define scripts that will be
executed before or after the installation. Normally, there are six types of scripts can be used in a bundle-style package.

Bundle-style package scripts

HOW USED

Preflight scripts are run before files are being installed. If the script does not return an exit status of
0, Installer will cancel the installation.

Postflight scripts are run after files have been installed. If the script does not return an exit status of
0, Installer will declare the installation failed.

However, most of the time you’ll be using these two types. Preflight scripts get run before files are installed and
postflight scripts run after files are installed. The other types of scripts only apply in specific defined circumstances
which may not apply to your package.

Bundle-style -+ Flat package
Category Mapping

BUNDLE-STYLE SCRIPT NAME . FLAT SCRIPT NAME

“' pOStinSta"

When Apple created the flat package format, they simplified the script options and made only two script options
available. The bundle-style post/preinstall and pre/postupdate script options were removed. Apple retained the concept

of pre- and postflight scripts, but Apple renamed those script categories to preinstall and postinstall to make their
functions more clear.

Scripts must return an exit status of zero

@ Install My Great Payload-Fr

There were errors with the installation. You may want to try installin

Introduction

Destination Select

Installation Type

Installation

Summary The installation failed.

The Installer encountered an error that caused the
installation to fail. Contact the software manufacturer
for assistance.

A commonality between scripts used in bundle-style and flat packages are that the scripts must return an exit status of
zero or else Installer will report failure.

Scripts must return an exit status of zero

#!/bin/bash

if [[-f "/path/to/file"]1; then
/usr/sbin/do_something "/path/to/file"
fi

exit 0

If you're building a shell script for an installer package, one way to ensure that the script returns a status of zero is by
adding "exit 0" to the end of your script.

Installer Script Variables

VARIABLE] WHAT’S REFERENCED

returns the path to the script
returns the path to the package

returns the target location (for
example: /Applications)

returns the target volume (for example: /
Volumes/Macintosh HD)

When building a script for use with an installer package, it's helpful to know that the Installer application can
automatically pass along information to the script using variables. The ones shown on the screen are for shell scripts.

Using Installer Script Variables

#!/bin/bash

Detects if /Users is present. If /Users is present,
the chflags command will unhide it

if [[-d "$3/Users" 11; then
chflags nohidden "$3/Users"
fi

Detects if /Users/Shared is present. If /Users/Shared is present,
the chflags command will unhide it

if [[-d "$3/Users/Shared" 1]; then
chflags nohidden "$3/Users/Shared"
fi

Here’s an example of using the dollar sign three variable in an installer script. In this case, we’re able to take
advantage of the Installer telling us which drive the package is being installed on to have our script run actions on the
targeted drive.

One thing that’s important to know is the closest set of variables to the script is going to win. If your system
management tool assigns dollar sign 3 to something different than Installer does, the Installer-assigned meaning will
be used by the script inside the package.

So, big deal right? | can use scripts as part of installer packages. Great. Why have a session about this?

eFix other installation scripts
|nstall software which uses a
third-party installer

eDeploy custom configurations
*Run scripts without installing
files

There are lots of cool ways to use installer scripts. You can use them to fix problems in other people’s installer
scripts, install software which doesn’t use any of Apple’s recommended installation methods, deploy configuration
files for other installers, and you can even build an installer package which is only a delivery mechanism for scripts.

Free Packaging Tools

..

Iceberg Packages

The Luggage munkipkg

For your packaging needs, there are a number of free tools available. | personally use Stéphane Sudre’s Iceberg and
Packages for when | need to manually create a package, but try them all out and use the one that works best for you.
Iceberg builds bundle-style installer packages, while Packages builds flat packages.

If you need to use source control for your packaging, | recommend using either Munkipkg or The Luggage. Both are
free open source tools which allow packages to be built in a consistent and repeatable way using source files and
scripts. In the case of the The Luggage, this was a tool originally created by Joe Block, who had written a tool when he
worked at Google which used makefiles to generate installers. This allowed the other members of his group to easily
review installer package changes before they were put into production. When Joe left Google, he wanted to have a
similar tool available, so he wrote and open-sourced The Luggage.

Jamf’s Composer is also an available tool for creating packages, and it includes a handy feature for taking "before"
and "after" snapshots of your system, where you make the initial snapshot, install your software, then take a second
snapshot once the installation is finished. Composer will then generate a list of the files and directories that changed
and use those changes to generate a package. The main reason it’s not up on this slide is that it isn’t free. It is
available for purchase from Jamf and is also included as part of Jamf’s Jamf Pro Suite.

Free Packaging Tools

AutoPkg
https://youtu.be/BI10OWWrgG2A

To further automate your packaging, there is another open source tool called AutoPkg. AutoPkg is hugely useful

because it’s designed to automate the tasks one would normally perform manually to prepare third-party software for
deployment.

For those not familiar with AutoPkg, there was a great introductory talk by Anthony Reimer from the University of

Calgary this past summer at the Penn State MacAdmins Conference. The talk was posted to YouTube and the link is
available at the bottom of the screen.

AutoPkg

* Downloading an application and/or updates for it, usually
via a web browser

¢ Extracting them from a multitude of archive formats

* Adding site-specific configuration

+ Adding sane versioning information

"Fixing" poorly-written installer scripts
Saving these modifications back to a compressed disk
image or installer package

* Importing these into a software distribution system like
Munki, Jamf Pro, FileWave, etc.

* Customizing the associated metadata for such a system
with site-specific data, post-installation scripts, version
info or other metadata

While this talk is going to focus on manually building packages to solve specific problems using installer scripts, |
want to mention AutoPkg because it often allows you to solve the same problems in a consistent and repeatable
fashion, with the added bonus of also automating the download of the applications you need to package.

In many cases, | will solve a packaging problem first by manually building and testing a package. Then | will write a
recipe file for AutoPkg to automate the building of that same package. For those not familiar with AutoPkg and how it
works, a recipe is an XML file which describes a sequence of tasks for AutoPkg to run. These tasks can include
downloading some piece of software, building an installer package for that software, and then importing the newly-
created installer package into your Mac software management tool.

To help illustrate this, I'll be discussing some examples later of how | first solved a problem with manual packaging
then later turned it into an AutoPkg recipe.

Fixing Other Installation Scripts

To give some practical examples, let’s look at how a vendor’s installer package didn’t cover all the possible deployment
scenarios and how you can use your own script to fix it. For this scenario, we’ll be working with the Citrix Workspace installer.

@ Install Citrix Workspace.pkg

® Q

Extract To. Show Info View Files

Package is a metapackage
Package requests authentication

Package has a valid signature: Developer ID Installer: Citrix Systems, Inc. (S272Y5R93J) (Developer ID Certification Authority, Apple Root CA)
Size: 105.1 MiB compressed, 263.5 MiB uncompressed

Size of selected files: 20.8 KiB

Contents [|

Filename size Owner Group Permissions Modification Date

@ Install Citrix Workspace.pkg 1059 MiB i858... staff drwxr-xr-x 1/7/19, 3:09 PM

Distribution M3KB root wheel -rw-r--r--
Plugins MAKB mfe staff -rw-r 12/12/18, 6:18 AM
Resources 46KiB root wheel drwx 12/31/69, 7:00 PM
@ com.citrix.ICAClient.pkg 105.8 MiB root wheel 12/31/69, 7:00 PM
Bom 989.2KiB mfe staff 12/12/18, 6:18 AM
Packagelnfo 26.3KiB root wheel
Payload 1047MiB mfe staff - 12/12/18, 6:18 AM
Scripts 356KB mfe staff /
install_helper 86.1KiB__mfe staff
= install 20.8 KiB staff 12/12/18, 6:17 AM
M preinstall 10Kig mfe staff -rwxex-x 12/12/18, 6:17 AM
usb.conf 966 bytes mfe staff -rw-r--r-- 12/12/18, 6:17 AM

The Workspace installer package provided by Citrix runs both a preinstall and postinstall script.

#!/bin/bash

Uncomment set-x to get verbose logging in the console
#set -x

LOG_FILE_PATH= ME/L Logs/ReceiverIns .log"|

DAZZLE_APPS_FOLDER="/A

DAZZLE_APPS_FOLDER_LEN=" $(echo 3(qu22LE _APPS_FOLDER})

DAZZLE_APPS_FOLDER_| (DAZZLE APPS_FOLDER_LEN + 1)) # +1 for the trailing slash
USER_SHARED_APP_DIR="/Use

PLUGINS_DIR="/L ication Suppor
INSTALL_OPTIONS_FILE="/Library/Application Support/Citrix Receiver/InstallOptions.
INSTALLING_USER=

Location for Log Folders
Name of 0ld Binary/Folder
Name of New Binary/Folder

writelog() {
echo "$@" >>

}

checkError() {
local err=$?
if [serr -ne 0] ; then
writelog "ERRO err): $1
writeLog ""

LOG_FILE_PATH="$HOME/Library/Logs/Receiverinstall.log"

As part of the postinstall script, one of the script variables references HOME. HOME is a variable which is set at login to be the

path name for the user’s home directory. Citrix’s working assumption is that someone will be logged in when Citrix Workspace is
installed.

Scripts must return an exit status of zero

@ Install My Great Payload-Fr

There were errors with the installation. You may want to try installin

Introduction

Destination Select

Installation Type

Installation

Summary The installation failed.

The Installer encountered an error that caused the
installation to fail. Contact the software manufacturer
for assistance.

However, there will be times when nobody is logged in. In these cases, an error will be generated and the script will
return an exit status other than zero. One thing to remember is that installation scripts must return an exit status of zero
or else Installer will report failure.

PKG
ERROR=0

if ([-f KG" 115 then
CURRENT_USER=$(/bin/1s -1 /dev/console | /usr/bin/awk int §3 }')
if [-n R _USER" 1] ;then
get path to user's home directory
USER_HOME=$(/usr/bin/dscl . -read "/Use " NFSHomeDirectory | /usr/bin/sed
export HOME="$USER |
else
export HOME="
i
/usr/sbin/installer -pkg "$PKG" -targe
if [[$? -ne 0 11; then

/usr/bin/logger -t "${0;
ERROR=1

el

se
/usr/bin/logger -t
ERROR=1

fi

exit SERROR

How to fix this? By avoiding the error condition. We can do this by writing a script that does three tasks:
1. Verifying that the Citrix-built installer is available at a location defined by the script.
2. If the installer is present, making sure HOME always returns a valid result by resetting HOME to be a value

controlled by the script.
3. Running the Citrix-built installer while using the updated HOME value.

#1/bin/bash
PKG=
ERROR=0
1]; then
CURRENT_USER=$(/bin/1s -1 /dev/console | /usr/bin/awk
if [-n R | 11 ;then

get path to user's home directory
USER_HOME=$(/usr/bin/dscl . -read "/Use " NFSHomeDirectory | /usr/bin/sed

export HOME="SU

else
export HOME="

/usr/sbin/installer -pkg ~target
if [[$? -ne 0 11; then
/usr/bin/logger -t '
ROR=1
i

else

/usr/bin/logger -t
RROR=1

fi

exit SERROR

First step is verifying that the installer is available at the script’s defined location.

#!/bin/bash

PKG= *}/Install Citrix Work
ERROR=0

if ([-f KG" 115 then

| CURRENT_usER=s (/bin/1s -1 /dev/console | /usr/bin/awk

int 5319 |
R 11 jthen

get path to user's home di
USER_HOME=$(/usr/bin/dscl

if ([-n

export HOME="SU

NFSHomeDirectory | /usr/bin/sed
else

export HOME="
fi

/usr/sbin/installer -pkg
if [[$? -ne 0 11; then

/usr/bin/logger -t '
ERROR=1

else

/usr/bin/logger -t
ERROR=1

exit SERROR

Next step is trying make sure we match the Citrix installer’s assumption if at all possible. We do that by first figuring out
if there’s a logged-in user.

#!/bin/bash

PKG=
ERROR=0

if ([-f KG" 115 then

CURRENT_USER=$(/bin/1s -1 /dev/console | /usr/bin/awk

if [-n R R" 11 jthen

get path to user's home directory
USER_HOME=$(/usr/bin/dscl . -read " " NFSHomeDirectory | /usr/bin/sed

export HOME=
else
export HOME="
/Jusr/sbin/installer -pkg "$PKG" -target
if [[$? -ne 0 11; then
/usr/bin/logger -t '
ROR=1

fi

else
/usr/bin/logger -t
RROR=1

fi

exit SERROR

After that, figure out the location of the logged-in user’s home folder.

#!/bin/bash

PKG=
ERROR=0

if ([-f KG" 115 then
CURRENT_USER=$(/bin/1ls -1 /dev/console | /usr/bin/awk

if ([-n R _USER" 1] ;th

" NFSHomeDirectory | /usr/bin/sed

export HOME="5U: E
else

export HOME="
fi

/usr/sbin/installer -pkg "$PKG" -targe

if [[$? -ne 0 11; then
/usr/bin/logger -t "${0
ERROR=1

else
/usr/bin/logger -t
ERROR=1

fi

exit SERROR

Next step is setting the HOME value to match the path of the logged-in user’s home folder. This matches the default behavior of
the HOME variable, so it matches the assumptions Citrix made when building their installer.

#!/bin/bash

PKG=
ERROR=0

if ([-f KG" 115 then
CURRENT_USER=$(/bin/1ls -1 /dev/console | /usr/bin/awk

if ([-n R _USER" 1] ;th

get path to user's hom ory
USER_HOME=$(/usr/bin/dscl . -read "/Use " NFSHomeDirectory | /usr/bin/sed

export HOME="$USER_HOME

elsg

export HOME=" root"

fi
/usr/sbin/installer -pkg "$PKG" -targe

if [[$? -ne 0 11; then
/usr/bin/logger -t "${0
ERROR=1

else
/usr/bin/logger -t
ERROR=1

fi

exit SERROR

Here’s where we set HOME to always return a value even in those conditions where the Citrix-built installer would error. If a

logged-in user can’t be determined, HOME is set to use the var root directory, which is the home directory of the root user on
macOS.

#!/bin/bash

PKG=
ERROR=0

if ([-f KG" 115 then
CURRENT_USER=$(/bin/1ls -1 /dev/console | /usr/bin/awk

if [-n R _USER" 1] ;thel

get path to u
USER_HOME=S$(/us:

" NFSHomeDirectory | /usr/bin/sed
export HOME="$U

else
export HOME="
fi

| /usr/sbin/installer -pkg "$PKG" -tari

if [[$? -ne 0 11; then

/usr/bin/logger -t "${0;
ERROR=1
i

else
/usr/bin/logger -t
ERROR=1

fi

exit SERROR

Last step, the script runs the Citrix-built installer. Now that the script is setting the HOME value to be valid in all conditions, the
Citrix-built installer should not error.

Let’s put all of this together into a package. To do this, I'll be using the script | just described as a postinstall script, a copy of the
the latest Citrix Workspace installer and the Packages app to create the package.

Choose a template for your project:

Distribution Raw Package

Raw Package
= o

A Raw Package project lets you install files at specific locations.

First step is to open the Packages app and set up a raw package project.

New Project

Choose the name and location for your project:

Project Name: | Citrix Workspace

Project Directory: | ~/Citrix Workspace/

The project directory ~/Citrix Workspace/ wil be created if necessary, and the project file Citrix
Workspace.pkgproj will be create d therein.

Next, we name it and define where the Packages project file will be stored. In this case, I’'m naming the package as Citrix
Workspace and storing the project files in a Citrix Workspace directory in my home folder.

¥

Exclude items only from payloads

In the Project pane, the main thing I’m checking here is the name to make sure it’s right. As long as that’s correct, there’s no
need to change anything here from the defaults.

Overwrite directory permissions

Follow symbolic links

In the Settings pane, we want to require the admin password for installation and on successful installation, we don’t want to do
anything else.

Citrix Workspace
Project Settings | Payload | Scripts Comments

Default Destination: /

Contents Type

Name Owner Group Permissions
root wheel drwxr-xr-x

Applications root admin drwxrwirx

Library root wheel drwxr-xr-x
Application Support root admin drwxr-xr-x

Automator root wheel drwxr-xr-x

Documentation root wheel drwxr-xr-x pty Selection

Extensions root wheel drwxr-xr-x
Filesystems root wheel drvxr-xr-x
Frameworks root wheel drwxr-xr-x
Input Methods root wheel drwxr-xr-x
Internet Plug-ins root wheel drwxr-xr-x
Launchgents root wheel drwxr-xr-x
LaunchDaemons root wheel drwxr-xr-x
PreferencePanes root wheel drwxr-xr-x
Preferences root wheel drwxr-xr-x
Printers root admin drwxr-xr-x

PrivilegedHelperTools root wheel drwxrxr-t

In the Payload pane, we’re not changing anything from the defaults.

Empty Selection

In the scripts pane, we need to add the Citrix-built installer under additional resources and add the postinstall script to the post-
installation section.

“These resources can be used by the
pre and post-installation scripts”

The reason why we add the Citrix installer to the additional resources section is because Packages will store those resources in
the same location as it stores the pre and post install scripts. This allows our script to be able to access the Citrix-built
Workspaces installer.

@ Packages File Edit View esentation rarchy Project Build Window Help

Citrix Workspace

Project Settings Payload | Scripts | Comments

uild

Bl = Citrix Workspace.pkg

€ i 2

Citrix Workspace.pkg
[AE

Once the package is built, you can test it by deploying it onto a Mac while that Mac is at the login screen with nobody logged-in.
It should install successfully where previously you would have received an error.

CitrixWorkspace.pkg.recipe

For those who want to automate this process using AutoPkg, | have written a Citrix Workspace package recipe to create a
package just like the one we’ve been talking about. It’s available on GitHub via the address shown on the screen and uses the
same postinstall script that I’ve described.

Install software which uses
a third-party installer

There are also vendors who prefer to use installers which don’t use any of Apple’s supported methods. These can be
challenging, but you can still package these if you can run the provided installer from the command line. For this scenario, we’ll
be working with the Adobe Creative Cloud Desktop app installer.

Adobe Installer
Version 4.7.0.400 (4.7.0.400)

Adobe goes their own way most of the time when it comes to installers and the Creative Cloud Desktop app for macOS is a
good example. It uses an Adobe-developed installer and in no way leverages either of Apple’s supported installation methods.

ece @ username — -bash — 104x5
computername:~ username$ sudo /Volumes/Creative\ Cloud/Install.app/Contents/Mac0S/Install —-mode=silent| =

/path/to/Install.app/Contents/MacOS/Install --mode=silent

That said, Adobe did include a way to run a silent install from the command line.

@ Finder File Edit View Go Window Help o Q =

#!/bin/bash

Determine working directory
install_dir=$(dirname $@)

Install the Creative Cloud application using the Install binary's silent install mode
"${install_dir}/Install.app/Contents/Mac0S/Install" —mode=silent

With this information, we can build a script which does two tasks:
1. Identify the directory that the script is running from. The Adobe installer will be placed in the same directory.
2. Running the Adobe installer using the silent install mode.

#!/bin/bash

Determine working directory
install_dir=$(dirname $@)

Install the Creative Cloud application using the Install binary's silent install mode
"${install_dir}/Install.app/Contents/Mac0S/Install" —mode=silent

First step is identifying the script’s location.

#!/bin/bash

Determine working directory
install_dir=$(dirname $@)

Install the Creative Cloud application using the Install binary's silent install mode
' ontents/Mac0S

s{install_dir}/Install.app/Co Install’ —mode=silent

Second is running the installer, using the location information to provide the path to the installer.

Now that we have that, let’s put all of this together into a package. To do this, I'll be using the script | just described as a
postinstall script, a copy of the the latest Adobe Creative Cloud Desktop installer, the installer’s support directories and the
Packages app to create the package.

Choose a template for your project:

Distribution Raw Package

Raw Package
= o

A Raw Package project lets you install files at specific locations.

First step is to open the Packages app and set up a raw package project.

New Project

Choose the name and location for your project:

Project Name: | Adobe Creative Cloud Desktop Installer

Project Directory: | ~/Adobe Creative Cloud Desktop Installer/

The project directory ~/Adobe Creative Cloud Desktop Installer/ will be created if necessary, and the project file
Adobe Creative Cloud Desktop Installer.pkgproj will be created therein.

Next, we name it and define where the Packages project file will be stored. In this case, I’'m naming the package as Adobe
Creative Cloud Desktop Installer and storing the project files in a Adobe Creative Cloud Desktop Installer directory in my home
folder.

| Adobe Creative Cloud Desktop Installer
Payload

Name: | Adobe Creative Cloud Desktop Installer
Path: build

Reference Folder.

¥

Exclude items only from payloads

In the Project pane, the main thing I’m checking here is the name to make sure it’s right. As long as that’s correct, there’s no
need to change anything here from the defaults.

| Adobe Creative Cloud Desktop Installer
S S Payload

Overwrite directory permissions
Follow symbolic links

In the Settings pane, we want to require the admin password for installation and on successful installation, we don’t want to do
anything else.

| Adobe Creative Cloud Desktop Installer
Project Settings | P B Scripts Comments

Default Destination: /

Contents Type

Name Owner Group Permissions
root wheel drwxr-xr-x

Applications root admin drwxrwirx

Library root wheel drwxr-xr-x
Application Support root admin drwxr-xr-x

Automator root wheel drwxr-xr-x

Documentation root wheel drwxr-xr-x Empty Selection

Extensions root wheel drwxr-xr-x
Filesystems root wheel drvxr-xr-x
Frameworks root wheel drvexr-xr-x
Input Methods root wheel drwxr-xr-x
Internet Plug-ins root wheel drwxr-xr-x
Launchgents root wheel drwxr-xr-x
LaunchDaemons root wheel drwxr-xr-x
PreferencePanes root wheel drwxr-xr-x
Preferences root wheel drwxr-xr-x
Printers root admin drwxr-xr-x

PrivilegedHelperTools root wheel drwxrxr-t

In the Payload pane, we’re not changing anything from the defaults.

Empty Selection

In the scripts pane, we need to add the Adobe installer and its support directories under additional resources and add the
postinstall script to the post-installation section. As mentioned during the Citrix Workspace installer, placing things in additional
resources means they can be referenced by pre and post installation scripts.

Packages

File Edit View Presentat Hierarchy Project Build Window Help

Project

Adobe Creative Cloud Desktop Installer

Settings Payload — Comments

Choose. Choose.

Adobe Creative Cloud Deskiop
Installer.pkg

Once the package is built, you can test it by deploying it onto a Mac that doesn’t have the Adobe Creative Cloud Desktop app
installed and verify that the desktop app installs correctly.

etermine working directory
install_dir=¢(dirnane $0)

Install the Creative Cloud application using the Install binary's silent install mode
“${install_dir}/Install.app/Contents/Mac0S/Install" —-mode=silent</string>

/dict>
</dic

ECIPE_CACHE_DIR%/pkgroots/string>

RSNAMEWLTHOUTSPACESS~%vers iont</string>

https://github.com/autopkg/rtrouton-recipes/blob/master/AdobeCreativeCloud/
AdobeCreativeCloudinstaller.pkg.recipe

For those who want to automate this process using AutoPkg, | have written a Adobe Creative Cloud Desktop app package
recipe to create a package just like the one we’ve been talking about. It’s available on GitHub via the address shown on the
screen and uses the same postinstall script that I’'ve described.

Deploy Custom Configurations

You can also use scripts to help deploy a custom software configuration. In many cases, vendors will support placing a
configuration file in the same directory as their installer.

An example of this is F5 Network’s VPN client. When the F5 installer detects a file with a certain name in the same directory as
the installer, it uses the contents of that file to install the VPN configuration along with the software.

<?xml version=" encoding="UTF-8"7>

<PROFILE VERSION ">

<SERVERS>

<SITEM>
<ADDRESS>https://connectrighthere.demo. com</ADDRESS>
<ALIAS>Right Here</ALIAS>

</SITEM>

<SITEM>
<ADDRESS>https://connectoverthere.demo. com</ADDRESS>
<ALIAS>Over There</ALIAS>

</SITEM>
</SERVERS>
<SESSION LIMITED="YES">
<STAYCONNECTED>YES</STAYCONNECTED>
<RECONNECTIONS>5</RECONNECTIONS>
<SAVEONEXIT>YES</SAVEONEXIT>
<SAVEPASSWORDS>NO</SAVEPASSWORDS>
<REUSEWINLOGONCREDS>NO</REUSEWINLOGONCREDS>
<REUSEWINLOGONSESSION>NO</REUSEWINLOGONSESSION>
<PASSWORD_POLICY>
<MODE>DISK</MODE>
<TIMEOUT>240</TIMEOUT>
</PASSWORD_POLICY>
<UPDATE>
<MODE>YES</MODE>
</UPDATE>

<CORPORATE>
<DNSSUFFIX>demo. com</DNSSUFFIX>
</CORPORATE>
</LOCATIONS>
<UI>
<CUSTOMIZE>
<LANGUAGE>
</LANGUAGE>
</CUSTOMIZE>
</VI>
</PROFILE>

Filename: config_tmp.f5c

The file in question is an XML document configured and named as shown on the screen. You normally shouldn’t have to worry
about creating this file, as your VPN admin should be able to provide it to you.

nkdir -p SHOME/Library/Logs/FsNetworks/

LOGFILE= r

ch ${LOGFILE}

B E L >> SLOGFILE
>> SLOGFILE

CUR_FLD=
cd

>> SLOGFILE
hen

ra 1 o p N K omizatiof
BIG-IP\ Edge\ Client.app/Contents/Resources/config.f5c] ; t!
mization file plication supp lder” >> SLOGFILE

>> SLOGFILE
| we -c)] ; then

le" >> SLOGFILE

>> SLOGFILE

>> SLOGFILE

i then
up u >> SLOGFILE
Ma d nt" setup-auto-launch

>> SLOGFILE
nt" remove-auto-launc

rt/FsNet , 1 then
>> $LOGFILE
P Networ
apply-custonization
f BIG-IP Edge client" >> SLOGFILE
er' >> SLOGFILE
® s " && chmod 4755 -1 E

>> SLOGFILE

A check for a file with the specified name is included as part of a postinstall script included with the F5 VPN installer. The script
assumes that the installer and configuration file are located in the same directory. If the configuration file is found, the installer
copies it into Library Application Support F5Networks so that the VPN software can detect and use it.

#!/bin/bash

Determine working directory
INSTALL_DIR=$(dirname $0)

CONFIG="${INSTALL_DIR}/config
PKG="${INSTALL_DIR}/mac_edgesvpn.pkg"
ERROR=0
if [[-f "$CONFIG" 11; then
if [[-f "$PKG" 11; then
/usr/sbin/installer -pkg "$PKG" -target "$3
if [[$? -ne @ 1]; then

echo "ERROR! Installation of package $PK
ERROR=1

ERROR=1
fi

exit $ERROR

Once we have both the configuration file and the VPN installer, we can write a script that does three tasks:

1. Verifying that the configuration file is available at a location defined by the script.
2. Verifying that the VPN installer is available at the same location.
3. Running the VPN installer and verifying it ran successfully.

Now that we have that, let’s put all of this together into a package. To do this, I'll be using the script | just described as a
postinstall script, a copy of the the latest F5 VPN installer, the configuration file and the Packages app to create the package.

Choose a template for your project:

Distribution Raw Package

Raw Package
= o

A Raw Package project lets you install files at specific locations.

The process is going to be pretty much identical to our previous examples. First step is to open the Packages app and set up a
raw package project.

New Project

Choose the name and location for your project:

Project Name: | F5 VPN Installer

Project Directory: | ~/F5 VPN Installer/

The project directory ~/F5 VPN Installer/ will be created if necessary, and the project file F5 VPN Installer.pkgproj
will be created therein

Next, we name it and define where the Packages project file will be stored. In this case, I’m naming the package as F5 VPN
Installer and storing the project files in a F5 VPN Installer directory in my home folder.

| F5 VPN Installer
Payload

e: |F5 VPN Installer

¥

Exclude items only from payloads

In the Project pane, the main thing I’m checking here is the name to make sure it’s right. As long as that’s correct, there’s no
need to change anything here from the defaults.

| F5 VPN Installer
— Payload

Overwrite directory permissions
Follow symbolic links

In the Settings pane, we want to require the admin password for installation and on successful installation, we don’t want to do
anything else.

| F5 VPN Installer
Project Settings | Payload | Scripts Comments

Default Destination: /

Contents Type

Name Owner Group Permissions
root wheel drwxr-xr-x

Applications root admin drwxrwirx

Library root wheel drwxr-xr-x
Application Support root admin drwxr-xr-x

Automator root wheel drwxr-xr-x

Documentation root wheel drwxr-xr-x pty Selection

Extensions root wheel drwxr-xr-x
Filesystems root wheel drvxr-xr-x
Frameworks root wheel drwxr-xr-x
Input Methods root wheel drwxr-xr-x
Internet Plug-ins root wheel drwxr-xr-x
Launchgents root wheel drwxr-xr-x
LaunchDaemons root wheel drwxr-xr-x
PreferencePanes root wheel drwxr-xr-x
Preferences root wheel drwxr-xr-x
Printers root admin drwxr-xr-x

PrivilegedHelperTools root wheel drwxrxr-t

In the Payload pane, we’re not changing anything from the defaults.

| F5 VPN Installer
Payload

Post-installation

Empty Selection

In the scripts pane, we need to add the F5 installer and the configuration file under additional resources and add the postinstall
script to the post-installation section. As mentioned during the previous examples, placing things in additional resources means
they can be referenced by pre and post installation scripts.

@ Packages File Edit View Presentation Hierarchy Project Build Window Help o Q
F5 VPN Installer

Project Settings Payload Comments

Choose.

Name

buid .
» M config_tmp.f5c
F5 VPN Installer
F5 VPN Installer » @ mac_edgesvpn.pkg
Movies > M postinstall
Music >
© Downloads Pictures

£} username Public

[Z) Macintosh HD

F5 VPN Installer.pkg
r).1 MB

1 of 1 selected, 28.4 GB available

Once the package is built, you can test it by deploying it onto a Mac that doesn’t have the F5 VPN installed and verify that the
VPN installs correctly and is configured with the desired setup.

Run scripts without installing files

The final area | want to talk about is one of my favorites, where you can use an installer package as a delivery mechanism for
scripts. No files get installed in this case because the only thing in the installer package is the script.

Payload-free packages

Payload-free packages is Apple’s term to describe installer packages that install no files and which have been built only to run
scripts. As with other installer packages, there are two kinds of payload-free installer packages, bundle-style and flat.

Building payload-free packages
with pkgbuild

username — less « man pkgbuild — 80x24

--scripts scripts-path
Archive the entire contents of scripts-path as the package
scripts. If this directory contains scripts named preinstall
and/or postinstall, these will be run as the top-level
scripts of the package. If you want to run scripts for spe-
cific bundles, you must specify those in a component property
list; see more at COMPONENT PROPERTY LIST. Any other files
under scripts-path will be used only if the top-level or com-
ponent-specific scripts invoke them.

--nopayload
Indicates that the package will contain only scripts, with no
payload.

—-identifier pkg-identifier
Specify a unique identifier for this package. The 0S X
Installer recognizes a package as being an upgrade to an
already-installed package only if the package identifiers
match, so it is advisable to set a meaningful, consistent
identifier when you build the package. pkgbuild will infer
an identifier when building a package from a single compo-
nent, but will fail otherwise if the identifier has not been
set.

http://www.manpagez.com/man/1/pkgbuild/

Apple has built support into its command line pkgbuild tool, which is used to build flat installer packages.

Building payload-free packages
with pkgbuild

pkgbuild --identifier com.identifier.here \
--nopayload \
--scripts /path/to/scripts \
/path/to/package_name_here.pkg

The no payload option tells pkgbuild that the package being built will contain only scripts

#!/bin/bash
Designate directory for storing sysdiagnose files

SYSDIAGNOSE_DIR="/Users/Shared"

Run sysdiagnose and store the results in the designated
directory.

sysdiagnose -u —f "$SYSDIAGNO

Let’s take a look at how this works by turning the following script into a payload-free package.

postinstall

We’'ll start by saving the script inside a directory named scripts as an executable file named postinstall. Not postinstall dot sh,
just postinstall. The name must be right or Installer won’t recognize it.

The reason for the scripts directory is that pkgbuild's scripts option is set to look for a directory with scripts inside, rather than
specifying the scripts themselves.

me$ sudo pkgbuild --identifi —-scripts /path/to/scripts /path/to/sysdiagnose_gathering.pkg °|

pkgbuild --identifier com.company.sysdiagnose \
--nopayload \
--scripts /path/to/scripts \
/path/to/sysdiagnose_gathering.pkg

Once the scripts directory is set up and the postinstall script saved inside it, running the following command with root privileges
will build a payload-free package and store it in the designated location.

scripts

[Desktop
M Documen ts
© Downloads

\ =
o i
< iCloud Drive v

(2 Macintosh HD

sysdiagnose_gathering.pkg

Once the package is built, you can hand it off to whatever or whoever needs it and they’ll be able to execute the script without

knowing anything more than how to install a package.

Hang on, where's the
version number?

pkgbuild --identifier com.identifier.here \
--nopayload \
--scripts /path/to/scripts \
/path/to/package_name_here.pkg

For those familiar with pkgbuild, you may think I've left something out - The version number. Actually, | didn't leave it out. When
you're building payload-free packages using the nopayload option, the version number isn't required. How come?

Payload-free flat packages may
not leave installer receipts

° o o

rtrouton | Home | Recent Comments | My Radars | Add a Radar | My API Key | Sign out
Open Radar

Search

Community bug reports

Payload-free packages built with pkgbuild not leaving receipts

Originator: rrouton Modify My Radar

Number rdar/13045592 Date Originated: 1-18-2013

Status: Closed Resolved:

Product: Mac OS X Product Version: 10.7.5 Build 11G63 and 10.8.2 Build 12C30006
Classification: Bug Reproducible: Yes.

Summarys

When building payload-free packages with pkgbuild, the installation of the payload-free package doss not produce a
ipt

Steps to Reproduce:
1. Build payload-free package with pkgbuild using the following command:

Sdentifier con.conpany.run_softuare update --nopayload --seripte
_software . . Software_Update/Run Apple Software

rt.pkg"
Expected Results:
After payload-free package is installed, receipt is generated and two files are put into /var/db/receipts:

/vaz/dbreceipts/con. conpany . run_software_update.plist
/var/ab/ receipts/con. conpany . run_software_update.bon

Actual Results:

Receipt is not generated. plist and .bom files are not in /var/db/receipts
Regression:

Yotes:

Was able to reproduce problem on 10.7.5 Build 11663 and 10.8.2 Build 12¢30006.

When building a payload-free package with Apple’s pkgbuild tool using the nopayload flag, no receipt is left behind. No receipt,
no need for a version number.

Payload-free flat packages may
not leave installer receipts

When | filed a bug on this, Apple said that this was intended behavior for payload-free packages built using
pkgbuild's nopayload option. In Apple’s opinion, payload-free packages are a convenient bag for scripts.

Any other type of package will leave behind a receipt, including a bundle-style payload-free package.

Why is this important? If your systems management tools relies on receipts to tell whether a payload-free package
has been installed, a payload-free package that leaves no receipt behind means that your management tool won’t be
able to tell that it’s been installed. This may result in the payload-free package and its associated script being run
repeatedly on your managed machine.

Making payload-free flat packages
which leave installer receipts

pkgbuild --identifier com.identifier.here \
--root /path/to/empty_directory \

--scripts /path/to/scripts --version 1.0 \
/path/to/package_name_here.pkg

However, you can make a package with pkgbuild that, while not technically payload-free, will act just like one. The
key is to create an empty directory and set pkgbuild’s -root option to look there for files. pkgbuild’s -root option is
used to tell pkgbuild which files to package, but since there will be no files in an empty directory, the package will
install no files on the destination Mac. However, it will leave behind a receipt.

& Finder File Edit View Go Window Help

LO20LBE 1 CaeCoroa

Payload-Free Package Printer Generator

Payload-Free Package Printer Generator

https://github.com/rtrouton/payload-free package

Another tool I've developed is a script used to build payload-free packages, where the package sets up a printer with
a desired configuration.

Payload-Free Package Printer Generator

« -n: Name of the print queue. May not contain spaces, tabs, # or / characters. (required)
* -I: The physical location of the printer. Examples may include Reception Desk,
Librarian's Office or Second Floor, Room 2C456 (optional)
-d: The printer name which is displayed in the Printers & Scanners pane of System
Preferences, as well as in the print dialogue boxes. (required)
-a: The IP or DNS address of the printer. Protocol must be specified as part of the
address (for example, use Ipd://ip.address.goes.here or Ipd://dns.address.goes.here for
LPR printing.) (required)
-p: Name of the driver file in /Library/Printers/PPDs/Contents/Resources/. This must
use the full path to the drive (starting with /Library). (required)
-1: Specify first printer option. (optional)
pecify second printer option. (optional)
: Specify third printer option. (optional)
: Specify fourth printer o . (optional)
pecify fifth printer opti optional)
pecify sixth printer option. (optional)
pecify seventh printer option. (optional)
pecify eighth printer option. (optional)
: Specify ninth printer option. (optional)
-c: Name of the Apple Developer ID Installer certificate being used to sign the payload-
free package. Certificate name should be formatted like Developer ID Installer: Your
Name or Developer ID Installer: Your Name (F487797D). (optional)

This script has a number of options, including an option to sign the payload-free package using an Apple Developer
certificate. Signing the package would enable the package to be posted somewhere for download and get past
Gatekeeper.

*-n: ReceptionDeskBrotherLaserPrinter
¢ -|: Reception Desk
¢ -d: Reception Desk Brother Laser Printer

*-a: lpd://192.168.1.121

e -p: "/Library/Printers/PPDs/Contents/
Resources/Brother DCP-L2540DW series
CUPS.gz"

While this tool has a lot of options, you may only need to use a few of them to set up a printer. Let's take a look at how this
works using only these options.

/path/to/payload-free_package_printer_generator.sh \
-n ReceptionDeskBrotherLaserPrinter \
-1 "Reception Desk" \

-d "Reception Desk Brother Laser Printer" \
-a lpd://192.168.1.121 \
-p "/Library/Printers/PPDs/Contents/Resources/Brother
DCP-L2540DW series CUPS.gz"

Here's how the command to run the script would look. | have it broken up into separate lines for clarity, normally this
would all be on one line.

@ Finder File Edit View Go Window Help

"M

HLO20NED | seL00R0Aa

0 3 username — -bash— 120x18
computername:~ username$ sudo /path/to/payload-free_package_printer_generator.sh -n ReceptionDeskBrotherLaserPrinter -1
"Reception Desk" -d "Reception Desk Brother Laser Printer" -a lpd://192.168.1.121 -p "/Library/Printers/PPDs/Contents/Re
sources/Brother DCP-L2540DW series CUPS.gz"

Password:

You have chosen the following printer configuration options:

Queue Name: ReceptionDeskBrotherLaserPrinter

Location: Reception Desk

Display Name: Reception Desk Brother Laser Printer

Address: 1pd://192.168.1.121

Driver: /Library/Printers/PPDs/Contents/Resources/Brother DCP-L2540DW series CUPS.gz
Sharing: Disabled

: Inferring bundle components from contents of /tmp/ReceptionDeskBrotherLaserPrinter/nopayload
Adding top-level postinstall script
pkgbuild: Wrote package to /tmp/ReceptionDeskBrotherLaserPrinter/Create Reception Desk Brother Laser Printer Printer.pkg
computername:~ username$

The build process covered up the Terminal window, but here's the output you should see.

& Finder File Edit View Go Window Help

2] i

JL020nBT | ! seCO00R

Examining Scripts

Suspicious
Package

Pacifist

pkgutil

Now that you’ve seen how you can use scripts, how can you check out existing installer package scripts to see what they’re
doing? There’s a few tools that can help you out. There’s Apple’s pkgutil command line tool, Pacifist and Suspicious Package.
pkgutil and Suspicious Package are both free while Pacifist is shareware with a free trial period. Since both are free with no

strings attached, let’s look at pkgutil and Suspicious Package.

Expanding packages with pkgutil

pkgutil --expand \
/path/to/package_name_here.pkg \
/path/to/directory_goes_here

pkgutil doesn’t directly examine scripts for you, but it expands the contents of an installer package into a directory. From there,
you can examine the scripts included with the package.

@& Finder File Edit View Go Window Help

L0207 BE O /EseCoOro| o

pkgutil doesn’t directly examine scripts for you, but it expands the contents of an installer package into a directory. From there,
you can examine the scripts included with the package.

Suspicious Package

Suspicious Package is a phenomenally useful tool, for reasons that will be shown in a second. It’ll check out an installer package
for you, show you its contents and even warn you if there’s problems.

@& Finder File Edit View Go Window Help

LO201BE O /EseCoro| o

Useful Links

Understanding Payload-Free Packages: https://

derflounder.wordpress.com/2014/06/01/understanding-
payload-free-packages/

Creating payload-free packages with pkgbuild: https://

derflounder.wordpress.com/2012/08/15/creating-payload-free-
packages-with-pkgbuild/

Apple Developer Software Delivery Legacy Guide: http://
tinyurl.com/hze8pr8

Flat Package Format - The missing documentation: http://
s.sudre.free.fr/Stuff/lvanhoe/FL AT.htm|

Useful Links

Preparing EndNote X8 for deployment using AutoPkg: https://
derflounder.wordpress.com/2016/11/15/preparing-endnote-x8-

for-deployment-using-autopkg/

Creating a DNAStar Lasergene 13.x installer: https://

derflounder.wordpress.com/2016/03/17/creating-a-dnastar-
lasergene-13-x-installer/

Deploying a pre-configured Junos Pulse VPN client on OS X:

https://derflounder.wordpress.com/2015/03/13/deploying-a-
pre-configured-junos-pulse-vpn-client-on-0s-x/

Repackaging the LabVIEW 2013 Pro installer: https://
derflounder.wordpress.com/2013/12/06/repackaging-the-

labview-2013-pro-installer/

Useful Links

Pacifist: https://charlessoft.com

Suspicious Package: https://mothersruin.com/software/
SuspiciousPackage/

lceberg: http://s.sudre.free.fr/Software/lceberg.htmil

Packages: http://s.sudre.free.fr/Software/Packages/

about.html

The Luggage: http://luggage.apesseekingknowledge.net

Useful Links

MunkiPkg: https://github.com/munki/munki-pkg

Jamf Composer: https://www.jamf.com/products/jamf-
composer/

Payload-Free Package Creator: https://github.com/rtrouton/
Payload-Free-Package-Creator

Payload-Free Package Printer Generator: https://github.com/
rtrouton/payload-free_package_printer_generator

Downloads

PDF available from the following link:

https://tinyurl.com/PSUMacAdmins2019PDF

Keynote slides available from the
following link:

https://tinyurl.com/PSUMacAdmins2019Keynote

