Reverse-engineering DUBNIUM

TN blogs.technet.microsoft.com
June 9, 2016

DUBNIUM (which shares indicators with what Kaspersky researchers have called DarkHotel) is one of the activity
groups that has been very active in recent years, and has many distinctive features.

We located multiple variants of multiple-stage droppers and payloads in the last few months, and although they are
not really packed or obfuscated in a conventional way, they use their own methods and tactics of obfuscation and
distraction.

In this blog, we will focus on analysis of the first-stage payload of the malware.

As the code is very complicated and twisted in many ways, it is a complex task to reverse-engineer the malware.
The complexity of the malware includes linking with unrelated code statically (so that their logic can hide in a big,
benign code dump) and excessive use of an in-house encoding scheme. Their bootstrap logic is also hidden in plain
sight, such that it might be easy to miss.

Every sub-routine from the malicious code has a “memory cleaner routine” when the logic ends. The memory
snapshot of the process will not disclose many more details than the static binary itself.

The malware is also very sneaky and sensitive to dynamic analysis. When it detects the existence of analysis
toolsets, the executable file bails out from further execution. Even binary instrumentation tools like PIN or
DynamoRio prevent the malware from running. This effectively defeats many automation systems that rely on at
least one of the toolsets they check to avoid. Avoiding these toolsets during analysis makes the overall investigation
even more complex.

With this blog series, we want to discuss some of the simple techniques and tactics we’ve used to break down the
features of DUBNIUM.

We acquired multiple versions of DUBNIUM droppers through our daily operations. They are evolving slowly, but
basically their features have not changed over the last few months.

In this blog, we’ll be using sample SHA1: dc3ab3f6af87405d889b6af2557c835d7b7ed588 in our examples and
analysis.
Hiding in plain sight

The malware used in a DUBNIUM attack is committed to disguising itself as Secure Shell (SSH) tool. In this
instance, it is attempting to look like a certificate generation tool. The file descriptions and other properties of the
malware look convincingly legitimate at first glance.

When it is run, the program actually dumps out dummy certificate files into the file system and, again, this can be
very convincing to an analyst who is initially researching the file.

The binary is indeed statically linked with OpenSSL library, such that it really does look like an SSH tool. The
problem with reverse engineering this sample starts from the fact that it has more than 2,000 functions and most of

1/3

https://blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2/
https://msdnshared.blob.core.windows.net/media/2016/06/115.png
https://msdnshared.blob.core.windows.net/media/2016/06/211.png
https://msdnshared.blob.core.windows.net/media/2016/06/310.png
https://msdnshared.blob.core.windows.net/media/2016/06/47.png
https://msdnshared.blob.core.windows.net/media/2016/06/55.png
https://msdnshared.blob.core.windows.net/media/2016/06/76.png

them are statically linked to OpenSSL code without symbols.

Propesty Walue
Description
The following is an example of one of these functions — note File description SSH public/private key pair generation
it even has string references to the source code file name. Type Application
File version 0.71.1253.0
Product neme RSA Cryptography Suite
Product version Release 0.71

It can be extremely time-consuming just going through the Copyright Copyright (C) 2008 - 2014

dump of functions that have no meaning at all in the code — Sizm 1.34 MB
and this is only one of the more simplistic tactics this Date modfied 2/3/2016 12-52 PM
malware is using. Language English {United States)

Criginal flename sshkeypaingen.exe
We can solve this problem using binary similarity

calculation. This technique has been around for years for
various purposes, and it can be used to detect code that
steals copyrighted code from other software.

Figure 1: SSH tool disguise

miIDERS push [ebp+uar ©]

[EEnTT nnu wili, [Ehpivir k]

MAZDERA noy ecd, DFFsEt a5sh2_rsa_pub 2 _rsa .
WIDERF call wite to_File

The technique can be used to find patched code snippets in e nev ede, Tebpies 8]
. MI0ECT pop L]
the software and to find code that was vulnerable for attack. RININECH B L i
MAZ0EDR call write ko File

In this instance, we can use the same technique to clean up
unnecessary code snippets from our advanced persistent
threat (APT) analysis and make a reverse engineer’s life

Figure 2 Create dummy certificate files

easier.
T Funchorawardow 0 & X
Many different algorithms exist for binary similarity calculation, but we are going to use one F{?ZEZZ‘.-‘IZ i
. . . . ¥ dusls JEIFEE
of the simplest approach here. The algorithm will collect the op-code strings of each 7] b AB2FeE
F| wb ABIFTE
instruction in the function first (Figure 5). It will then concatenate the whole string and will 7] sub AB2FB4
I sub ABIRAC
use a hash algorithm to get the hash out of it. We used the SHA1 hash in this case. g] suo de2ser
7] :h:.uairm
F| b 4B3DE
£ mab AR
£ wub_dB3a
. . Ll :q.b_JB!EJ:-:-
Figure 6 shows the Python-style pseudo-code that calculates the hash for a function. ==
Sometimes, the immediate constant operand is a valuable piece of information that can be peoame
used to distinguish similar but different functions and it also includes the value in the hash s
string. It is using our own utility function RetrieveFunctioninstructions which returns a list of g
op-code and operand values from a designated function. YT
i
L, mib 483118
L wuby 43135
01 def CalculateFunctionHash (self, func ea): (s 4D i
02 hash string="'" Limse 2290 o 242
03 for (op, operand) in Figure 3: DUBNIUM

. . . functions list
self.RetrieveFunctionInstructions (func ea): unetions s

04 hash string+=op

05 if len(drefs)==0:

06 for operand in operands:

07 if operand.Type==idaapi.o_ imm:

08 hash string+=('%x' % operand.Value)
09

10 m=hashlib.shal ()

11 m.update (op_string)

12 return m.hexdigest ()

2/3

Figure 6: Pseudo-code for CalculateFunctionHash

With these hash values calculated for the DUBNIUM binary,
we can compare these values with the hash values from the
original OpenSSL library. We identified from the compiler-
generated meta-data that the version the sample is linked to
is openssl-1.0.11-i386-win. After gathering same hash from
the OpenSSL library, we could import symbols for the
matched functions. In this way, removed most of the
functions from our analysis scope.

(This blog is continued on the next page)

Pages: Page 1, Page 2, Page 3

MO NEAr i GOBE SREFD Tret Oy Sk Lp

I ooyl #SABLY ...

point _ coecl Sulk NICESB wla =)
b _k2 A5
Wy B = duward pkr &
push (131
mu rei, [Papehsarg_ 0]

Lot
jz
psh
e
push
lea
PSR
push
call
s

wud, wud
Loz _WIDWAT

i

offsit @ Grgptaisifisa
]

cad g [esi+EEnh]
SFFFFFFFR
Bad
suh_EISmEd
rxp, Ak

Figure 4: Code snippet that is linked from OpenSSL library

jz

noy

iz
cmp

push esi
nou

jz

push 1
push 1]
push [t}
push ebx
push Y
push esi

esi, [espti+arg_d)
test esi, esi
Short loc_ h2D208
eax, [esi]

test eax, eax
] short loc_42D208

dword ptr [eax+1dh], @
short loc_ &42D208

push ebx
nov
push edi
nov

ebx, [espr@+arg 4]

edi, [esi+i]
test edi, edi
i short loc 52D1B%

Figure 5: Op code in the instructions

CHOS RafTs

itseyld [vE PRI _copy_paname
ibary 1l EVE PEEY snorypt
Wby dd_EVP_PEEY_sncrppd_int
ibargdl_EVF_PEEY_frem
iberydl_EVF_PEEY_get_defwul_d
Wby 3Z_EVF_PEEY_freth_Tired
Wby 32_EVF_PEEY_meth_free
Wby 32_EVE_PEEY_resw

Wbyl [VE_PEEY et A5
iheay]l [VE_PEEY et bype
iyl EVE PREY nge

iyl _EVP_PEEY uge_init
ibairgdl_EVP_PEEY typs
ibeay1Z_EVF_PEEY _weiily
ibeay32_EVF_PEEY _weiily_inil

| Wby _EVF_SignFired

| Bheay12 BVP_ged_cipherbproms
| Sbmnyd2_[VP_get_pe promps
ity 1] EVE_ressd p_tiring mir
ibeaydl GEMERAL WAME prmt
b3l _HBASC CTH_chuanup
by d_HWAAC CTX copy
Wbseary2_HMAAC CTX jsit
Whseary32_HAARC CTX ool s
Wbszay32_HAARC Fimad
Wheaydd_HAARL Ini e
ibenydd_HAMAL Uipdsbe

ibaary 1] KRCOWF get_section
ibarydl_HOOWF get_srng
ibaredl OF) HAME ot

e e e e e e R R e e e e e

&
W

Lirss 57 of 2511

Figure 7: OpenSSL
functions

3/3

https://blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2/2/
https://blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2/3/

Reverse-engineering DUBNIUM

TN blogs.technet.microsoft.com

June 9, 2016

Persistently encoded strings

The other issue when reverse-engineering DUBNIUM binaries is that it encodes every single string that is used in
the code (Figure 8). There is no clue on the functionality of purpose of the binary by just looking at the string’s table.
We had to decode each of these strings to understand what the binary is intended to do. This may not be technically
difficult, but it does require a lot of time and effort.

Figure 9 shows how these encoded strings are used. For 3
example, address 0x142C11C has an instruction that loads .

an encoded string which is decoded as o T e
“hook_disable_retaddr check’. The encoded string is T m e

passed in ecx register to the decoder function

(decode_string). Note that the symbol names for the

functions were made by us during the analysis.

Figure 8: Encoded strings

astiie 51
WR2EHTY
HALIE M FE TN FIFF:

Because the decode_string function is excessively used R
and encoded gibberish strings are always passed to it, we T

can be confident that the function is truly a string decoder.
The decode_string function looks like Figure 10. There are
some approaches that can be taken for decoding these
files: you could port the code to C or Python and run them
through encoded strings, or you could reuse the code
snippet itself and pass the encoded string to the decoder function. We took the second option and reused the
existing code for decoding strings, for faster analysis of the sample.

LB N

waItian 0 W FE R FEs
2T £ S 1T FT P

Figure 9: Excessive use of encoded strings

For example, we have an encoded string at address 0x013C992C.

The decode_string function is located at 0x01437036 in our case. The ecx register will point to the encoded string
and edx is the destination buffer address for the decoded string. We just came up with the right place on the stack
with enough buffer, which in this case is esp+0x348.

lea edx, [esp+0x348] — pointer to stack buffer address
mov ecx, 0x013C992C — pointer to encoded string
call 0x01437036 — call to decode_string

As the instructions above will decode the encoded string for us, we can use Windbg to run our code. First we
prepared a virtual machine environment, because we can possibly run malicious routines from the sample. As there
are some possibilities that the decode_string function is dependent on some initialization routines called at startup,

1/3

https://blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2/2/
https://msdnshared.blob.core.windows.net/media/2016/06/84.png
https://msdnshared.blob.core.windows.net/media/2016/06/93.png
https://msdnshared.blob.core.windows.net/media/2016/06/102.png
https://msdnshared.blob.core.windows.net/media/2016/06/116.png
https://msdnshared.blob.core.windows.net/media/2016/06/122.png
https://msdnshared.blob.core.windows.net/media/2016/06/131.png
https://msdnshared.blob.core.windows.net/media/2016/06/141.png
https://msdnshared.blob.core.windows.net/media/2016/06/151.png
https://msdnshared.blob.core.windows.net/media/2016/06/161.png
https://msdnshared.blob.core.windows.net/media/2016/06/171.png

we put our first breakpoint to the location where the first instance of decode_string is called. In this way, we can

guarantee that our own decode_string call will be surely called with proper setup. That
address we came up with is 0x0142BFEE (Figure 12).

Here’s where our breakpoint is hit at this address.

Now we need to write the memory over with our own code.

The memory location where eip is pointing looks like the following. _,._J
e
Basically, we put the breakpoint on the entry of the decode_string and exit of the —— ‘_—'—'E_.

function. With the entry of the function, we save the edx register value to a temporary

FEAIBE PR R B RRA PR R RR R R

Figure 10: decode_string

register and use it to dump out the decoded string memory location at the exit point. routine

Now we have a handy way to decrypt the strings we have.
Just after a few IDAPython scripts that retrieve all possible
encoded strings and automatically generates the assembly
code that calls decode_string, we can come up with a new
IDA listing that shows the decoded string as the comment.

(This blog is continued on the next page)

Pages: Page 1, Page 2, Page 3

I NA P W N7 raPeer e S NURTREE B
B - alige &

Figure 11: Encoded string

HFEE %1 push FEE

HFEF EF OF 30 ¢ ars [T wow, ds:SandioaManesa[edl] ;
HIFS BD 9% 4 §H H3e Lea wdx, [espehbHhewar_T10]

BFFE 55 push e int

NITD IR 04 B0 @ #N call decnde_slring

Figure 12: First breakpoint

Braskpodnt § kit

man=000017 ehe=A000001 sca=00Led Pio edg=00000024 S5i=00MO000 edi=J0000800
mip=lldlbime mxp=d0iafiil ebe=0DII0L05 Lopl=0 ov up @i pl nz ma pa nc
=00l mEeed023 de=02) sa=0027 (xe003s ge=2000 md 1=302003202
imagsll 1s0ni0+Tebbd o

Dl4bles E1 prash (=5]

Figure 13: Breakpoint on 0142bfee hit

0:000» a 142BFEE

0142bfes lea edx, [esp+0xidB]
lea edx, [esp+lxi48]

0142bt£5 mov ecx. O0x013C9920C
mow eck, 0=z013C992C

0l142bffa call Dx01437036
call Dx01437036

D142bEEE

Figure 14: Use ‘a’ command to write instructions over the current eip

location
0:00: u l4Zbias
inagull lsOi00+ Ik ss
014Zbias BATLZ4ADDIOO0T lsa wix [smpel40k]
0142BEES BYZc¥¥AcOl 1 =0 acx afiest isagellisl00D=0xZ¥92c [011cP%Ic]
0142bE fs «EITHIOODE call dmmpel] Asd000+0x Y7036 (OE4ITE06]

Figure 15: New disassembly code

2/3

https://blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2/
https://blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2/3/

43036 " echo 0 Desrypt Etﬂﬂ- da pex.x Filedede x dileboca.g”
I b Exat

D000y bp 01
D000y bp 014371298 ° echo
b-00D: g

35 Dmcrypt Entex
"IEYERANE "

t ERit
Fi2=0130¥o
Mleidse “~CRCER"

Figure 16:

r B12.da ftl:g

Breakpoints and dump of decoded string

%
il
]

axEwad ¥ 33333 313

HESHHHESERHHZEHHNIERHESERNEE = HHEER HEER
FESFAASSSAIFSSAGISIAERFSENY 5 HAFEE HEES

il dEFw 80 ViR R

Frox b 1 gl et FMPIE Y : BETE B ressive_fvectismigr
"mrrmlr
s
3 |n.u.-|-1ur |wmn-qr

L

L]

o

o it Errabrlhrea™
o ol Ve bkl IIN VFHIWMIFIMM"
o sFen il MlE
L T B
o

L

i

Ll I 'H-l ™

i

it wikkBljyme_i buj @ WrW:F-
ot sl ;i

In-] | L rabrrsatiacin-
B T

aderd
L L]

tarreatfraces

e -|.|_ ;ru FibeTina L ecaaF L sl
i risaciee

. e T

: "'lLrtllIfr\-Hll"

n_ b
TR T TN b mwles e

Figure 17: Decoded strings

3/3

Reverse-engineering DUBNIUM

TN blogs.technet.microsoft.com

June 9, 2016

Memory cleanup

Even after encoding every single string related to malicious code, the DUBNIUM malware goes one more step to
hide its internal operations. When it calls decode_string to decode an encoded string, it will use the local stack
variable to save the decoded string. Whenever the function returns, it calls fill_memory_with_random_bytes function
for every local variable it used, so that the stack is cleared from decoded strings.

ElAFC1de loc 1420i84h:; POTEEEE-T

Lk L] i e, 51

The memory cleaner function generates random bytes and e Gl FiLi_hesbey wLtn.faneoe aytes
AR 4] rix, #xi

fills the memory area. This can be very simple, and but still e THL FAL Cemery alth ranon hytre
WIS ITE mya wix, @l

can be very annoying to malware analysts because, even epertet R g L i artnd 1 =i

with memory snapshot, we can’t acquire any meaningful
strings out of it. It's not easy to get a clue of what this binary
is doing internally by just skimming through a memory
snapshot.

Figure 18: Calling memory cleaner function

2
BEEITED FLLL ey i Th Fandes bUE pr i UL DEEF | e Eaies LRas Ol
ol _BOEEE 0T

Various environment check

Once we have decoded the string, further reverse
engineering becomes trivial. It is no more complicated than
any other malware we observe on a daily basis. The
DUBNIUM binary checks for the running environment very
extensively. It has a very long list of security products and
other software it detects, and it appears that it detects all
major antimalware and antivirus vendor process names.

Figure 18b: Calling memory cleaner function

One other very interesting fact is the presence of process names that are associated with software mainly used in
China. For example, QQPCRTP.exe and QQPCTray.exe are from a messaging software by a company based in
China. Also, ZhuDongFangYu.exe, 360tray.exe and 360sd.exe process names are used by security products that
originate from China. From the software it detects, we get the impression that the malware is focusing on a specific
geolocation as its target.

Aside from security programs and other programs used
daily that can be used to profile its targets, the DUBNIUM
malware also checks for various program analysis tools e R
including Pin and DynamoRIO. It also checks for a virtual e S :

machine environment. If some of these are detected, it quits - T A
its execution. Overall, the malware is very cautious and e .
deterministic in running its main code.

Figure 19: Extensive list of process names
The following figure shows the code that checks for the
1/4

https://blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2/3/
https://msdnshared.blob.core.windows.net/media/2016/06/181.png
https://msdnshared.blob.core.windows.net/media/2016/06/18b.png
https://msdnshared.blob.core.windows.net/media/2016/06/191.png
https://msdnshared.blob.core.windows.net/media/2016/06/20.png
https://msdnshared.blob.core.windows.net/media/2016/06/212.png
https://msdnshared.blob.core.windows.net/media/2016/06/221.png
https://msdnshared.blob.core.windows.net/media/2016/06/231.png
https://msdnshared.blob.core.windows.net/media/2016/06/242.png
https://msdnshared.blob.core.windows.net/media/2016/06/251.png
https://msdnshared.blob.core.windows.net/media/2016/06/261.png

existence of the Fiddler web debugger, which is very popular among malware analysts. As we wanted to use Fiddler
to get a better understanding on the network activity of the malware, we manually patched the routine so it would

not detect the Fiddler mutex.

Second payload download

The DUBNIUM samples are distributed in various ways,
one instance was using a zero-day exploit that targets
Adobe Flash, in December 2015. We also observed the
malware is distributed through spear-phishing campaigns
that involve social engineering with LNK files.

After downloading this payload, it would check the running

FINZCNR gunh (143

PR CEE pusch 1E & dnt

ik Chag Iea K, | FSpE LIl |

I L BN, DFFet aHeehi_releszb® | Glabal‘WFiodlerlser
FAZCRAD call serade_=kving

HAICAT irs
MIAICETH puLh
FIMZCATE Lea

pax, [enpsEECheDt]
rax ; Sre
@an, [dpe BB M Hase |

A CAEE push TN | Sizelabytes
Lol Bsh BaK [b=k

FRFERAR gall

A CHEE add e=p, 1kh

LI CLAE Ims wax, [enpsBl4heHame]
FINZEWL push wax ; IpHamw

L rie] Bush #hk © RlnderiTRandle
ikl e ¥ push il | dulesireifooess
FECAIE gall @5 ipeaiit el
HZCME texh BN, FRN

E AT ChAl ir short Ioc_ iRFCWE0

Figure 20: Fiddler mutex check

environment and will only proceed with the next stage when it determines the target is a valid one for its purpose.

If software and environment check passes, the first stage payload will try to download the second stage payload
from the command and control (C&C) server. It will pass information such as the IP, MAC address, hostname and
Windows language ID to the server, and the server will return the encoded second stage payload.

The way the first stage payload downloads the second
payload is both interesting and unique. It doesn’t access the
Internet directly from the code, but it uses the system-
installed mshta.exe binary. Mshta.exe is often used by
malware to run VBscript for malicious purposes, but using it
for downloading a general purpose payload is not so
common. This is because mshta.exe doesn’t support
downloading URL contents directly to an arbitrary location.

DUBNIUM spawns the mshta.exe process with the URL to
download and waits for some time, after that it opens the
mshta.exe process and goes through open file handles to
find a handle for the temporary file that is associated with
the downloaded contents.

Figure 21: 2nd payload download traffic

sb. T irgicl i pehis g CindW | NOCSIRRI0CICH F 1A TL A r™ JEERC I W G0R SE UL & 511 G0k FTm HTTRA 1
Lhent

Accept; =™

dorepi-Ercedng: gop, defaie

see-Agent] Hasllajd, 0 ([oompaibie; MEIE 70

Figure 22: Encoded strings of the client information

This is a very inconvenient way to download a payload from the Internet, but it is useful for hiding the originating
process for network activities. Sometimes network security programs check for the process name and their digital
signature to check if they have the right to access outside the network. In that case, this feature will be very handy

for the malware.

As you can see from the figures below, it uses process-
related documented and undocumented APIs to retrieve file
handles from the mshta.exe process, resolves their names
and uses filename heuristics to check if it is a response file
or not.

Figure 23: mshta.exe execution code

2/4

The cache filename will be retrieved and opened to retrieve
the payload from the C&C server.

Conclusion =

Overall, the functionality of the DUBNIUM first stage
payload is not so advanced in its functionality. It is a very
simple downloader for the second stage payload.

However, the way it operates is very strategic:

gl Erfh

ATTEELEELE

EITRFRETETRIRATRISEGE

It hides in oblain siaht Figure 24: API calls to retrieve handle file name in mshta.exe
p ght. process

It is very careful in initiating the next stage of the attack.

FErte

It checks many different security products and user- _— i et e

installed programs that are bound to specific ma

geolocations and cultures. =

It encodes every string that can be useful for quick Figure 25: Cache filename
analysis.

It encodes outbound web traffic.

It doesn’t use high class encryption — but it does use an
excessive amount of in-house string scrambling
algorithms.

It checks for many popular virtual environments and
automatic analysis systems that are used for malware
analysis, including VMware, Virtualbox and Cuckoo
Sandbox

It checks for popular dynamic analysis tools like PIN
t00|, DynamORIO and other emulators. Figure 26: Using mshta.exe to download additional payload

In conclusion, this is the first stage payload with more of
reconnaissance purpose and it will trigger next stage attack only when it decides the environment is safe enough for
attack.

Appendix — Indicators of compromise

We discovered the following SHA1s in relation to DUBNIUM:

35847c56e3068a98cff85088005ba1a611b6261f
09b022ef88b82504 1b67da9c9a2588e€962817f6d
7f9ecfc95462b5e01e233b64dcedbcf944e97fca
cad21e4ae48f2f1ba91faa9f875816f83737bcaf

ebccb1e12¢88d838db15957366cee93c079b5a8e
3/4

e aee8d6f39e4286506cee0c849ede01d6f42110cc
¢ b42ca359fe942456de14283fd2e199113c8789e6
e 0ac65c60ad6f23b2b2f208e5ab8be0372371e4b3
e 1949a9753df57eec586aeb6b4763f92c0ca6a895
e 259f0d98e96602223d7694852137d6312af78967
e 4627cff4cd90dc47df5c4d53480101bdc1d46720

e 561db51eba971ab4afe0a811361e7a678b8f8129
e 6e74da35695e7838456f3f719d6eb283d4198735
o 8ff7f64356f7577623bf424f601c7fa0f720e5fb

¢ a3bcaecf62d9bc92e48b703750b78816bc38dbe8
¢ c9cd559ed73a0b066b48090243436103eb52cc45
e dc3ab3f6af87405d889b6af2557c835d7b7ed588
¢ df793d097017b90bc9d7da9a85f929422004f6b6
o 8ff7f64356f7577623bf424f601c7fa0f720e5fb

e 6ccba071425ba%ed69d5a79bb53ad27541577¢b9

-Jeong Wook Oh
MMPC

Pages: Page 1, Page 2, Page 3

414

https://blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2/
https://blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2/2/

	Reverse-engineering DUBNIUM
	Hiding in plain sight

