
Forensic Log-Based Detection for Keystroke

Injection BadUSB Attacks

immediate

February 10, 2023

Georgios Karantzas, BSc Student, Department of Informatics, University of
Piraeus, Greece

Abstract

This document describes an experiment with main purpose to detect
BadUSB attacks that utilize external HID (Human Interaction Device)
”gadgets” to inject keystrokes and acquire remote code execution. One of
the main goals, is to detect such activity based on behavioral factors and
allow everyone with a basic set of cognitive capabilities ,regardless of the
user being a human or a computer, to identify anomalous speed related
indicators but also correlate such speed changes with other elements such
as commonly malicious processes like ”powershell” processes being called
in close proximity timing-wise, PnP device events occurring,and long key-
board ”sleeps” along with ”Lock Key” abuse correlated with driver images
loaded.

1 Introduction

For our detection purposes, we need to consume events that will be coming
directly from low level components of the Windows OS. We decided to take
into consideration older publications such as abuse of USB2 and USB3 ETW
providers and leverage such a provider as a ”keylogger” (Microsoft-Windows-
USB-USBPORT and Microsoft-Windows-USB-UCX ). Due to technical repro-
duction issues, however, and due to the facts that logging to a file would be
synchronous and direct but also after seeing that some amount of customiza-
tion would be needed capture-wise, we decided to utilize upper filters for one
of the main parts of the proof-of-concept implementation. Those keyboard cap-
tures should be accompanied by a timestamp to give us an idea of how far they
are from each other and whether the keystroke ratio represents a human user.
The second part, can easily be accomplished via ETW barring its asynchronic-
ity, buffer-based system limitations such as flushing logs all together along with
mixing of events, that will not cause any issue for us as long as timestamps
and data are not corrupt. A final note to keep in mind with such encounters is

1

ar
X

iv
:2

30
2.

04
54

1v
1 

 [
cs

.C
R

] 
 9

 F
eb

 2
02

3



that privacy of the data need to be taken seriously, in our case we only need to
know if the key was pressed and if it was a ”Lock” key, if it wasn’t it shouldn’t
be transmited through file writes or ETW from the driver to usermode.A past
example to avoid was HP Synaptics keylogger distribution. Finally, cognitive
capabilities will be needed given the product of the POC will be log-related and
through looking at it as a timeline, one will understand the anomalies between
a human typing normally speed-wise and a device typing abnormally fast and
launching potentially malicious processes and components.

2 Malicious BadUSB Attacks Today

The most well-known BadUSB attack vector is probably the commercial ”Ru-
berDucky” which initially started as a sysadmin gadget to automate mundane
tasks. This platform evolved into the most notorious attacker gadget with a se-
ries of community-backed payloads whose main capabilities include dual usage as
a USB Stick, data exfiltration, HID Interaction (Keystroke Injection) and even
its own scripting language, DuckyScript. This is backed by a USB2.0 hardware
interface and support for USB-c. Some of the most advanced features include,
copying payload to itself, ”OUT endpoint” usage via ”Lock Keys” ”spamming”,
Keystroke Reflection and even features like VendorID and ProductID spoofing.
For the purposes of this experiment, our ”go-to” tool is going to be the Rubber-
Ducky’s latest version as of this writing and various payloads will be employed
across all our experiments but mainly, one launching powershell to dump cre-
dential files. In most of the real-life cases powershell or other LoLBins will be
used to run code and files will be dropped and executed. We should keep in
mind the evasion features as they may avoid ”hardcoded” detections but also
in the case of sleeps, abnormally alter the keystroke timeline and introduce a
cognitive anomaly.

3 Event Tracing for Windows and its Drawbacks

As discussed previously, one of our main source of information will be ETW.
Initially introduced as a debugging feature, ETW gained a lot of attention due to
the facts that it was easily usable, had a large amount of default and 3-rd party
providers, Microsoft Introduced Patch-Guard-compliant Kernel API hooks with
it and in general could provide easily vast amounts of telemetry from usermode
and kernelmode providers. Although it may sound tempting, this mechanism
is simply not a silver bullet for all kinds of detections and telemetry ingestion.
Below you can find a table of the drawbacks and positive aspects of ETW.

2



Pros Cons
Vast Amount Of Telemetry Flavors Buffer Based
API Monitoring Buffers May Flood and Degrade Consumption
Pre-structured Network Monitoring Asynchronous
Easy to Deploy and Consume Events May and Will be Missed by Design
Callstacks Provided Timing Attacks
- Out of Order Events
- Performance Overhead

To further elaborate, we should consider a hypothetical example of what
is ”bad” usage of the mechanism. Supposing we would like to monitor local
memory modifications such as allocation and re-protections and even scanning
memory for possibly malicious patterns and PIC (position independent code),
below are a few empirical consequences faced when dealing with real-life pro-
duction that can reduce effectiveness and make one’s life more difficult. We
should keep in mind that for such an experiment ETWTI is used.

• Reading from a process that exited and its PID (Process Identified) was
re-issued as the event came ”late”.

• Attempting to find a module in-memory that is not already loaded or was
removed during a short timeframe, excluding NTDLL which is a stan-
dardized case due to both its nature of existing always and Known DLLs
behavior in terms of position. This whole situation may cause access vi-
olations given the unstable and non-synchronous way loaded modules are
kept track of.

• Performance impact and overwhelming produced load of data to be an-
alyzed given APIs monitored may be used by the Windows loader and
cause massive overhead and difficulties.

• Applications that reside inside the main application such as additional
plugins and anti-exploit agents may increase overhead even more.

Summing up the purposes of the mechanism, one should think twice before
selecting ETW for its task by considering whether timely fashion of the event
processing is of critical importance to them. Regarding the practical implemen-
tation, in order to avoid needless development overhead and also avoid APIs
like ”Tdh*” etc. , we will reside to using ”KrabsEtw”, which provides a slick
OOP wrapper around ETW libraries and allows for easy consumption of events
form various providers, including the trace sessions of the ”Kernel Logger” and
also parsing them effectively along with special properties that may need to be
passed such as obtaining stacks.

3



4 Upper Filters for Keyboards

Keyboard keyloggers are a very classical example of introductory projects in ker-
nel development. The are various paths one could follow to achieve the results
wanted. Quite interestingly we started from a specific approach and transitioned
to another more intricate one to achieve higher kevels of functionality, stability
and effectiveness. The initial approach was setting an upper filter device and
a completion routine that will intercept and log keyboard ”MakeCodes” from
”PKEYBOARD INPUT DATA” structure pointers. The code will hook also
on some other IRP Dispatch routines to ensure overall proper functionality. We
should note that the code is non-PnP so far and target to filter kbdclass, the
class driver under which all kinds of port-mini-port driver pairs exist for key-
boards, regardless of their type (PS
2 , USB etc). Also, a bit of waiting will happen during the unload routine to en-
sure all IRPs were processed. However, for both of the driver cases, unloads are
very basic and don’t support PnP which may and will result to inconsistencies.
Setting of the interception completion routine happens by the ”IoSetComple-
tionRoutine” call inside the Dispatch Routine for IRP MJ READ. In general,
such a non-PnP aware filter driver may result in various issues, therefore, an al-
ternative was chosen. This alternative included utilizing a KMDF driver inside
which ”listens” to the PnP manager for new devices. It is worth noting that
one should register this filter as an ”UpperFilter” above ”kbdclass” inside the
registry under the appropriate GUID. What you will see in the code below is
the code setting the main hooking routine, after the appropriate callbacks and
data were setup and upon calling WDF DRIVER CONFIG INIT to listen for
devices, WDF OBJECT ATTRIBUTES initializer and even after having set the
WDF Driver device. In the code below, we create a device with our extension
data.

WdfFdoInitSetFilter(DeviceInit);

WdfDeviceInitSetDeviceType(DeviceInit, FILE_DEVICE_KEYBOARD);

WDF_OBJECT_ATTRIBUTES_INIT_CONTEXT_TYPE(&wdfAttrib,

USB_TROLL_EXTENSION);

status = WdfDeviceCreate(&DeviceInit, &wdfAttrib,

&hControlDevice);

if (!NT_SUCCESS(status))

{

__leave;

}

WDF_IO_QUEUE_CONFIG_INIT_DEFAULT_QUEUE(&ioQueueConfig,

WdfIoQueueDispatchParallel);

ioQueueConfig.EvtIoInternalDeviceControl =

CbEvtIoInternalDeviceControl;

4



status = WdfIoQueueCreate(hControlDevice,

&ioQueueConfig,

WDF_NO_OBJECT_ATTRIBUTES,

WDF_NO_HANDLE

);

To simply put what will follow, when a new device is added, we will intercept
it and attach ourselves as a filter, then using a modified WDF IO QUEUE CONFIG
structure with our own set PFN WDF IO QUEUE IO INTERNAL DEVICE CONTROL
and by creating an I
O queue through WdfIoQueueCreate, we essentially get a foothold so we can
use ”WdfRequestRetrieveInputBuffer” and maybe appropriate driver contexts
and finally hook onto CONNECT DATA’s ClassService routine with ”Service-
CallbackDummy”. A function driver calls the class service callback in its ISR
dispatch completion routine. The class service callback transfers input data
from the input data buffer of a device to the class data queue. These condi-
tions make it a prime hooking target. You can see below the code responsible
for placing the hooking routines themselves. More specifically, we change the
device and service callback to our own.

_Function_class_(EVT_WDF_IO_QUEUE_IO_INTERNAL_DEVICE_CONTROL)

_IRQL_requires_same_

_IRQL_requires_max_(DISPATCH_LEVEL)

VOID

CbEvtIoInternalDeviceControl(

_In_ WDFQUEUE Queue,

_In_ WDFREQUEST Request,

_In_ size_t OutputBufferLength,

_In_ size_t InputBufferLength,

_In_ ULONG IoControlCode

)

{

BOOLEAN bRetSuccess = TRUE;

WDF_REQUEST_SEND_OPTIONS options;

WDFDEVICE hDevice;

NTSTATUS status = STATUS_UNSUCCESSFUL;

CUSTOM_EXTENSION pData = NULL;

PCONNECT_DATA connectData = NULL;

size_t length;

UNREFERENCED_PARAMETER(OutputBufferLength);

UNREFERENCED_PARAMETER(InputBufferLength);

UNREFERENCED_PARAMETER(Request);

hDevice = WdfIoQueueGetDevice(Queue);

pData = GetData(hDevice);

switch (IoControlCode)

5



{

case IOCTL_INTERNAL_KEYBOARD_CONNECT:

if (pData->UpperConnectData.ClassService != NULL)

{

status = STATUS_SHARING_VIOLATION;

break;

}

status = WdfRequestRetrieveInputBuffer(Request,

sizeof(CONNECT_DATA),

&connectData,

&length);

if (!NT_SUCCESS(status)) {

break;

}

NT_ASSERT(length == InputBufferLength);

pData->UpperConnectData = *connectData;

connectData->ClassDeviceObject =

WdfDeviceWdmGetDeviceObject(hDevice);

connectData->ClassService = ServiceCallbackDummy;

break;

case IOCTL_INTERNAL_KEYBOARD_DISCONNECT:

break;

default:

break;

}

WDF_REQUEST_SEND_OPTIONS_INIT(&options,

WDF_REQUEST_SEND_OPTION_SEND_AND_FORGET);

bRetSuccess = WdfRequestSend(Request, WdfDeviceGetIoTarget(hDevice),

&options);

if (!bRetSuccess )

{

status = WdfRequestGetStatus(Request);

WdfRequestComplete(Request, status);

}

return;

}

Below you can find the relevant callback we spoofed previously so we can
log keystrokes via the ”MakeCode” intercepted through the buffer that was
being passed through the stack. The concept behind the code is forwarding to
the next driver after we have en-queued a ”SafeLog” routine, that will take all

6



precautions needed to log to our file the keyboard code safely in a multi-threaded
environment.

VOID

DummyServiceCallback(

_In_ PDEVICE_OBJECT DeviceObject,

_In_ PKEYBOARD_INPUT_DATA InputDataStart,

_In_ PKEYBOARD_INPUT_DATA InputDataEnd,

_Inout_ PULONG InputDataConsumed

)

{

CUSTOM_EXTENSION pData;

WDFDEVICE hDevice;

PKEYBOARD_INPUT_DATA pInputData;

hDevice = WdfWdmDeviceGetWdfDeviceHandle(DeviceObject);

pUData = CustomGetData(hDevice);

for (pInputData = InputDataStart; pInputData != InputDataEnd;

pInputData++)

{

TpkEnqueueWorkItem(&gDrv.ThreadPool,

SafeLog,

SafeLog,

(PVOID)pInputData->MakeCode);

}

(*(PSERVICE_CALLBACK_ROUTINE)(ULONG_PTR)pData->UpperConnectData.ClassService)(

pData->UpperConnectData.ClassDeviceObject,

InputDataStart,

InputDataEnd,

InputDataConsumed);

}

To sum up, this stealthier, lesser common and possibly more ”hacky” hooking
approach was employed to increase the chances of the keyboard monitoring
driver of being more ”universal” and ”stable” accross all kind of Windows OS
whether on a Virtual Machine or a physical machine, unlike the predecessor.

5 Microsoft-Windows-Kernel-Process and Its Use

We decided to utilize the aforementioned ETW provider to collect information
about Image Loads (incl. Drivers) and Process Creation events. We limited
ourselves to only these event categories. Below you can find some example code
of adjusting and enabling providers on a certain trace session which will act as
a glue between the consumer and the provider.

7



LoggerSession::LoggerSession(

_In_ krabs::c_provider_callback CbHandler,

_In_ bool EnableProcess) :

BadUsbTrace(L"BadUsbTrace"),

PrcProvider(L"Microsoft-Windows-Kernel-Process")

{

EnableProc = EnableProcess;

if (EnableProc)

{

PrcProvider.any(0x50);

PrcProvider.add_on_event_callback(CbHandler);

BadUsbTrace.enable(PrcProvider);

}

}

We are interested into writing easily parse-able logs that will include times-
tamps, names of images and process IDs when applicable. We utilize Krab-
sETW’s parsing capabilities and created a callback handler to assist us with the
process of creating logs. The code below could serve as a simplistic example
of how we chose to handle the event data. The ”FileLog” class will create and
synchronously lock the file where we will output our logs as well as handle the
text processing. We use KrabsEtw’s default parser code to ”excavate” event
data we need and assign them to variables with proper initial values. We finally
decide to work with a ”std::wstring” and write our log from a C-string format.

void ProcHandler::CbProcHandler(

_In_ const EVENT_RECORD& Record,

_In_ const krabs::trace_context& TraceContext)

{

krabs::schema ProcSchema(Record, TraceContext.schema_locator);

krabs::parser ProcParser(ProcSchema);

const wchar_t* taskProcCreate = L"ProcessStart";

const wchar_t* taskProcLoadImg = L"ImageLoad";

FileLogger FileLog(L"imagesprocs.txt");

if (wcscmp(ProcSchema.task_name(), taskProcCreate) == 0)

{

uint32_t procId = 0;

ProcParser.try_parse(L"ProcessID", procId);

if (!procId)

{

return;

}

FILETIME createTime = { 0 };

8



ProcParser.try_parse(L"CreateTime", createTime);

LARGE_INTEGER createTimeLInt = { 0 };

createTimeLInt.HighPart = createTime.dwHighDateTime;

createTimeLInt.LowPart = createTime.dwLowDateTime;

if (!createTimeLInt.QuadPart)

{

return;

}

std::wstring imageName = { 0 };

ProcParser.try_parse(L"ImageName", imageName);

if (!imageName.size())

{

return;

}

std::wstring timeStamp = std::to_wstring(createTimeLInt.QuadPart);

std::wstring procIdWstr = std::to_wstring(procId);

std::wstring logStr = L"ProcessLog:" + timeStamp + L":" +

procIdWstr + L":" + imageName + L":EndProcessLog\n";

FileLog.LogToFile(logStr.c_str());

}

Based on how we architected this initial provider, we decided to extend
the architecture but maintain the same backbone with additional providers or
features we may wanna add. An example graph of the architecture is provided
below. Essentially, our ”ETW Logger Manager Class” sets the appropriate
callbacks and event limitations that will handle data and lo them appropriately
using the ”File Logger Class”.

9



Finally , we shall provide some raw output from the tool to give the reader an
idea of what to expect. The ”ImageLog” entries represent the output received
when a Razer mouse was attached and the ”ProcessLog” entries represent ran-
dom process executions as an example.

ImageLog:2968525321:\Device\HarddiskVolume3\Windows\System32\drivers\hidusb.sys:EndImageLog

ImageLog:1597723157:\Device\HarddiskVolume3\Windows\System32\drivers\RzDev_0084.sys:EndImageLog

ImageLog:1659522856:\Device\HarddiskVolume3\Windows\System32\drivers\RzCommon.sys:EndImageLog

10



ProcessLog:133197924344035078:8884:\Device\HarddiskVolume3\Windows\

System32\dllhost.exe:EndProcessLog

ProcessLog:133197924344358867:17944:\Device\HarddiskVolume3\Windows\

System32\Taskmgr.exe:EndProcessLog

ProcessLog:133197924344422757:15076:\Device\HarddiskVolume3\Windows\

System32\consent.exe:EndProcessLog

ProcessLog:133197924344814263:11828:\Device\HarddiskVolume3\Windows\

System32\Taskmgr.exe:EndProcessLog

ProcessLog:133197924349657313:16168:\Device\HarddiskVolume3\Program

Files\Rivet Networks\SmartByte\RAPS.exe:EndProcessLog

ProcessLog:133197924364657393:13608:\Device\HarddiskVolume3\Windows\

System32\cmd.exe:EndProcessLog

ProcessLog:133197924364676889:15436:\Device\HarddiskVolume3\Windows\

System32\conhost.exe:EndProcessLog

6 Microsoft-Windows-Kernel-PnP and Its Use

The aforementioned provider, contains various events related to the PnP system
and will allow us to have some extra information, or visibility if you will. Output
by itself may not be self-explanatory and even chaotic at a mass scale, but its
final goal is to be used in conjunction with other metrics in a log correlation
process where its value will increase. Below you can see a part from a generic
log produced by the attachment of a Razer mouse, this will provide the reader
with an idea of what to expect as output.

PnpLog:USB\VID_1532&PID_0084\5&1c5b639f&0&2:133197915652312694:EndPnpLog

PnpLog:USB\VID_1532&PID_0084&MI_00\6&34f4fee0&0&0000:133197915652451881:EndPnpLog

PnpLog:USB\VID_1532&PID_0084&MI_01\6&34f4fee0&0&0001:133197915652492370:EndPnpLog

PnpLog:USB\VID_1532&PID_0084&MI_02\6&34f4fee0&0&0002:133197915652554801:EndPnpLog

PnpLog:USB\VID_1532&PID_0084&MI_03\6&34f4fee0&0&0003:133197915652586085:EndPnpLog

PnpLog:HID\VID_1532&PID_0084&MI_00\7&f76681d&0&0000:133197915652597149:EndPnpLog

PnpLog:HID\VID_1532&PID_0084&MI_00\7&f76681d&0&0000:133197915652597324:EndPnpLog

PnpLog:HID\VID_1532&PID_0084&MI_01&Col01\7&334da5df&0&0000:133197915652599115:EndPnpLog

PnpLog:HID\VID_1532&PID_0084&MI_01&Col01\7&334da5df&0&0000:133197915652599264:EndPnpLog

PnpLog:HID\VID_1532&PID_0084&MI_01&Col02\7&334da5df&0&0001:133197915652600646:EndPnpLog

PnpLog:HID\VID_1532&PID_0084&MI_01&Col03\7&334da5df&0&0002:133197915652605277:EndPnpLog

11



PnpLog:HID\VID_1532&PID_0084&MI_01&Col04\7&334da5df&0&0003:133197915652609096:EndPnpLog

PnpLog:HID\VID_1532&PID_0084&MI_01&Col05\7&334da5df&0&0004:133197915652613813:EndPnpLog

PnpLog:RZVIRTUAL\VID_1532&PID_0084&MI_00&Col03\7&334da5df&0&01:133197915652618792:EndPnpLog

PnpLog:HID\VID_1532&PID_0084&MI_02\7&1b8a199a&0&0000:133197915652629790:EndPnpLog

PnpLog:HID\VID_1532&PID_0084&MI_02\7&1b8a199a&0&0000:133197915652629984:EndPnpLog

PnpLog:HID\VID_1532&PID_0084&MI_03\7&3c68d55&0&0000:133197915652633449:EndPnpLog

PnpLog:RZCONTROL\VID_1532&PID_0084&MI_00\8&e070abb&0:133197915652692960:EndPnpLog

PnpLog:RZCONTROL\VID_1532&PID_0084&MI_00\8&e070abb&0:133197915652692976:EndPnpLog

PnpLog:HID\VID_1532&PID_0084&MI_00&Col03\8&16f5acbd&0&0000:133197915652697204:EndPnpLog

There is no further need to provide code as the architecture was already
discussed.

7 Forensically Detecting the ”Rubber Ducky”

For our scenario, we utilized a publicly available ”Ruber Ducky” script that
would dump credentials and exfiltrate them right after.

As in every forensic analysis, we would need some indicators allowing us to
initial identify footprints that will lead to a correlation complex unraveling the
attack’s steps. To start such a procedure, we will need to first have a full view
of the raw data we can dig through. So far we have the following sets of data:

• Timestamp-infused logs of keyboard usage.

• Timestamp-infused logs of spawned processes.

• Timestamp-infused logs of drivers loaded.

• Timestamp-infused logs of PnP devices loaded.

In some cases, we could try directly finding continuous ”lock key” presses
across the log file. In our case, such an attack is out-of-scope, therefore we will
attempt following a methodologically diferent procedure. Investigating the final
two seemed like a more friendly approach towards human investigators. We will
want to note the fact that close to the loading of hidusb.sys the HID-related
drivers we can identify both powershell.exe presence and a PnP device named
”ATMEL”.

The later device, can be easily linked with the malicious gadget as the brand’s
name is visible on the chips.

12



Although, evading ”hard-coded data”-based detections is out of scope for
this study, it is worth noting that ”Ruber Ducky” provides spoofing capabilities
for Vendor and Product IDs. Given the behavioral nature of the detection and
not basing our indicators on a sole kind of data, we can confidently say that
even if such data is spoofed, we would still be able to identify forensic footprints.

Find below the relevant raw ETW-originating logs in chronological order
with the timestamps from ETW converted to human-readable form:

ImageLog:\Device\HarddiskVolume2\Windows\System32\drivers\hidusb.sys:EndImageLog

PnpLog:USBSTOR\Disk&Ven_ATMEL&Prod_Mass_Storage&Rev_1.00\7&85c08e4&0&111111111111&0:

2023-02-02 21:48:10.094 -08:00:EndPnpLog

ProcessLog:2023-02-02 21:48:17.752 -08:00:3740:

\Device\HarddiskVolume2\Windows\System32\WindowsPowerShell\v1.0\powershell.exe:EndProcessLog

ProcessLog:2023-02-02 21:48:17.849 -08:00:5248:

\Device\HarddiskVolume2\Windows\System32\conhost.exe:EndProcessLog

ProcessLog:2023-02-02 21:48:18.221 -08:00:8120:

\Device\HarddiskVolume2\Windows\System32\WindowsPowerShell\v1.0\powershell.exe:EndProcessLog

ProcessLog:2023-02-02 21:48:18.224 -08:00:4004:

\Device\HarddiskVolume2\Windows\System32\conhost.exe:EndProcessLog

Based on our timestamps, we can now search through the keystroke log
and identify an average count to see if ”powershell” launching was followed by
fast-typing.

Based on a quick calculation, upon converting the time-stamps to Windows
time, we identified a large amount of keys to have been pressed within a
span of approximately 10 seconds from just a moment prior to spawning

13



”powershell”, exceeding the average human typing capabilities. We could ac-
count the keystrokes pressed even before launching the command prompt of
”PowerShell” but even through an approximation, the point has been proven
and malicious BadUsb activity is highly probable to have happened based on
this behavior only. If we regard the extra information from the device, we can
secure our thoughts and claim to have successfully identified a BadUsb attack
”post-mortem”.

8 Graphical Representation of Keystroke Peak

In order to assist us get an idea of the actual spike and embrace a more friendly
approach towards human cognitive capabilities, we will utilize a graph to repre-
sent the keystrokes across the line of time on a ”mass scale”. Notice before the
peak, the line of normal typing activity compared to when the ”Ruber Ducky”
was plugged in. The blue graph can be safely compared to the ETW logs and
represents the first forensic situation we are investigating. Please bare in mind
that the keystroke number is an estimation and not a definitive number repre-
senting their amount.

9 Conclusion

This approach is by far not fool-proof and can increase in difficulty as the
metrics increase, including the size of the logs and the attacker’s attempts to
obscure the timeline via sleeps and other strategies. This approach could have

14



been improved possibly with extra data visualization techniques, however the
core would remain the same. The main idea exhibited is how someone can
follow a ”forensic trajectory-like” logic based on data from the system’s kernel
and tracing providers and how those data can be obtained safely and intuitively.

10 References

https://www.bitdefender.com/blog/hotforsecurity/hp-laptops-found-carrying-keylogger-in-synaptics-touchpad-driver/

https://shop.hak5.org/products/usb-rubber-ducky-textbook

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/kbdmou/

ns-kbdmou-_connect_data

https://github.com/microsoft/krabsetw/tree/master/examples/NativeExamples

https://github.com/repnz/etw-providers-docs/blob/master/

https://www.digital-detective.net/dcode/

https://www.cyberpointllc.com/blog-posts/cp-logging-keystrokes-

with-event-tracing-for-windows-etw.php

15

https://www.bitdefender.com/blog/hotforsecurity/hp-laptops-found-carrying-keylogger-in-synaptics-touchpad-driver/
https://shop.hak5.org/products/usb-rubber-ducky-textbook
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/kbdmou/ns-kbdmou-_connect_data
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/kbdmou/ns-kbdmou-_connect_data
https://github.com/microsoft/krabsetw/tree/master/examples/NativeExamples
https://github.com/repnz/etw-providers-docs/blob/master/
https://www.digital-detective.net/dcode/
https://www.cyberpointllc.com/blog-posts/cp-logging-keystrokes-
with-event-tracing-for-windows-etw.php

	1 Introduction
	2 Malicious BadUSB Attacks Today
	3 Event Tracing for Windows and its Drawbacks
	4 Upper Filters for Keyboards
	5 Microsoft-Windows-Kernel-Process and Its Use
	6 Microsoft-Windows-Kernel-PnP and Its Use
	7 Forensically Detecting the "Rubber Ducky"
	8 Graphical Representation of Keystroke Peak
	9 Conclusion
	10 References

