
1/17

Ahmet Bilal Can March 13, 2019

N Ways to Unpack Mobile Malware
pentest.blog/n-ways-to-unpack-mobile-malware/

This article will briefly explain methods behind the mobile malware unpacking. It will be
focusing on Anubis since it is the latest trending malware for almost a year now. Actors use
dropper applications as their primary method of distribution. Droppers find their ways to
Google Play store under generic names thereby infecting devices with Anubis. An example
of a such dropper may found in the references. There were at least forty cases in Google
Play in the last fall targeting Turkish users. @LukasStefanko’s twitter thread may be helpful
to get an overview of such campaigns. Anubis malware already analysed by fellows from the
industry in a detailed manner. Therefore readers should find it more valuable to have an
article focusing on packer mechanisms of Anubis.

The sample used in this article is available at the references section. I strongly recommend
downloading the sample and following through the article. I will be dividing this post into
three sections.

Packers in Android Ecosystem

Mobile malwares also make use of packers to hide their malicious payloads from
researchers and AV programs. This includes reflection, obfuscation, code-flow flattening and
trash codes to make unpacking process stealthy. All mechanisms mentioned are used by the
Anubis packer and therefore will be explored in this article.

https://pentest.blog/n-ways-to-unpack-mobile-malware/
https://twitter.com/LukasStefanko/status/1084728042927341569

2/17

Loading classes at runtime

Android applications must define their used services, receivers, activity classes in
AndroidManifest file to use them. In Anubis samples, it is clear that there are many classes
not defined in the Manifest file that are simply present in the source code.

This means that a file with non-defined classes should be loaded into application at run-time.
There are two main ways of run-time loading in Android:

From file:

dalvik.system.DexFile.loadDex depreciated after API 26
dalvik.system.DexClassLoader
dalvik.system.PathClassLoader

From memory:

dalvik.system.InMemoryDexClassLoader (not common in malwares)

Loading from the file requires a dex/jar file to be present in file system. Anubis unpacks the
encrypted data file and then drops the decrypted version. Later on malware proceeds loading
decrypted dex into the application. After loading with DexClassLoader, malware removes the

3/17

decrypted dex file. Tracing the dexClassLoader should make the loading routine clear. Since
dexClassLoader is a class of dalvik.system package “dalvik.system.dexClassLoader” should
be in the code but it is nowhere to be found.

Reflection

Another useful method when dealing with malware is reflection. Reflection is an important
concept in Java which lets you to call methods/classes without knowing about them in
compile time. There are several classes/methods for reflection.

java.lang.Class.forName
java.lang.ClassLoader.loadClass
java.lang.reflect.Method
java.lang.Class.getMethods

Example usage of forName

cObj = Class.forName("dalvik.system.dexClassLoader");

cObj variable holds the class object of dexClassLoader. This enables program to call
methods of any given class. The problem is to find where function calls are made to
reflection methods.

Catching packers with Frida

frida is a dynamic instrumentation toolkit supported by nearly every operating system. Frida
makes it possible to inject a piece of code to manipulate target program and also to trace
program calls. In this case it will be used for tracing which reflection calls are made thereby

https://frida.re/

4/17

analysing the threads. When previously mentioned function calls are made, console.log will
be called additionally. But before that, let’s take a quick recap on how to setup Frida on
android emulator.

Download frida-server suitable with your emulator from:
(e.g Genymotion uses x86 architecture.)
https://github.com/frida/frida/releases.

adb push frida-server /data/local/tmp
adb shell
cd /data/local/tmp
chmod +x frida-server
./frida-server &

Frida tools should be installed in host machine by running
pip install frida-tools

After the setup, we can write a script to hook our target methods. We will start by defining
variables for classes of our methods.

var classDef = Java.use('java.lang.Class');
var classLoaderDef = Java.use('java.lang.ClassLoader');
var loadClass = classLoaderDef.loadClass.overload('java.lang.String', 'boolean');
var forName = classDef.forName.overload('java.lang.String', 'boolean',
'java.lang.ClassLoader');
var reflect = Java.use('java.lang.reflect.Method')
var member = Java.use('java.lang.reflect.Member')
var dalvik = Java.use("dalvik.system.DexFile")
var dalvik2 = Java.use("dalvik.system.DexClassLoader")
var dalvik3 = Java.use("dalvik.system.PathClassLoader")
//var dalvik4 = Java.use("dalvik.system.InMemoryDexClassLoader")
var f = Java.use("java.io.File")
var url = Java.use("java.net.URL")
var obj = Java.use("java.lang.Object")
var fo = Java.use("java.io.FileOutputStream")

We will be using this code snippet to change implementation of a method.

class.targetmethod.implementation = function(){
 console.log("[+] targetmethod catched !")
 stackTrace()
 return this.targetmethod()
}

console.log("[+] {x} function catched !") will enable us to see if the function is
called. If function takes any parameters such as a string, logging those may become helpful
during the analysis. Then we can get more information about the thread we are in. Frida is
able to call any android function including getStackTrace() . But that requires a reference
to the current thread object. Let’s start by getting instance of the thread class:

https://github.com/frida/frida/releases

5/17

var ThreadDef = Java.use('java.lang.Thread');
var ThreadObj = ThreadDef.$new();

ThreadObj holds instance of the Thread class and currentThread() can be used to get
thread according to https://developer.android.com/reference/java/lang/Thread.html.
We can now use getStackTrace() and also loop through stackElements to print the call
stack.

 function stackTrace() {
 console.log("------------START STACK---------------")
 var stack = ThreadObj.currentThread().getStackTrace();
 for (var i = 0; i < stack.length; i++) {
 console.log(i + " => " + stack[i].toString());
 }
 console.log("------------END STACK---------------");
 }

Printing call stack helps to identify call graph of reflections and unpacking mechanisms. For
example dexClassLoader might have created with reflection. But when frida hooks into
dexClassLoader and prints the call stack, we can see the functions before dexClassLoader is
called. Unpacking routines are called at the very beginning of the application. Therefore frida
should be attached as soon as possible to catch the unpacking process. Fortunately -f option
in frida enables frida to spawn target app itself. frida accepts scripts with the -l parameter.
frida -U -f appname -l dereflect.js

Then frida waits input from the user to continue. %resume will resume the process. Full
script is available at my github repository.
https://github.com/eybisi/nwaystounpackmobilemalware/blob/master/dereflect.js

Output without the stackTrace():

https://developer.android.com/reference/java/lang/Thread.html
https://github.com/eybisi/nwaystounpackmobilemalware/blob/master/dereflect.js

6/17

With stackTrace()
Voila.

 You can see the functions called before the write method. After tracing these interval
functions, you can see RNlkfTEUX and lqfRafMrGew are called right before them. And
turns out they are very important functions used in decryption of the encrypted file which we
will come back later on.

How to Defeat Packers

We can divide unpacking methods into two sections. Both ways lead to the decrypted file.

Dynamically

By hooking:
Intercept file.delete (Java level)
Intercept unlink syscall (system level)

From memory:
Dump the memory with gameguardian
Dump the memory with custom tools

Statically:

7/17

Hands on manual unpacking

Dynamically:
Intercepting methods is the easiest way.

By hooking : Java Level
When I first encountered Anubis and realized it was dropping a file, my first solution was
hooking into file.delete function.

Java.perform(function() {
 var f = Java.use("java.io.File")
 f.delete.implementation = function(a){
 s = this.getAbsolutePath()
 if(s.includes("jar")){
 console.log("[+] Delete catched =>" +this.getAbsolutePath())
 }
 return true
 }
})

This piece of code always returns true to file.delete function. After intercepting we can pull
the dropped jar file. ✔

In addition to this we can automate our job with python bindings of frida and go through the
folder that our target files are in. There are generally thousands of apks generated from
those c&c servers. Since each of them can have different IP addresses embedded, an
automated tool could make our life easier.

By Hooking : System Level

 But what if malware uses native code to delete files? We can not always hook at Java level.
We need to get deeper. What syscall is responsible for deleting file from file system and in
libc?

Unlink function takes one parameter, a pointer to filename. We can hook unlink with the help
of findExportByName. Code is taken from https://www.fortinet.com/blog/threat-
research/defeating-an-android-packer-with-frida.html but I tweaked little bit so deleted file will
be printed.

https://twitter.com/0xabc0/status/1072888987285630976
https://www.fortinet.com/blog/threat-research/defeating-an-android-packer-with-frida.html

8/17

var unlinkPtr =
Module.findExportByName(n
'unlink');

Interceptor.replace(unlin
new NativeCallback(
function (a){
 console.log("[+]
Unlink : " +
Memory.readUtf8String(ptr

 }, 'int',
['pointer']));

Let’s run the script.

We intercepted the unlink call, since our script just replaced code of original function with
console.log() , file will not be deleted from the file system. ✔

From Memory:
 Even when file is deleted from file system because file was loaded into process, we can get

trails of the deleted file from memory of that process. Since Android inherits from Linux, we
can use /proc/pid folder to give us information about memory regions of a specified process.
Let’s look at our target with cat /proc/pid/maps | grep dex filtering the dex.

We have found the trails of dex files. Now we need to dump these sections.

Dump the Memory with Gameguardian:
First way is by “cheating” 🙂 There is a tool called GameGuardian which is used in game
hacking. You can do many interesting things with GameGuardian but we will only use dump
mechanism for now.

9/17

10/17

11/17

12/17

Let’s start by installing and running the APK. Then launch GameGuardian and select the app
name from left upmost button. Select right upmost button and the one underneath it. Now
you can see dump memory option in menu. Put the hex codes of regions or select regions by
clicking arrow buttons and press save. Yay!
We can pull dumped regions with :
adb pull /storage/emulated/0/packer . ✔

Then you will see 2 files in packer folder.
com.eqrxhpdv.cbunlkwsqtz-dfb5a000-e0080000.bin com.eqrxhpdv.cbunlkwsqtz-
maps.txt

When examined with file command it detects our dex file as a data file.
We need to fix it by removing parts do not belong to our file.
Dump the Memory with Custom Tools:
Thanks to @theempire_h we can dump regions of memory of the target app with a C
program.
https://github.com/CyberSaxosTiGER/androidDump
Here is how to dump a region with androidDump.

adb push androidDump /data/local/tmp
adb shell
cd /data/local/tmp
chmod +x androidDump
./androidDump appname

It dumps 3 blobs of data. ✔

But after dumping it, file command still do not give us the correct type 🙁 It turns out that
we should modify the file a little bit. To find magic byte of dex I wrote this script.

import binascii
import sys
filename = sys.argv[1]
with open(filename, 'rb') as f:
 content = f.read()
h = binascii.hexlify(content).split(b'6465780a')
h.pop(0)
h = b'6465780a' + b''.join(h)
dex = open(sys.argv[1][:-4]+".dex","wb")
dex.write(binascii.a2b_hex(h))
dex.close()

https://github.com/eybisi/nwaystounpackmobilemalware/blob/master/deDex.py
After running our script on the file, we open it.

https://twitter.com/theempire_h
https://github.com/CyberSaxosTiGER/androidDump/
https://github.com/eybisi/nwaystounpackmobilemalware/blob/master/deDex.py

13/17

We found our lost classes 🙂

14/17

Statically:
Here is a blog post explaining unpacking process from a different perspective.
https://sysopfb.github.io/malware,/reverse-engineering/2018/08/30/Unpacking-Anubis-
APK.html
I found rc4 key with the help of stackTrace. But apparently searching for ^ value is a very
efficient way to find RC4 routines for Anubis 🙂
To find rc4 key easily in JADX, here is quick tip:

search “% length”
right click to method you are in, press find Usage
bArr2 will be used as rc4 key to decrypt.

Here is our sample’s decryption key as bArr2 . Does it look familiar?

With bArr2, we can decrypt the encrypted file from images folder of the APK. Here is a
snippet for decrypting the file with bArr2 . Script takes 2 parameters, bArr2 and the encrypted
file. For our case it is mediumcrop. APK files can be simply unzipped to access the content
of it. ✔

https://github.com/eybisi/nwaystounpackmobilemalware/blob/master/anubis_manual.py

After decrypting and unzipping, we get our dex.

https://sysopfb.github.io/malware,/reverse-engineering/2018/08/30/Unpacking-Anubis-APK.html
https://github.com/eybisi/nwaystounpackmobilemalware/blob/master/anubis_manual.py

15/17

After extracting the config, there is one more step to get the address of c&c server. Malware
gets page source of the telegram address and changes Chinese characters with ASCII
letters. It then processes the base64 string. After decoding base64, it uses service to
decrypt data that encrypted with rc4 scheme. Here is a snippet for decrypting Chinese chars
to c&c addresses.

https://github.com/eybisi/nwaystounpackmobilemalware/blob/master/solve_chinese.py

https://github.com/eybisi/nwaystounpackmobilemalware/blob/master/solve_chinese.py

16/17

I managed to decrypt the Anubis payload with Androguard without running the APK in an
emulator! After dumping the dex file, my script will find the config class printing the c2 and
the encryption key. Config class is in one of the a,b or c or in ooooooooooooo{0,2}o
classes in newer versions.
By checking counts of “this” keywords in class source code I managed to decrypt all versions
of anubis (lazy :P). Here is output of my script to get c2 and key from an Anubis sample.
https://github.com/eybisi/nwaystounpackmobilemalware/blob/master/getc2_imp.py

Conclusion

There are many ways to unpack mobile malware and trace packing mechanisms. We might
see dalvik.system.InMemoryDexClassLoader used in the future. If this is used, delete
hooks will not be able to catch dropped files because everything will be done in memory 🙂
But dumping memory will catch these methods. Knowing different ways always helps. If you
have any question feel free to ask in comment section or through @0xabc0

Cheers.
Special thanks to @godelx0

https://github.com/eybisi/nwaystounpackmobilemalware/blob/master/getc2_imp.py
https://twitter.com/0xabc0
https://twitter.com/godelx0

17/17

Links & References

Dropper sample:
 3c35f97b9000d55a2854c86eb201bd467702100a314486ff1dbee9774223bf0e

 Anubis sample:
 e01ed0befbc50eeedcde5b5c07bf8a51ab39c5b20ee6e1f5afe04e161d072f1d

 https://codeshare.frida.re/@razaina/get-a-stack-trace-in-your-hook/
 https://www.fortinet.com/blog/threat-research/defeating-an-android-packer-with-frida.html

 https://medium.com/@fs0c131y/reverse-engineering-of-the-anubis-malware-
 part-1-741e12f5a6bd3

All materials:
 https://github.com/eybisi/nwaystounpackmobilemalware

https://koodous.com/apks/3c35f97b9000d55a2854c86eb201bd467702100a314486ff1dbee9774223bf0e
https://koodous.com/apks/e01ed0befbc50eeedcde5b5c07bf8a51ab39c5b20ee6e1f5afe04e161d072f1d
https://codeshare.frida.re/@razaina/get-a-stack-trace-in-your-hook/
https://www.fortinet.com/blog/threat-research/defeating-an-android-packer-with-frida.html
https://medium.com/@fs0c131y/reverse-engineering-of-the-anubis-malware-part-1-741e12f5a6bd
https://medium.com/@fs0c131y/reverse-engineering-of-the-anubis-malware-part-1-741e12f5a6bd
https://koodous.com/apks/3c35f97b9000d55a2854c86eb201bd467702100a314486ff1dbee9774223bf0e
https://github.com/eybisi/nwaystounpackmobilemalware

