

Pegasus for Android

Technical Analysis and Findings of Chrysaor

April 2017

CONTENTS
CONTENTS 1

Executive Summary 2

Background 3
Threat Hunting and Joint Investigation 4

Pegasus for Android Overview 6
Android vs. iOS Pegasus Sample Comparison 6

Table 1: Comparison of Pegasus for iOS vs. Pegasus for Android 6
Feature comparison of Android vs. iOS Pegasus 7

Pegasus for Android Detailed Analysis 8
Sample 1 - Package Information 8
Sample 2 - Package Information 8

Initial Launch and Configuration 9
Communication Methods 11

HTTP Communication 11
Request Format 11
Response Format 13

SMS/MMS/WAP 15
Inbound SMS 15
Outbound SMS 17
WAP Push Messages 18

Message Queue Telemetry Transport (MQTT) 18
Phone Calls 19

Data Gathering and Surveillance Functionality 20
Targeted Applications 20
Live Audio Surveillance 22
Screenshot and Camera Capability 22
Keylogging 24

Persistence, Evasion, and Suicide Functionality 26
Suicide Functionality 26

MCC Subscriber ID Suicide 26
Existence of Antidote File 26
Maximum Check In Time Exceeded 27

Device Updates Disabled for Persistence 27
Native Components 28
Upgrade Process 28

Second Pegasus Sample 29

Conclusion 31

Acknowledgements 32

Appendix 33

 1

Executive Summary
For the past several months, the Lookout Security Intelligence team has been closely tracking
the features and tradecraft of targeted nation-state level malware attacks against mobile users.
In the initial investigation into the software developed by lawful intercept vendor NSO Group, we
examined the common features and methodologies that are frequently used to perform
espionage using the mobile platform.

Building on our initial technical analysis of NSO’s Pegasus software after the August 2016
discovery of Pegasus, the security intelligence teams at Google and Lookout collaborated to
discover and track Pegasus as it exists on the Android platform (aka Chrysaor) in order to roll
out protection for Android users. This investigation originated with the Lookout August report
and led to all Android, users being protected against this threat.

On the Android platform, the Pegasus software has many of the same features that we
described in the original Lookout report. The samples that Google acquired, and we analyzed
for this report, existed as an Android application (APK) that compromised the device to install its
malicious payload. These samples are dated, but given the recent Pegasus activity on devices
observed by both Google and Lookout, the analysis represents important new insight into this
spyware.

Pegasus for Android has similar capabilities to its iOS counterpart including:

● Exfiltrate targeted data from common apps including:
○ WhatsApp
○ Skype
○ Facebook
○ Viber
○ Kakao
○ Twitter
○ Gmail
○ Android’s Native Browser and Chrome
○ Android’s Native Email

● Remote control of the device using SMS
● Surveillance of:

○ Audio via the microphone
○ Imagery via the camera (front and rear)

● Keylogging
● Screenshot capture
● Disabling of system updates

Pegasus for Android is an example of the common feature-set that we see from nation states
and nation state-like groups. These groups produce advanced persistent threats (APT) for
mobile with the specific goal of tracking a target not only in the physical world, but also the
virtual world. As nation states continue to expand their mobile capabilities, it is important to
provide detailed analysis of the capabilities that threat actors are deploying on the mobile

 2

http://android-developers.googleblog.com/2017/04/an-investigation-of-chrysaor-malware-on.html
https://info.lookout.com/rs/051-ESQ-475/images/lookout-pegasus-technical-analysis.pdf

platform in order to expand the industry’s knowledge and ability to protect against this type of
threat globally.

Background

In August 2016, Lookout published a technical analysis of Pegasus for iOS, a sophisticated,
targeted lawful-intercept attack that was actively targeting a number of mobile users globally.
We published our findings in the Technical Analysis of Pegasus Spyware report upon the
release of Apple’s iOS 9.3.5 patch. The patch closed the attack vector — Trident, an exploit of
three related zero-day vulnerabilities in iOS — which Pegasus used to exploit the target device.
Lookout protected its customers against Pegasus for iOS at that point.

Pegasus is highly advanced in its stealth, its use of exploits, its code obfuscation, and its
encryption. It has a broad surveillanceware feature set that takes advantage of functionality
available on mobile, such as:

● Always-on communications over Wi-Fi, 3G, or 4G
● Phone
● Messaging and email apps such as WhatsApp, Facebook, and Viber
● Camera
● Contact list
● Keystroke logging.

The original report shed light on the presence of advanced “lawful intercept” technologies.
Lookout, along with Citizen Lab, established that the Pegasus surveillanceware software
product is developed by NSO Group. According to news reports, NSO Group sells weaponized
software that targets mobile phones to governments. News reports indicate that the Pegasus
spyware is sold for use on high-value targets for multiple purposes, including sophisticated
espionage on iOS, Blackberry, and Android.

Our research into Pegasus for Android began in late 2016, at which point we shared the initial
findings and began our collaboration with Google. Our team set out to discover and ultimately
enable detection of the Android version of NSO’s Pegasus software.

Threat Hunting and Joint Investigation
Immediately upon discovery of the iOS version of Pegasus, Lookout’s team of intelligence
analysts and data scientists began hunting down Pegasus for Android via a combination of
automated and manual analysis of the telemetry from the Lookout Security Cloud. Using
anomalies identified from our large anonymized corpus of data, we were able to focus on a
number of unique indicators of compromise (IOCs) that acted as signals to flag specific outliers
within our sensor network. Combining several layers of signal intelligence, including detections
of Pegasus for iOS, allowed the team to identify these indicators for deeper analysis.

 3

https://info.lookout.com/rs/051-ESQ-475/images/lookout-pegasus-technical-analysis.pdf
https://www.forbes.com/sites/thomasbrewster/2016/08/25/everything-we-know-about-nso-group-the-professional-spies-who-hacked-iphones-with-a-single-text/#355371b83997
https://citizenlab.org/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/

With an identified set of indicators to investigate, we analyzed the data that indicated these
findings were anomalous. Our Security Intelligence analysts were able to pinpoint a suspect set
of apps which did not exist anywhere else in the world, including in public app stores or on
public sources like VirusTotal. These apps contained metadata such as package names and
signer information that only appeared in very limited cases which correlated with
Pegasus-specific IOCs. This type of big data set is invaluable for both preserving user privacy
and engaging in threat hunting and threat intelligence.

Lookout shared the findings with the Google Android Security Team after the Pegasus for iOS
story broke. Over the next several months we jointly engaged in an investigation to track down

 4

samples of Pegasus for Android and determine how this affected individuals around the world
and the best course of action to protect Android users.

When Google and Lookout announced the discovery, Google named this family of spyware
Chrysaor. Lookout references the Chrysaor naming as part of the Pegasus for Android variant
of the Pegasus family first discovered on iOS.

The samples included in this research vary from debug/test/proof-of-concept application code to
the more engineered, production-quality samples that affected target users in the real world.

Pegasus for Android Overview
The version of Pegasus for Android, known as Chrysaor, exists primarily as an app, of which
there are several variants. These variants carry with them different file hashes, signers, package
names, and content. The samples discussed here carry with them an APK that can be broken
up into a Java component and native code component.

The Java layer — what most Android developers are familiar with when creating apps — is
responsible for controlling, installing, and orchestrating the surveillance functions of Pegasus.
The native code layer is responsible for a variety of tasks including the exploiting of the device,
gaining elevated privileges (root access), and hooking the processes of other apps.

Android vs. iOS Pegasus Sample Comparison
The Android and iOS Pegasus samples share a lot of common functionality, including: process
hooking, the ability to update and be controlled via SMS, audio surveillance, and self-destruct
functionality to hide its tracks.

The table below highlights some of the similarities and differences between the two platforms
based on the samples our analysts have reviewed. From these samples, we determined
Pegasus uses known Android exploits to compromise an Android device. In this case it used a
known root technique called Framaroot, which uses exploits named after Lord of the Rings
characters. Other Android samples may use zero-days as was the case with Pegasus for iOS,
but for the samples described here, the exploits are already known to the security research
community.

Table 1: Comparison of Pegasus for iOS vs. Pegasus for Android

 iOS Android

Process Hooking Yes Yes

SMS Command and
Control

Yes Yes

Zero-Day Exploits Yes No (Not these samples)

 5

http://android-developers.googleblog.com/2017/04/an-investigation-of-chrysaor-malware-on.html

Messaging Protocol MQTT Yes Yes

Audio Surveillance Yes Yes

Functionality without
device compromise

No Yes

Method of Infection Phishing Unknown*

Exfiltrates Personal
Information

Yes Yes

Standalone App No Yes

Suicide Functionality Yes Yes

Targets Popular Apps and
built-in Device Features

Yes Yes

Disables System Updates Yes Yes

Screenshot Capture No Yes

Code Obfuscation Yes Yes

* - It is suspected that infections occur via a phishing attack

Feature comparison of Android vs. iOS Pegasus
We analyzed the samples, along with the data we found in our threat network for family and
variant distinctions across platforms, to reveal many similarities with Pegasus for iOS such as:

● Capturing and exfiltration of data from popular messaging apps

● Similarities in its ability to maintain stealth and persistence on device

● String references to Pegasus

● Use of MQTT for lightweight messaging on both platforms

● C2 commands are delivered by SMS, and they use “verification code” style messages:

● Similarities in Suicide functionality

 6

Pegasus for Android Detailed Analysis

This section contains an in-depth technical analysis around the primary pieces of two Pegasus
for Android samples. The majority of the findings listed here are based on analysis of the first
sample. The second one, discussed in more detail towards the end of the paper, is much
smaller and contains limited functionality.

This investigation was conducted by the Lookout Security Intelligence team using a combination
of static and dynamic analysis, including reproducing a Pegasus for Android C2 server to
exercise functions of the application.

Note that in some code samples the name “JigglyPuff ” is present. We believe this is the internal 1

code name used by the developers for these variants of Pegasus for Android.

Sample 1 - Package Information

Package Name com.network.android

SHA-256 ade8bef0ac29fa363fc9afd958af0074478aef650adeb0318517b48bd996d5d5

Signer Owner: CN=Android, OU=Android, O=Android, L=Unknown, ST=Unknown, C=UK
Issuer: CN=Android, OU=Android, O=Android, L=Unknown, ST=Unknown, C=UK
Serial number: 51234025
Valid from: Tue Feb 19 01:04:37 PST 2013 until: Sat Jul 07 02:04:37 PDT 2040
Certificate fingerprints:

 MD5: F9:6F:15:4D:34:74:82:12:E3:CB:1E:6A:5B:5D:79:58
 SHA1: 44:F6:D1:CA:A2:57:79:9E:57:F0:EC:AF:4E:2E:21:61:78:F4:CB:3D
 SHA256:

D9:52:90:6E:21:86:E0:05:47:80:25:1D:29:3D:3A:40:FC:34:B0:CA:9E:1A:1A:24:DE:BA:29:
62:AE:17:A4:5B

 Signature algorithm name: SHA1withRSA
 Version: 3

Sample 2 - Package Information

Package Name com.network.android

SHA-256 3474625e63d0893fc8f83034e835472d95195254e1e4bdf99153b7c74eb44d86

Signer Owner: CN=Android Debug, O=Android, C=US
Issuer: CN=Android Debug, O=Android, C=US
Serial number: 176eae91
Valid from: Sat Mar 01 11:34:57 PST 2014 until: Mon Feb 22 11:34:57 PST 2044

1 JigglyPuff is the name of a prominent character from the Pokemon series of games
 7

Certificate fingerprints:
 MD5: 02:35:59:D1:6F:A9:6D:25:FC:C7:5E:D0:E6:A5:87:37
 SHA1: 51:6F:8F:51:6C:C0:FD:8D:B5:37:85:A4:8C:0A:86:55:4F:75:C3:BA
 SHA256:

C0:D7:77:23:FA:46:05:AE:C7:61:54:05:45:B6:71:E5:7F:32:26:55:CF:B6:AC:3F:77:AE:50:4
6:93:DB:FC:95

 Signature algorithm name: SHA256withRSA
 Version: 3

Initial Launch and Configuration
The application remains dormant on the device until it is rebooted and a
android.intent.action.BOOT_COMPLETED intent is broadcast (this is broadcast by all
devices after the device has booted and been unlocked by the user).

On first launch, the application must obtain an initial set of configuration options or it will
immediately remove itself from the device. This configuration is obtained by parsing query string
parameter values from a URL in the browser history or by reading data from a local file present
on the device.

Browser history is accessed via the Android browser history and bookmarks content provider.

If a URL in the browser history is found containing the string “rU8IPXbn”, configuration
information is parsed from the query string parameters in the URL.

Parameter Description

t The token used to generate signatures for commands and identify the
client.

c A Base64 encoded command and signature, in the same format as
commands sent via SMS.

d Sets the userNetwork configuration option which contains an ITU-T E.212
mobile country code (MCC).

b Sets the boolean installation configuration option.

 8

r Sets the boolean windowYuliyus configuration option.

After a configuration is loaded, an attempt is made by the malware to clean up its tracks by
removing the URL containing the configuration information from the browser history.

Additionally, the following files, if present on the device, can also be used to obtain the initial
configuration:

● /data/myappinfo
● /system/ttg

When using the file based configuration, each option that is passed as a query string parameter
value is expected to be on a separate line in the configuration file. After a configuration file is
read, it is removed from the system. Subsequent to first launch, this configuration data is
accessed through the Android SharedPreferences APIs from a preference file named
“NetworkPreferences”.

 9

Communication Methods
Similar to the iOS version of Pegasus, its Android equivalent is capable of communicating to
attacker-controlled infrastructure via a number of different mechanisms and protocols. This
includes via SMS, over HTTP, and through the Message Queue Telemetry Transport (MQTT)
protocol. The following sections detail how the Android version of Pegasus utilizes each of these
mechanisms and protocols.

HTTP Communication
The application beacons out to a web server at a configurable time interval. The IP address and
port of the server can be set through:

1. A command included in the initial configuration.
2. A command sent via SMS.
3. A command sent in an HTTP response from an existing C2 server.

The scheme and path used in constructing the C2 URL are hard coded within the application.

If the server is not successfully contacted within a configurable period of time, the application
will uninstall itself.

Request Format
Requests from the application include two HTTP headers which contain keys used for
encryption of the request and response:

Field Description

SessionId1 The token stored on the client.

The token value is used by the server to generate encrypted
responses and most likely to identify the client device.

This value is AES encrypted and Base64 encoded.

SessionId2 A randomly generated byte array.

This is the AES key which is used to encrypt the files
uploaded in the response body.

 10

This value is AES encrypted and Base64 encoded.

Both fields are encrypted using a hardcoded key and initialization vector.

Each request body contains fields encoded as multipart/form-data. These are gzip compressed
and then AES encrypted using the SessionId2 key.

The header field, when decrypted, contains an XML document with device information, a list of
data collection files which are included with the request, and the AES key to be used to decrypt
each file.

 11

The data collection file format will vary depending on the data being transmitted but the files are
XML documents which contain data exfiltrated from the device, in response to a command
issued to the application.

Response Format
Responses are also AES encrypted XML documents. The encryption key is generated with the
following algorithm:

MD5({0xB6, 0x27, 0xDB, 0x21, 0x5C, 0x7D, 0x35, 0xE4, token}) truncated to 16 bytes append
MD5({0xB6, 0x27, 0xDB, 0x21, 0x5C, 0x7D, 0x35, 0xE4, token}) truncated to 16 bytes

The minimal response the application expects to receive is an XML document containing a
response element with message and code attributes.

 12

XML response parsing is performed within the application by overriding the startElement(),
endElement(), and characters() methods of the org.xml.sax.helpers.DefaultHandler class from
the SAX2 library and tracking the start/end of various elements.

This parsing method allows the client to accept more than one possible response structure so
it’s not possible to determine with certainty how the server side portion of the application
structures all of its commands. It is only possible to determine which commands the application
will respond to.

Below is a listing of commands relevant to the application’s core functionality:

Command Purpose

dump Requests the client send back a configurable list of data which
may include:

● SMS messages
● Phone call logs
● Contacts stored on the SIM card and device
● WhatsApp messages
● Facebook messages
● Twitter messages
● Browser history
● List of installed and running applications on the device
● Kako messages

 13

● VIber messages
● Skype chat logs
● Calendar entries
● Email stored on the device

upgrade Requests the application to download and install an upgrade
package from a specified URL.

camCmd Requests the application take a screenshot or photo with the
front or rear facing camera on the device.

emailAttCmd Causes the application to retrieve a particular email attachment.

Additional commands are available to set most of the configurable options within the application.
Each command includes an ack ID which the client will transmit back to the C2 server to
acknowledge receipt of the command.

SMS/MMS/WAP

Inbound SMS
Similar to the methodology used by Pegasus for iOS, the Android package can receive
commands contained in SMS message bodies which appear to be disguised as Google
authentication codes. The command parser used by the Android version of the application
appears compatible with messages that have been observed being sent to iOS devices.

The application registers a content observer for the Android SMS content provider which
performs a case insensitive search of the SMS message bodies for the string “your google
verification code” on incoming SMS messages.

SMS commands can include a command number, an ack ID, command arguments, and a
signature. The basic command structure is:

text:[Six Digits][Command Number]a=[Ack ID]&[Command
Arguments]&s=[Message Signature]

The message signature is an MD5 hash of the token configured on initial application launch and
the contents command message. The signature included in the message is checked against a
signature generated on the device. This ensures that the application will only respond to
commands which are issued from a sender who knows the device’s token.

 14

Android command numbers range from 0-8.

Command Description

0 This “kill” command causes the application to attempt to
remove itself from the device.

1 Causes an outbound beaconing message to be sent either
through HTTP or SMS.

2 Sets the adlocation and ad rate configuration options and
toggles location monitoring functionality.

3 Configures the following configuration options (typically used for
initial configuration):

1. WindowTargetSms
2. Skypi
3. NetworkWindowAddresess

4 Takes a photo with the device’s rear facing camera.

5 Requests upload of an arbitrary file from the file system or
upload of a directory listing.

6 This readies the device to receive an audio surveillance call as
described under “Live Audio Surveillance.”

7 Toggles the call recording features by setting the window canda
configuration option.

8 Triggers an immediate request to one of the configured C2
servers to fetch new commands over HTTP.

Command arguments for each command vary but are structured to look like query string
parameters in the fake URL.

For all commands except 0, the application will acknowledge that a command was received by
sending a request to the configured HTTP C2 server. The ack ID sent with the SMS command
will be included in the data within the header field of the HTTP request.

 15

Outbound SMS
The application will send outbound SMS messages to the configured WindowTargetSms
number. This behavior can occur on demand, via a command issued to the application, or under
other circumstances such as if no internet access is available or the device’s SIM card has been
changed.

These messages include a subset of the information available in the header fields sent in HTTP
communication, though the data is formatted as colon separated key/value pairs or is newline
separated rather than XML.

SMS messages sent to or received from the WindowTargetSms number are hidden from the
end user.

 16

WAP Push Messages
The malware will change the device’s WAP Settings to enable push messages.

WAP push messages are SMS messages containing specially encoded data which can, under
certain circumstances, cause a device to automatically open a link in a browser on a device.
This can be used as another vector to autoload content on the device without user interaction, if
the device and cellular provider supports it.

This technique may also be employed for deployment on Android as the application makes an
effort to delete WAP messages on startup if the device is rooted:

Message Queue Telemetry Transport (MQTT)
In addition to being able to communicate via HTTP and SMS, Pegasus for Android is also
capable of establishing a connection to command and control infrastructure via the MQTT
protocol. There are however several attacker-specified restrictions that can be applied to when
and if MQTT is utilized. With this in mind, Pegasus checks if the device is on Wi-Fi, a cellular
network, and/or is roaming, and whether it is configured to use MQTT in these scenarios. If
Pegasus has been explicitly configured to not use MQTT over the current network, then a
connection via MQTT will not occur.

Assuming it is allowed to use MQTT over the current network, Pegasus will attempt to establish
a connection in the format tcp://<mqtt_remote_host>:<mqtt_port>. The remote host
and port variables are populated based on configuration information retrieved from the
application’s shared preferences. As expected, if these fields are not present an MQTT
connection will fail to be successfully established. Several additional fields are also mandatory,

 17

including an MQTT username, password, and identifying token. The provided token is used to
subscribe to a particular MQTT topic so that the operator can issue device specific commands
that are then executed by that client.

The processing of these remotely issued commands is handled in the same fashion as
instructions received via HTTP and SMS, previously detailed in this report. Each command
includes a signature that is used to verify the authenticity of the command and ensure it is not
only created by the attackers, but that it is intended for the device that is currently processing it.
A separate thread is then responsible for handling the execution of these instructions.

Given that certain device criteria need to be met before certain commands are executed, it is
possible that received commands are not immediately executed. To handle this, Pegasus for
Android has a linked hash set that is used to store pending instructions. At most, 60 pending
instructions can be stored. When full, the receipt of further instructions results in the deletion of
the next instruction to be deleted and the addition of the most recently received one.

Phone Calls
The application has special handling for calls associated with the numbers *762646466 and
*7626464633. These phone numbers, respectively, toggle on and off the romingSetted
configuration option which controls whether normal C2 communication is used when the device
is roaming. This feature is likely implemented because when a device is roaming and
romingSetted is disabled, the application will not accept commands from the normal HTTP,
SMS, or MQTT communications channels.

 18

Data Gathering and Surveillance Functionality

Targeted Applications
As was the case with Pegasus for iOS, the Android counterpart also targets numerous
messaging and communication applications. The apps we observed as targets included:

○ WhatsApp
○ Skype
○ Facebook
○ Viber
○ Kakao
○ Twitter
○ Gmail
○ Android’s Native Browser or Chrome
○ Android’s Native Email
○ Calendar

Analysis showed that in order to achieve this, Pegasus for Android first checked whether certain
messaging app databases were present before using its super user access to query them and
retrieve user content. This included email messages, chat conversations, sent attachments, and
cached content. We observed Pegasus for Android modifying the read, write, and execute
permissions of the databases it targets to be accessible by all users. Interestingly, after it had
retrieved information of value from some of these databases it would change the permissions
back to their original values.

The overall method that Pegasus for Android uses to query these databases is the same. We
can see this in the table below where Pegasus for Android is attempting to retrieve a victim’s
email messages. Below we provide the code that Pegasus uses to first check whether the Gmail
or native email application is used, then set the permissions of relevant files to be world
accessible, before then reverting these permissions back to the original. This approach is
utilized by most of the Pegasus information gathering modules. The exception to this includes
data retrieved via certain content providers; for example for bookmarks and calendar
information.

message_id_to_target = db_msg_to_target[0];
database_name_to_target = db_msg_to_target[1];
gmail_db_location = this.gmail_db_loc == 1 ?

"/data/data/com.google.android.gm/databases" :
"/data/data/com.android.email/databases";

database_path = this.gmail_db_loc == 1 ?
gmail_db_location + "/" +
database_name_to_target : gmail_db_location +
"/" + database_name_to_target;

…
…

 19

all_files_plus_perms_bitmask =
FileSystemHelper.get_hashmap_files_perms_bitmask(gmail_db_location,
directory_files);
…
FileSystemHelper.make_all_readable("0777", gmail_db_location,
directory_files);
…
if(all_files_plus_perms_bitmask != null && directory_files != null)
{

FileSystemHelper.reset_perms_to_orig_values(all_files_plus_per
ms_bitmask, gmail_db_location, directory_files);

}

Listed below are the various directory paths and databases that it looks for when gathering
social media and messaging data.

Target Application Databases / Files / Providers Accessed

Gmail /data/data/com.google.android.gm/database/mailstore.<user-em
ail>@gmail.com.db

Facebook /data/data/com.facebook.katana/databases/threads_db2
/data/data/com.facebook.katana/databases/threads_db2-journal

WhatsApp /data/data/com.whatsapp/databases/msgstore.db
/data/data/com.whatsapp/databases/wa.db
/data/data/com.whatsapp/shared_prefs/com.whatsapp_preferen
ces.xml

Skype /data/data/com.skype.raider/files/main.db

Viber /data/data/com.viber.voip/databases/viber_messages
/data/data/com.viber.voip/databases/viber_messages-journal

Kakao /data/data/com.kakao.talk/databases/KakaoTalk.db
/data/data/com.kakao.talk/databases/KakaoTalk.db-journal

Twitter /data/data/com.twitter.android/databases/*.db

Android’s Native Browser /data/data/com.android.browser/databases/webview.db
(contains stored user credentials)
The following content providers:

- Bookmarks (history projection)
- Searches

Android’s Native Email /data/data/com.android.email/databases/<user-email>.db

 20

Default Calendar content://com.android.calendar/events
content://calendar/events

Live Audio Surveillance
Pegasus for Android supports live audio surveillance. This functionality is triggered when a call
is received from an attacker’s specified number and results in an adversary being able to silently
listen and capture surrounding audio received by the device’s microphone. Live audio
surveillance functionality can only be activated in specific situations that require the following
conditions to be met:

● The screen is locked
● The screen is off
● Call forwarding is not enabled
● A user did not interrupt a previous live surveillance operation
● There is no approved live surveillance endpoint to accept calls from
● The calling number must match the decrypted value stored in shared preferences under

the key “Skypi ”
● The telephony state is not idle
● The microphone is not already in use
● If certain battery charging conditions are not met
● A wired headset is not connected
● A bluetooth A2DP audio peripheral is not connected
● Communication is not currently using bluetooth
● Music is not active
● The device is either not roaming or Pegasus has been configured to perform this

functionality even if a device is roaming

Screenshot and Camera Capability
Pegasus for Android contains the functionality to capture visual content via screenshots or by
using a device’s front or back camera.

In order to successfully function regardless of a device’s operating environment, analysis
showed that screen capture capability was implemented twice. The first approach that Pegasus
for Android uses relies on the screencap binary which exists on some installations under the
/system/bin/ path. If present, Pegasus for Android instructs it to take a screenshot and save
it in the PNG file format to /data/data/com.network.android/bqul4.dat . This
functionality can be seen in the following screenshot.

 21

On devices where the screencap binary is not present, Pegasus falls back to a native screen
capture implementation that is provided by the take_screen_shot binary, located in the
applications res/raw directory. In the figures below we can see Pegasus for Android first
calling this binary from its Java component followed by a snippet of native functionality
responsible for reading in the /dev/graphics/fb0 framebuffer and saving it temporarily as a
PNG file to /data/data/com.network.android/tss64.dat . The native
take_screen_shot binary makes use of the input/output control system call ioctl as well as
libpng.

Successfully captured images that are stored in the PNG file format are then compressed to the
JPG format and saved with a filename in the format
ScreenShot-res<single_integer>-<current_system_time_in_seconds>.jpg.

Similar to capturing screenshots, the spyware’s capability to take pictures using the camera of a
compromised device first saves these images in the PNG file format before compressing them
as JPGs. The resulting JPG files are named in the following format depending on whether they
were acquired using either the front or back camera on a device:

Front-res<single_integer>-<current_sysyem_time_in_seconds>.jpg
Back-res<single_integer>-<current_sysyem_time_in_seconds>.jpg

This functionality to take pictures using the device’s various cameras is implemented purely in
java code, a snippet of which is shown below.

 22

Camera$Parameters v1 = selected_camera.getParameters();
Camera$Size v4 = v1.getPreviewSize();
YuvImage v0_1 = new YuvImage(arg11, v1.getPreviewFormat(),
v4.width, v4.height, null);
ByteArrayOutputStream v1_1 = new ByteArrayOutputStream();
v0_1.compressToJpeg(new Rect(0, 0, v0_1.getWidth(),
v0_1.getHeight()), 50, ((OutputStream)v1_1));
byte[] v0_2 = v1_1.toByteArray();
BitmapFactory$Options v1_2 = new BitmapFactory$Options();
…
...
Bitmap v0_3 = BitmapFactory.decodeByteArray(v0_2, 0, v0_2.length,

v1_2);
v1_1 = new ByteArrayOutputStream();
v0_3.compress(Bitmap$CompressFormat.JPEG, 50,
((OutputStream)v1_1));
byte[] v1_3 = v1_1.toByteArray();
String current_sys_time_in_sec =
e.get_current_system_time_seconds();
String v3 = this.a == 1 ? "Front-res" + this.b + "-" +

current_sys_time_in_sec + ".jpg" : "Back-res" + this.b +
"-" + current_sys_time_in_sec + ".jpg";

Keylogging
Pegasus for Android is capable of injecting itself into the keyboard process of a device and in
doing so logging the content that a victim enters. This functionality is provided by the libk
binary that is stored in res/raw/ directory. During execution Pegasus writes the libk ELF file
out to /data/local/tmp/libuml.so , where it is immediately executed and injected into the
process id of the keyboard before being deleted. Keylogged data is initially written to
/data/local/tmp/ktmu/ulmndd.tmp before being moved into a timestamped file at
/data/local/tmp/ktmu/finidk.<current_time> .

 23

The component of libk that is responsible for temporarily keylogging input to

/data/local/tmp/ktmu/ulmdd.tmp . Log files contain the bitwise not, or complement, of
the input so are not stored in plaintext.

Each input event is eventually moved from its temporary ulmdd.tmp file to a timestamped file

located at /data/local/tmp/ktmu/finidk.<timestamp> .

Injection and keyboard hooking is achieved by getting the process id of the current input method
which is then passed into the init entry point of libk via the addk binary which during
execution is copied to /data/local/tmp/inulmn .

The libk binary contains many similar references in its logging statements that appear
elsewhere in the Pegasus application. This suggests it was created by the same authors
responsible for the overall application, as opposed to being created by a third party.

 24

Persistence, Evasion, and Suicide Functionality

Suicide Functionality
As seen in the iOS version of Pegasus, the Android counterpart also includes suicide
functionality to remove itself under a variety of different circumstances. Our analysis identified
the following four cases where this functionality would be triggered:

1. The MCC subscribe ID does not exist or is invalid
2. An antidote file exists at /sdcard/MemosNoteNotes
3. Pegasus for Android has not checked in with the servers for more than 60 days
4. Pegasus for Android receives a remote command to remove itself

MCC Subscriber ID Suicide
It appears that Pegasus for Android will kill itself if it is unable to detect the MCC subscriber ID
or finds it to be invalid. This is likely to prevent it from being run on test devices and emulator
environments which may not be connected to a cellular network. The analyzed sample
appeared to contain (what is presumably) test code that allows it to run regardless of whether it
detects the device is connected to a cellular network or not.

Existence of Antidote File

If a file is present at /sdcard/MemosForNotes then Pegasus for Android will clean up and
remove itself from the device.

 25

Maximum Check In Time Exceeded
Suicide functionality is also triggered if no contact has been made with the command and
control servers for 60 days.

Device Updates Disabled for Persistence
Analysis showed that if Pegasus for Android was running on a Samsung device and was able to
gain superuser access it would remove the system updater
com.sec.android.fotaclient . This would prevent future device updates from occurring
and allow its various components to persist on the /system partition of a compromised device.
Pegasus for Android also disables automatic updates by setting
Settings.System.SOFTWARE_UPDATE_AUTO_UPDATE to 0.

 26

Native Components
As discussed earlier, the Android app contains both Android Java code as well as native
components in the form of binary ELF executables. These binaries are run by the Android app.

Filename Description

addk Used for process injection

cmdshell Takes a supplied argument, attempts to set the user id to be the
root user, and then executes the provided argument.

libk Keylogging component that is injected into the process ID of the
keyboard in order to capture user input. Addk is used to injected
this.

output.mp3

sucopier The publicly available framaroot exploit binary . 2

take_screen_shot Binary used to take screenshots of the device.

Upgrade Process

Upgrades are initiated when a command is received from a C2 server. The upgrade command
specifies a URL used to download the upgrade package. The upgrade package is downloaded
to /data/data/com.network.android/upgrade/uglmt.dat.

An upgrade package contains an MD5 hash, truncated to 16 bytes, followed by Dalvik bytecode.
The input used to generate the hash is the device token followed by the bytecode included in
the file.

The MD5 included in the file is validated by the client using its designated token. If the token
configured on the client is different from the one used by the server and the hashes don’t match,
the upgrade process will abort.

2
https://github.com/hackedteam/core-android/blob/888e51b4ef778ee7f1ef63e22f622ddffb358b39/RCSAnd
roid/jni/exploit_list.c

 27

https://github.com/hackedteam/core-android/blob/888e51b4ef778ee7f1ef63e22f622ddffb358b39/RCSAndroid/jni/exploit_list.c
https://github.com/hackedteam/core-android/blob/888e51b4ef778ee7f1ef63e22f622ddffb358b39/RCSAndroid/jni/exploit_list.c

If the hashes do match, the remaining contents of uglmt.dat is loaded as a dex file and the
static method com.media.provapp.DrivenObjClass.PerfU is invoked, through
reflection, with the argument
/data/data/com.network.android/upgrade/intro.mp3 .

After a successful upgrade has been performed, the following files are cleaned up:

· /data/data/com.network.android/upgrade/uglmt.dat
· /data/data/com.network.android/upgrade/cuvmnr.dat
· /data/data/com.network.android/upgrade/zero.mp3
· /data/data/com.network.android/upgrade/*com.media.sync*

Second Pegasus Sample

This sample differs significantly from the first sample analyzed above. It has a considerably
smaller code base and is clearly intended to be installed on a device that was previously rooted
and already contains the /system/csk superuser binary.

Analysis of this sample showed that its sole purpose is to initiate a connection to a remote
address, download an additional payload, save this data to the file
/data/data/com.network.android/.coldboot_init , before copying it to
/mnt/obb/.coldboot_init and changing the permissions on this file to 0711. The
functionality to perform this download is located in the sample’s only native binary, libsgn.so .
The portion of the sample written in java is extremely minimal and exists just to load
libsgn.so . Below is a section of code from the libsgn.so file that attempts to write the
retrieved payload to various paths.

 28

Furthermore the libsgn.so binary contains a single hardcoded IP address from where to
receive the payload that eventually gets written out to the .coldboot_init file. This IP
address, 130.195.234.251 , can be seen below in the following screenshot taken during
analysis.

Requests to this IP address are made in the following format /adinfo?gi=%s&bf=%s where
the values of the gi and bf parameters are populated using a combination of the
random_hexlified_md5() and get_mac_address() functions.

 29

Conclusion
In the analysis of Pegasus for iOS, we described NSO’s commitment to ensuring that their
products remained undetected. While the samples described here were packaged in 2014, they
were undetected by the security community. Both Lookout and Google found evidence
indicating that this spyware was currently live on victims’ devices. We are publishing this
information to underscore the campaign’s novel ability to combine and integrate a series of
malicious techniques to spy on victims while remaining hidden, both to the victim and to the
security community at large. Where multiple security controls otherwise prohibit unauthorized
remote data access, this attack gains access to a device, escalates privilege, utilizes root
access, and gains residence in /system. It then accesses and exfiltrates data from other apps’
underlying secure data-stores, all controlled by commands from a C2 server. Pegasus will likely
always be a targeted threat, highly damaging to its victims’ privacy, as well as to any personal-
and business-data accessed on (or discussed near) the device.

Since the discovery of Pegasus for iOS in August 2016, the world has seen new evidence of
advanced persistent threats. While the security community and members of the general public
were aware (based on NSO’s marketing) that there was likely to be an Android version of this
advanced spyware, it required significant threat hunting, research, and information-sharing to
ultimately disrupt the attack. This suggests that further investment in mobile security research
and development is required to continually stay ahead of threat actors funding their own
research and development to thwart the next advances.

Sophisticated threat actors are targeting mobile for the same reasons these devices have
become ubiquitous in our personal and professional lives. The communication and data-access
features, the trust users put in their devices, and the prevalence of these devices mean they
also have become an effective espionage tool that well-funded attackers will continue to target.

 30

Acknowledgements

Andrew Blaich
Adam Bauer
Michael Flossman
Jeremy Richards
Christoph Hebeisen
Kristy Edwards
Christina Olson
Michael Murray
Danielle Kingsley
Stephen Edwards

Additional credit goes to the Android Security Team at Google for their collaboration and
analysis throughout this investigation.

 31

Appendix

Sample Digests
Pegasus for Android Samples

Package Name SHA256 Digest SHA1 certificate

com.network.android ade8bef0ac29fa363fc9afd958af007447
8aef650adeb0318517b48bd996d5d5

44f6d1caa257799e57f0ecaf4e2e21617
8f4cb3d

com.network.android 3474625e63d0893fc8f83034e835472d9
5195254e1e4bdf99153b7c74eb44d86

516f8f516cc0fd8db53785a48c0a86554f
75c3ba

Additional related digests

Package Name SHA256 Digest SHA1 certificate

com.network.android 98ca5f94638768e7b58889bb5df4584bf
5b6af56b188da48c10a02648791b30c

516f8f516cc0fd8db53785a48c0a86554f
75c3ba

com.network.android 5353212b70aa096d918e4eb6b49eb5ax
8f59d9bec02d089e88802c01e707c3a1

44f6d1caa257799e57f0ecaf4e2e21617
8f4cb3d

com.binary.sms.receiver

9fae5d148b89001555132c896879652fe
1ca633d35271db34622248e048c78ae

7771af1ad3a3d9c0b4d9b55260bb47c2
692722cf

com.android.copy e384694d3d17cd88ec3a66c740c6398e
07b8ee401320ca61e26bdf96c20485b4

7771af1ad3a3d9c0b4d9b55260bb47c2
692722cf

com.android.copy 12e085ab85db887438655feebd249127
d813e31df766f8c7b009f9519916e389

7771af1ad3a3d9c0b4d9b55260bb47c2
692722cf

com.android.copy 6348104f8ef22eba5ac8ee737b1928876
29de987badbb1642e347d0dd01420f8

31a8633c2cd67ae965524d0b2192e9f1
4d04d016

Configuration and Behavioral Settings
Pegasus uses the Android shared preferences functionality to store configuration and
behavioural values. This contains a wealth of information from MQTT settings, call recording
parameters, command and control details to self destruction timer values, original vibrate and
ringer settings in the event Pegasus modifies these, and a vulnerability indicator for the device.
A complete list of these with a brief description is provided in the table below.

Shared Preference Value Description

NetworkWindowResizer A token used during the upgrade process to
verify that a received dex file is legitimate. See

 32

the upgrade process section for more details.

WindowTargetSms The SMS number used for outbound SMS
communication.

Skypi Contains an attacker specified number. When
calls are received from this number they trigger
the live audio surveillance capability of Pegasus.
See live audio surveillance section for more
details.

url address A specific URL that is to be removed from a
victim’s browsing history.

lastComunication Time in seconds when the last command was
received.

lastSend Time in seconds when Pegasus last
communicated out.

lastReceive Time in seconds when last command was
processed.

send A counter containing the number of text
messages sent by Pegasus.

receive A counter containing the number of command
messages that have been received via SMS.

sesseions

wasPhoneWasUnmutedAfterTapNicly Variable used to track the original state of the
device’s call settings and whether the vibrator or
ringer was successfully reenabled after silently
receiving a command.

originalVibrateValue Used to store the original vibrator setting of the
device.

originalRingerValue Used to store the original ringer setting of the
device.

errorCode A Pegasus specific error code that is used to
indicate a certain issue or scenario was
encountered during execution.

maxTimeWithNoComunication The maximum time allowed without receiving
communications from an attacker. If this time is
exceeded Pegasus will remove itself. More
information on this is detailed under the suicide
functionality section. By default this is set to
5184000, 60 days.

 33

failureCount A counter containing the number of times
Pegasus failed to send data via SMS.

grace Unclear. Always set to false and never retrieved.

packageVersion The version of the currently installed agent.

vulnarbilityIndicator A value provided when requesting an update
package from a command and control server.
Presumably used to retrieve an environment
specific payload that can be used to further
exploit a target device.

commandTimeStamp System time in seconds when the last command
was received.

adlocation The time period used to monitor the location of a
target device.

adrate The frequency at which to consistently poll a
device for its location while location monitoring is
active.

userNetwork The mobile country code of a victim’s device.

installation A value populated at run time from either
/system/ttg or /system/myappinfo.

windowYuliyus A boolean that if set to true will cause Pegasus
to restrict its functionality if a target device is
found to be roaming.

window canada A boolean value indicating whether call
recording should be enabled or not.

graceTime Unclear. Always set to 0 and never retrieved.

finish A boolean value that is set to true if a command
has finished execution or false if it’s still running.

callWindow A boolean value indicating whether call log data
is to be retrieved.

smsWindow A boolean value indicating whether SMS data is
to be retrieved.

dumpContacts Used to determine whether contact details
should be retrieved.

dumpBrowserData Used to determine whether browser history
should be retrieved.

 34

dumpCalander Used to determine whether calendar information
should be retrieved.

firstRun Used to determine whether whatsapp content
should be retrieved.

dumpMails Used to determine whether emails should be
retrieved.

forwarding Indicates whether call forwarding is enabled.

allowRomingType Used in conjunction with windowYuliyus to
specify whether Pegasus should communicate
to C2 infrastructure while a device is roaming.

logNetwork Name of temporary log file which is initially set to
‘ltmp.dat’ and resides under
‘/data/data/com.network.android/logs/’.

ScreenTimeout The amount of time in milliseconds before the
device goes to sleep or begins to dream after a
period of inactivity.

wanted_debug_level Controls if logging to files under
/data/data/com.network.android/logs/ occurs.

screenProximtySensor The original value of the proximity sensor.

romingSetted Used in conjunction with windowYuliyus and
allowRomingType to determine whether
Pegasus should communicate to C2
infrastructure while a device is roaming.

mqttPassword The password used during authentication to an
MQTT server.

did_we_restart_after_upgrade_already A boolean value indicating that the device was
rebooted post installation of Pegasus.

mqttAllowedConnectionType Indicates whether communicating via MQTT is
allowed when a device is connected to wifi, only
using cellular data, and / or roaming.

should_use_mqtt Controls whether MQTT is used by Pegasus for
communication.

mqttRecCount The maximum number of reconnection attempts
that should occur.

mqttUsername The username provided during authentication to
an MQTT server.

 35

mqttIdPref The MQTT value that is used to identify a client
in combination with their username.

mqttQos Quality of service value for MQTT connections.

mqttKaTimer The MQTT keep alive timer which indicates the
maximum period that a compromised device and
MQTT server can maintain a connection for
without communicating.

mqttPort A port on a specific host that it is expected will
have the MQTT service running.

mqttHost A specific host on which the MQTT service is
running.

mqttRecInt Unclear. Doesn’t appear to impact functionality
in the version analyzed.

networkKill

pollingInterval The frequency at which to beacon to attacker
infrastructure.

local A boolean value that reflects how Pegasus
views its installation environment and whether it
is likely on a legitimate device.

403171255

 36

