
June 9, 2016

Reverse-engineering DUBNIUM

blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2/

DUBNIUM (which shares indicators with what Kaspersky researchers have called DarkHotel) is one of the activity

groups that has been very active in recent years, and has many distinctive features.

We located multiple variants of multiple-stage droppers and payloads in the last few months, and although they are

not really packed or obfuscated in a conventional way, they use their own methods and tactics of obfuscation and

distraction.

In this blog, we will focus on analysis of the first-stage payload of the malware.

As the code is very complicated and twisted in many ways, it is a complex task to reverse-engineer the malware.

The complexity of the malware includes linking with unrelated code statically (so that their logic can hide in a big,

benign code dump) and excessive use of an in-house encoding scheme. Their bootstrap logic is also hidden in plain

sight, such that it might be easy to miss.

Every sub-routine from the malicious code has a “memory cleaner routine” when the logic ends. The memory

snapshot of the process will not disclose many more details than the static binary itself.

The malware is also very sneaky and sensitive to dynamic analysis. When it detects the existence of analysis

toolsets, the executable file bails out from further execution. Even binary instrumentation tools like PIN or

DynamoRio prevent the malware from running. This effectively defeats many automation systems that rely on at

least one of the toolsets they check to avoid. Avoiding these toolsets during analysis makes the overall investigation

even more complex.

With this blog series, we want to discuss some of the simple techniques and tactics we’ve used to break down the

features of DUBNIUM.

We acquired multiple versions of DUBNIUM droppers through our daily operations. They are evolving slowly, but

basically their features have not changed over the last few months.

In this blog, we’ll be using sample SHA1: dc3ab3f6af87405d889b6af2557c835d7b7ed588 in our examples and

analysis.

Hiding in plain sight

The malware used in a DUBNIUM attack is committed to disguising itself as Secure Shell (SSH) tool. In this

instance, it is attempting to look like a certificate generation tool. The file descriptions and other properties of the

malware look convincingly legitimate at first glance.

When it is run, the program actually dumps out dummy certificate files into the file system and, again, this can be

very convincing to an analyst who is initially researching the file.

The binary is indeed statically linked with OpenSSL library, such that it really does look like an SSH tool. The

problem with reverse engineering this sample starts from the fact that it has more than 2,000 functions and most of

1/3

https://blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2/
https://msdnshared.blob.core.windows.net/media/2016/06/115.png
https://msdnshared.blob.core.windows.net/media/2016/06/211.png
https://msdnshared.blob.core.windows.net/media/2016/06/310.png
https://msdnshared.blob.core.windows.net/media/2016/06/47.png
https://msdnshared.blob.core.windows.net/media/2016/06/55.png
https://msdnshared.blob.core.windows.net/media/2016/06/76.png

Figure 1: SSH tool disguise

Figure 2 Create dummy certificate files

Figure 3: DUBNIUM

functions list

them are statically linked to OpenSSL code without symbols.

The following is an example of one of these functions – note

it even has string references to the source code file name.

It can be extremely time-consuming just going through the

dump of functions that have no meaning at all in the code –

and this is only one of the more simplistic tactics this

malware is using.

We can solve this problem using binary similarity

calculation. This technique has been around for years for

various purposes, and it can be used to detect code that

steals copyrighted code from other software.

The technique can be used to find patched code snippets in

the software and to find code that was vulnerable for attack.

In this instance, we can use the same technique to clean up

unnecessary code snippets from our advanced persistent

threat (APT) analysis and make a reverse engineer’s life

easier.

Many different algorithms exist for binary similarity calculation, but we are going to use one

of the simplest approach here. The algorithm will collect the op-code strings of each

instruction in the function first (Figure 5). It will then concatenate the whole string and will

use a hash algorithm to get the hash out of it. We used the SHA1 hash in this case.

Figure 6 shows the Python-style pseudo-code that calculates the hash for a function.

Sometimes, the immediate constant operand is a valuable piece of information that can be

used to distinguish similar but different functions and it also includes the value in the hash

string. It is using our own utility function RetrieveFunctionInstructions which returns a list of

op-code and operand values from a designated function.

01 def CalculateFunctionHash(self,func_ea):

02 hash_string=''

03 for (op, operand) in

self.RetrieveFunctionInstructions(func_ea):

04 hash_string+=op

05 if len(drefs)==0:

06 for operand in operands:

07 if operand.Type==idaapi.o_imm:

08 hash _string+=('%x' % operand.Value)

09

10 m=hashlib.sha1()

11 m.update(op_string)

12 return m.hexdigest()

2/3

Figure 4: Code snippet that is linked from OpenSSL library

Figure 5: Op code in the instructions

Figure 7: OpenSSL

functions

Figure 6: Pseudo-code for CalculateFunctionHash

With these hash values calculated for the DUBNIUM binary,

we can compare these values with the hash values from the

original OpenSSL library. We identified from the compiler-

generated meta-data that the version the sample is linked to

is openssl-1.0.1l-i386-win. After gathering same hash from

the OpenSSL library, we could import symbols for the

matched functions. In this way, removed most of the

functions from our analysis scope.

(This blog is continued on the next page)

Pages: Page 1, Page 2, Page 3

3/3

https://blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2/2/
https://blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2/3/

Figure 8: Encoded strings

Figure 9: Excessive use of encoded strings

June 9, 2016

Reverse-engineering DUBNIUM

blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2/2/

Persistently encoded strings

The other issue when reverse-engineering DUBNIUM binaries is that it encodes every single string that is used in

the code (Figure 8). There is no clue on the functionality of purpose of the binary by just looking at the string’s table.

We had to decode each of these strings to understand what the binary is intended to do. This may not be technically

difficult, but it does require a lot of time and effort.

Figure 9 shows how these encoded strings are used. For

example, address 0x142C11C has an instruction that loads

an encoded string which is decoded as

“hook_disable_retaddr_check”. The encoded string is

passed in ecx register to the decoder function

(decode_string). Note that the symbol names for the

functions were made by us during the analysis.

Because the decode_string function is excessively used

and encoded gibberish strings are always passed to it, we

can be confident that the function is truly a string decoder.

The decode_string function looks like Figure 10. There are

some approaches that can be taken for decoding these

files: you could port the code to C or Python and run them

through encoded strings, or you could reuse the code

snippet itself and pass the encoded string to the decoder function. We took the second option and reused the

existing code for decoding strings, for faster analysis of the sample.

For example, we have an encoded string at address 0x013C992C.

The decode_string function is located at 0x01437036 in our case. The ecx register will point to the encoded string

and edx is the destination buffer address for the decoded string. We just came up with the right place on the stack

with enough buffer, which in this case is esp+0x348.

lea edx,[esp+0x348] – pointer to stack buffer address

mov ecx, 0x013C992C – pointer to encoded string

call 0x01437036 – call to decode_string

As the instructions above will decode the encoded string for us, we can use Windbg to run our code. First we

prepared a virtual machine environment, because we can possibly run malicious routines from the sample. As there

are some possibilities that the decode_string function is dependent on some initialization routines called at startup,

1/3

https://blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2/2/
https://msdnshared.blob.core.windows.net/media/2016/06/84.png
https://msdnshared.blob.core.windows.net/media/2016/06/93.png
https://msdnshared.blob.core.windows.net/media/2016/06/102.png
https://msdnshared.blob.core.windows.net/media/2016/06/116.png
https://msdnshared.blob.core.windows.net/media/2016/06/122.png
https://msdnshared.blob.core.windows.net/media/2016/06/131.png
https://msdnshared.blob.core.windows.net/media/2016/06/141.png
https://msdnshared.blob.core.windows.net/media/2016/06/151.png
https://msdnshared.blob.core.windows.net/media/2016/06/161.png
https://msdnshared.blob.core.windows.net/media/2016/06/171.png

Figure 10: decode_string

routine

Figure 11: Encoded string

Figure 12: First breakpoint

Figure 13: Breakpoint on 0142bfee hit

Figure 14: Use ‘a’ command to write instructions over the current eip

location

Figure 15: New disassembly code

we put our first breakpoint to the location where the first instance of decode_string is called. In this way, we can

guarantee that our own decode_string call will be surely called with proper setup. That

address we came up with is 0x0142BFEE (Figure 12).

Here’s where our breakpoint is hit at this address.

Now we need to write the memory over with our own code.

The memory location where eip is pointing looks like the following.

Basically, we put the breakpoint on the entry of the decode_string and exit of the

function. With the entry of the function, we save the edx register value to a temporary

register and use it to dump out the decoded string memory location at the exit point.

Now we have a handy way to decrypt the strings we have.

Just after a few IDAPython scripts that retrieve all possible

encoded strings and automatically generates the assembly

code that calls decode_string, we can come up with a new

IDA listing that shows the decoded string as the comment.

(This blog is continued on the next page)

Pages: Page 1, Page 2, Page 3

2/3

https://blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2/
https://blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2/3/

Figure 16: Breakpoints and dump of decoded string

Figure 17: Decoded strings

3/3

Figure 18: Calling memory cleaner function

Figure 18b: Calling memory cleaner function

Figure 19: Extensive list of process names

June 9, 2016

Reverse-engineering DUBNIUM

blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2/3/

Memory cleanup

Even after encoding every single string related to malicious code, the DUBNIUM malware goes one more step to

hide its internal operations. When it calls decode_string to decode an encoded string, it will use the local stack

variable to save the decoded string. Whenever the function returns, it calls fill_memory_with_random_bytes function

for every local variable it used, so that the stack is cleared from decoded strings.

The memory cleaner function generates random bytes and

fills the memory area. This can be very simple, and but still

can be very annoying to malware analysts because, even

with memory snapshot, we can’t acquire any meaningful

strings out of it. It’s not easy to get a clue of what this binary

is doing internally by just skimming through a memory

snapshot.

Various environment check

Once we have decoded the string, further reverse

engineering becomes trivial. It is no more complicated than

any other malware we observe on a daily basis. The

DUBNIUM binary checks for the running environment very

extensively. It has a very long list of security products and

other software it detects, and it appears that it detects all

major antimalware and antivirus vendor process names.

One other very interesting fact is the presence of process names that are associated with software mainly used in

China. For example, QQPCRTP.exe and QQPCTray.exe are from a messaging software by a company based in

China. Also, ZhuDongFangYu.exe, 360tray.exe and 360sd.exe process names are used by security products that

originate from China. From the software it detects, we get the impression that the malware is focusing on a specific

geolocation as its target.

Aside from security programs and other programs used

daily that can be used to profile its targets, the DUBNIUM

malware also checks for various program analysis tools

including Pin and DynamoRIO. It also checks for a virtual

machine environment. If some of these are detected, it quits

its execution. Overall, the malware is very cautious and

deterministic in running its main code.

The following figure shows the code that checks for the

1/4

https://blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2/3/
https://msdnshared.blob.core.windows.net/media/2016/06/181.png
https://msdnshared.blob.core.windows.net/media/2016/06/18b.png
https://msdnshared.blob.core.windows.net/media/2016/06/191.png
https://msdnshared.blob.core.windows.net/media/2016/06/20.png
https://msdnshared.blob.core.windows.net/media/2016/06/212.png
https://msdnshared.blob.core.windows.net/media/2016/06/221.png
https://msdnshared.blob.core.windows.net/media/2016/06/231.png
https://msdnshared.blob.core.windows.net/media/2016/06/242.png
https://msdnshared.blob.core.windows.net/media/2016/06/251.png
https://msdnshared.blob.core.windows.net/media/2016/06/261.png

Figure 20: Fiddler mutex check

Figure 21: 2nd payload download traffic

Figure 22: Encoded strings of the client information

Figure 23: mshta.exe execution code

existence of the Fiddler web debugger, which is very popular among malware analysts. As we wanted to use Fiddler

to get a better understanding on the network activity of the malware, we manually patched the routine so it would

not detect the Fiddler mutex.

Second payload download

The DUBNIUM samples are distributed in various ways,

one instance was using a zero-day exploit that targets

Adobe Flash, in December 2015. We also observed the

malware is distributed through spear-phishing campaigns

that involve social engineering with LNK files.

After downloading this payload, it would check the running

environment and will only proceed with the next stage when it determines the target is a valid one for its purpose.

If software and environment check passes, the first stage payload will try to download the second stage payload

from the command and control (C&C) server. It will pass information such as the IP, MAC address, hostname and

Windows language ID to the server, and the server will return the encoded second stage payload.

The way the first stage payload downloads the second

payload is both interesting and unique. It doesn’t access the

Internet directly from the code, but it uses the system-

installed mshta.exe binary. Mshta.exe is often used by

malware to run VBscript for malicious purposes, but using it

for downloading a general purpose payload is not so

common. This is because mshta.exe doesn’t support

downloading URL contents directly to an arbitrary location.

DUBNIUM spawns the mshta.exe process with the URL to

download and waits for some time, after that it opens the

mshta.exe process and goes through open file handles to

find a handle for the temporary file that is associated with

the downloaded contents.

This is a very inconvenient way to download a payload from the Internet, but it is useful for hiding the originating

process for network activities. Sometimes network security programs check for the process name and their digital

signature to check if they have the right to access outside the network. In that case, this feature will be very handy

for the malware.

As you can see from the figures below, it uses process-

related documented and undocumented APIs to retrieve file

handles from the mshta.exe process, resolves their names

and uses filename heuristics to check if it is a response file

or not.

2/4

Figure 24: API calls to retrieve handle file name in mshta.exe

process

Figure 25: Cache filename

Figure 26: Using mshta.exe to download additional payload

The cache filename will be retrieved and opened to retrieve

the payload from the C&C server.

Conclusion

Overall, the functionality of the DUBNIUM first stage

payload is not so advanced in its functionality. It is a very

simple downloader for the second stage payload.

However, the way it operates is very strategic:

It hides in plain sight.

It is very careful in initiating the next stage of the attack.

It checks many different security products and user-

installed programs that are bound to specific

geolocations and cultures.

It encodes every string that can be useful for quick

analysis.

It encodes outbound web traffic.

It doesn’t use high class encryption – but it does use an

excessive amount of in-house string scrambling

algorithms.

It checks for many popular virtual environments and

automatic analysis systems that are used for malware

analysis, including VMware, Virtualbox and Cuckoo

Sandbox

It checks for popular dynamic analysis tools like PIN

tool, DynamoRIO and other emulators.

In conclusion, this is the first stage payload with more of

reconnaissance purpose and it will trigger next stage attack only when it decides the environment is safe enough for

attack.

Appendix – Indicators of compromise

We discovered the following SHA1s in relation to DUBNIUM:

35847c56e3068a98cff85088005ba1a611b6261f

09b022ef88b825041b67da9c9a2588e962817f6d

7f9ecfc95462b5e01e233b64dcedbcf944e97fca

cad21e4ae48f2f1ba91faa9f875816f83737bcaf

ebccb1e12c88d838db15957366cee93c079b5a8e

3/4

aee8d6f39e4286506cee0c849ede01d6f42110cc

b42ca359fe942456de14283fd2e199113c8789e6

0ac65c60ad6f23b2b2f208e5ab8be0372371e4b3

1949a9753df57eec586aeb6b4763f92c0ca6a895

259f0d98e96602223d7694852137d6312af78967

4627cff4cd90dc47df5c4d53480101bdc1d46720

561db51eba971ab4afe0a811361e7a678b8f8129

6e74da35695e7838456f3f719d6eb283d4198735

8ff7f64356f7577623bf424f601c7fa0f720e5fb

a3bcaecf62d9bc92e48b703750b78816bc38dbe8

c9cd559ed73a0b066b48090243436103eb52cc45

dc3ab3f6af87405d889b6af2557c835d7b7ed588

df793d097017b90bc9d7da9a85f929422004f6b6

8ff7f64356f7577623bf424f601c7fa0f720e5fb

6ccba071425ba9ed69d5a79bb53ad27541577cb9

-Jeong Wook Oh

MMPC

Pages: Page 1, Page 2, Page 3

4/4

https://blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2/
https://blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2/2/

	Reverse-engineering DUBNIUM
	Hiding in plain sight

