
1/11

Dominik Reichel, Esmid Idrizovic September 6, 2018

Slicing and Dicing CVE-2018-5002 Payloads: New CHAINSHOT Malware
researchcenter.paloaltonetworks.com/2018/09/unit42-slicing-dicing-cve-2018-5002-payloads-new-chainshot-malware/

By Dominik Reichel and Esmid Idrizovic

September 6, 2018 at 1:00 PM

Category: Unit 42

Tags: adobe, CHAINSHOT, CVE-2018-5002, zero-day

This story begins with one of our blog authors, who, following the discovery of a new Adobe Flash 0-day, found several documents using the
same exploit that were used in targeted attacks. We were also able to collect network captures including the encrypted malware payload.
Armed with these initial weaponized documents, we uncovered additional attacker network infrastructure, were able to crack the 512-bit RSA
keys, and decrypt the exploit and malware payloads. We have dubbed the malware ‘CHAINSHOT’, because it is a targeted attack with several
stages and every stage depends on the input of the previous one.

This blog describes the process we took to analyze the malware, how we managed to decrypt the payloads, and then how we found parts of a
new attack framework. We also found additional network infrastructure which indicates similar attacks were conducted against a wide range of
targets with disparate interests. This attack chain is designed in a way that makes it very difficult to execute a single part on its own, be it the
exploit or payload. To make our analysis easier, we reproduced the server-side infrastructure, by doing so we were able to conduct dynamic
analysis and get a better understanding how the exploit and payload work together.

This serves as a follow-up of Icebrg’s article which describes the initial findings.

Cracking a RSA Key

First, let’s recap how the overall attack chain works to understand at which point the RSA key is needed. The malicious Microsoft Excel
document contains a tiny Shockwave Flash ActiveX object with the following properties:

https://researchcenter.paloaltonetworks.com/2018/09/unit42-slicing-dicing-cve-2018-5002-payloads-new-chainshot-malware/
https://unit42.paloaltonetworks.com/author/dominik-reichel/
https://unit42.paloaltonetworks.com/author/esmid-idrizovic/
https://unit42.paloaltonetworks.com/category/unit42/
https://unit42.paloaltonetworks.com/tag/adobe/
https://unit42.paloaltonetworks.com/tag/chainshot/
https://unit42.paloaltonetworks.com/tag/cve-2018-5002/
https://unit42.paloaltonetworks.com/tag/zero-day/
http://blogs.360.cn/post/cve-2018-5002-en.html
https://www.icebrg.io/blog/adobe-flash-zero-day-targeted-attack


2/11

Figure 1. Malicious Shockwave Flash ActiveX object properties

The “Movie” property contains a URL to a Flash application which is downloaded in cleartext and then executed. The “FlashVars” property
contains a long string with 4 URLs which are passed to the downloaded Flash application. The Flash application is an obfuscated downloader
which creates a random 512-bit RSA key pair in memory of the process. While the private key remains only in memory, the public keys’
modulus n is sent to the attacker’s server. On the server side, the modulus is used together with the hardcoded exponent e 0x10001 to encrypt
the 128-bit AES key which was used previously to encrypt the exploit and shellcode payload. The encrypted exploit or payload is sent back to
the downloader which uses the in-memory private key to decrypt the AES key and the exploit or payload.

As the modulus is sent to the server of the attacker, it’s also in our network capture. Together with the hardcoded exponent we have the public
key which we can use to get the private key. Keep in mind that this was only possible because the attacker chose a key length of 512-bit which
is known to be insecure. In order to do so, we have to factorize the modulus n into its two prime numbers p and q. Luckily this problem has
already been solved previously, by an awesome public project ‘Factoring as a Service‘. The project uses Amazon EC2’s high computing power
and can factorize large integers in just a matter of hours.

Following this logic, let’s take the following modulus of the public key sent to the attacker’s server to get the shellcode payload.

Figure 2. HTTP POST request for the encrypted shellcode payload with the modulus n in hexadecimal

After removing the first 2 bytes which are used in this case to retrieve the 32-bit version of the shellcode payload, we have the following
modulus in hexadecimal:

1 0x7df305d5bcc659e5497e482bd0b507c44808deee8525f24b2712dc4a29f5c44e1e08c889a64521bbc67136ced11ace55b9bc2c1c7c96630aa5

After we have factorized the integer, we get the following two prime numbers in decimal:

P

1 58243340170108004196473690380684093596548916771782361843168584750033311384553

Q

1 113257592704268871468251608331599268987586668983037892662393533567233998824693

With the help of p and q we can calculate the private key. We used a small public tool to create it in Privacy Enhanced Mail (PEM) format:

https://github.com/eniac/faas/
https://github.com/daniellerch/snippets/blob/master/cryptography/get_priv_key.c


3/11

1
2
3
4
5
6
7
8
9

-----BEGIN RSA PRIVATE KEY-----
MIIBOgIBAAJAffMF1bzGWeVJfkgr0LUHxEgI3u6FJfJLJxLcSin1xE4eCMiJpkUh
u8ZxNs7RGs5VubwsHHyWYwqlFYlrL3NB/QIDAQABAkBog3SxE1AJItIkn2D0dHR4
dUofLBCDF5czWlxAkqcleG6im1BptrNWdJyC5102H/bMA9rhgQEDHx42hfyQiyTh
AiEA+mWGmrUOSLL3TXGrPCJcrTsR3m5XHzPrh9vPinSNpPUCIQCAxI/z9Jf10ufN
PLE2JeDnGRULDPn9oCAqwsU0DWxD6QIhAPdiyRseWI9w6a5E6IXP+TpZSu00nLTC
Sih+/kxvnOXlAiBZMc7VGVQ5f0H5tFS8QTisW39sDC0ONeCSPiADkliwIQIhAMDu
3Dkj2yt7zz04/H7KUV9WH+rdrhUmoGhA5UL2PzfP
-----END RSA PRIVATE KEY-----

With the help of the private key we could now decrypt the 128-bit AES key. We used OpenSSL to do this:

1 openssl rsautl -decrypt -in enc_aes.bin -out dec_aes.bin -inkey private_key.pem

The encrypted AES key is extracted from the encrypted binary blob as described by Icebrg. It's at offset 0x4 and has the length of 0x40 bytes.
Encrypted AES key:

1 0x5BC64C5DC7EC96750CCB466935ED2183FE90212CB1BF6305F0B79B4B9D9261A4AC8A3E06F3E07D4037A40F4E221BB12E05B4DE

Decrypted AES key:

1 0xE4DF3353FD6D213E7400EEDA8B164FC0

Now that we have the decrypted AES key, we can decrypt the actual payload. The Flash downloader uses a custom initialization vector (IV) for
the AES algorithm which can be found at offset 0x44 in the encrypted blob and is 16 bytes long:

1 0xCC6FC77B877584121AEBCBFD4C23B67C

For the final decryption we used OpenSSL again:

1 openssl enc -nosalt -aes-128-cbc -d -in payload.bin -out decrypted_payload -K E4DF3353FD6D213E7400EEDA8B164FC0 -iv
CC6FC77B877584121AEBCBFD4C23B67C

The decrypted shellcode payload is additionally compressed with zlib which can be seen by looking at the first 2 magic bytes 0x789C. We
decompressed it with Offzip. Finally, we have the decrypted shellcode payload. The same procedure can be used to decrypt the Flash exploit
which isn’t additionally zlib compressed.

Server-side Reproduction

After we had the decrypted Flash exploit and shellcode payloads, we started to do a static analysis which turned out to be a quite tedious task.
This is due to the obfuscation in the exploit and the complexity of shellcode payload which contains its own two PE payloads. Next, we
attempted to do a dynamic analysis which quickly turned out to be impossible, because every stage relies on data passed from the previous.
The shellcode payload does not execute properly without the data passed to it from the exploit. The exploit does not execute on its own
without the variables passed from the downloader and so on.

Due to the difficulties of analyzing the code statically, we decided to reproduce a simplified version of the server-side PHP scripts in order to
make a full dynamic analysis possible. As we had the decrypted exploit, shellcode payload and the PCAP, we had all the information required
to do so. Specifically, we created the following setup:

Local Apache server with XAMPP, with the domain used in the attack configured to resolve to localhost
A directory structure which mirrored that on the attackers’ servers (as specified in the PCAPs)
Setting of custom HTTP headers as per the PCAPs’ responses.

All of the requested files are sent back gzip encoded, otherwise the attack chain doesn’t work. We have uploaded the PHP scripts to our
GitHub account, so you can also play with the different stages and see how it works.

Additional Details of the Flash Exploit

While the exploit has been already described, we want to give some additional details surrounding it that we found during our analysis. In
particular, we were interested in the part which transfers execution to the shellcode payload. While most parts of the decompiled ActionScript
exploit code are obfuscated, luckily some method names were left in cleartext.

Because the decrypted shellcode payload doesn’t run on its own when transformed into an executable, we have to figure out how execution
works and if one or more parameters are passed. Therefore, the most interesting method for us is “executeShellcodeWithCfg32” which
indicates we can find the passed data in it. It creates a small shellcode template and fills some placeholder values at runtime. The
disassembled template looks as follows:

http://aluigi.altervista.org/mytoolz.htm
https://github.com/pan-unit42/iocs/tree/master/pb40
https://s.tencent.com/research/report/489.html


4/11

Figure 3. Shellcode template with placeholders (red) in the Flash exploit to pass execution to the shellcode payload

While the final prepared shellcode looks as follows:

Figure 4. Runtime version of the shellcode template with filled placeholders



5/11

Let’s take a look at what values are set to the placeholders (0x11111111, 0x22222222, …). The address 0xA543000 in Figure 4 is the
entrypoint of the decrypted shellcode payload which has a small NOP sled in front of the actual code:

Figure 5. Entrypoint of the shellcode template in memory

The address 0x771A1239 in Figure 4 is in the middle of the function NtPrivilegedServiceAuditAlarm in ntdll.dll:

Figure 6. Windows API function NtPrivilegedServiceAuditAlarm

However, we can also see in Figure 4 that before calling the API function via “call edx”, the value 0x4D is moved into eax which is the ID of the
API function NtProtectVirtualMemory. By doing so, the function NtProtectVirtualMemory is executed without calling it directly. This trick is likely
used to bypass AVs/sandboxes/anti-exploit software which hook NtProtectVirtualMemory and the attacker probably chose
NtPrivilegedServiceAuditAlarm as a trampoline as it’s unlikely to be ever be monitored.

The data at this address 0x9DD200C in Figure 4 looks like a structure into which the last NTSTATUS return value of NtProtectVirtualMemory is
copied. The address of this structure seems to be passed to the shellcode payload in ebx, however we haven’t figured out what’s its purpose
is. Finally, shellcode payload is executed via “call edi”

To sum up, the memory access rights of the shellcode payload are changed in 0x1000 byte blocks to RWE via NtProtectVirtualMemory. The
last NTSTATUS code is saved into memory pointed to by ebx and the shellcode payload is executed.

Another interesting aspect of the exploit code is that it sends status messages when something goes wrong at every stage of the exploitation.
These status messages are very similar to those send by the initial Flash downloader and are sent to the attacker’s server via fake PNG files
(see Icebrg). They also contain the “/stab/” directory in the URL and the actual message is also sent encoded via custom digit combinations.
However, the status message of the exploitation code contains additional information in the form of abbreviations of the appropriate stage. By
looking at those messages, we can get a better understanding how the exploit works. The following messages are possible:

Status message
code

 Description

2-0-9-vp Short for VirtualProtect



6/11

2-0-9-g3 Short for something like gadget3 (ROP gadget) cause a byte array is created 0x5A5941584159C3 which disassembles
to:
pop edx

pop ecx

inc ecx

pop eax

inc ecx

pop ecx

retn

2-0-9-
RtlAllocateHeap

Self-explaining

2-0-9-DeleteDC Self-explaining

2-0-9-GetDC Self-explaining

2-0-9-sprintf Self-explaining

2-0-9-VP Short for VirtualProtect

2-0-9-RU Short for RtlUnwind

2-0-9-NVP Short for NtProtectVirtualMemory

2-0-9-NPSAA Short for NtPrivilegedServiceAuditAlarm

2-0-9-G Probably short for Gadget

2-0-9-SRP Short for something like StackReturnProcedure because two-byte arrays 0x81C4D8000000C3 and 0x81C4D0000000C3
are created which disassemble to:
add esp, 0D8h

retn

- and -

add esp, 0D0h

retn

2-0-9-PAX Short for something like PopEAX as a byte array 0x58C3 is created before which disassembles to:
pop eax

retn

Table 1. Status messages used in the Flash exploit code

The Shellcode Payload

After the exploit successfully gains RWE permissions, execution is passed to the shellcode payload. The shellcode loads an embedded DLL
internally named FirstStageDropper.dll, which we call CHAINSHOT, into memory and runs it by calling its export function “__xjwz97”. The DLL
contains two resources, the first is x64 DLL internally named SecondStageDropper.dll and the second is a x64 kernelmode shellcode.

FirstStageDropper.dll is responsible for injecting SecondStageDropper.dll into another process to execute it. While the shellcode payload only
contains code to search for and bypass EMET, FirstStageDropper.dll also contains code for Kaspersky and Bitdefender. In case of EMET, it
searches the loaded modules for emet.dll and emet64.dll, for Kaspersky it searches for klsihk.dll, and for Bitdefender it searches for avcuf32.dll
and avcuf64.dll. It also collects and sends encrypted user system and process information data together with a unique hardcoded ID to the
attacker's server. The data is sent to URLs that contain “/home/” and “/log/” directories and for encryption it uses the Rijndael algorithm. As the
attacker server did not respond at the time of our analysis, we guess a command is sent back to execute the SecondStageDropper.dll.

While the samples we obtained inject SecondStageDropper.dll in usermode via thread injection, the x64 shellcode seems to have an option to
inject it from kernelmode. However, we haven’t figured out what the exact purpose of it is, since it’s never executed; it also searches for an
additional resource which wasn’t present in the samples we analyzed.

The kernelmode shellcode contains parts of Blackbone, an open source library for Windows memory hacking. The following functions are
taken from its code:

https://github.com/DarthTon/Blackbone


7/11

FindOrMapModule
BBQueueUserApc
BBCallRoutine
BBExecuteInNewThread

It also contains code from TitanHide, using identical code to lookup SSDT in Win7 and Win10 as described by the author.

SecondStageDropper.dll acts as a downloader for the final payload. It collects various information from the victim system, encrypts it, and
sends it to the attacker’s server. It also scans for the following processes and skips execution if found:

Process name Security Solution

adawareservice.exe
adawareservicetray.exe

Adaware

mbam.exe Malwarebytes

bdagent.exe
bdwtxag.exe

seccecenter.exe (contains a typo, should be seccenter.exe)

vsserv.exe

updatesrv.exe

odscanui.exe

odsw.exe

Bitdefender

efainst.exe
elaminst.exe

instca.exe

mcui32.exe

navw32.exe

ncolow.exe

nsbu.exe

srtsp_ca.exe

symdgnhc.exe

symerr.exe

tuih.exe

wfpunins.exe

wscstub.exe

Symantec / Norton

avp.exe Kaspersky

HitmanPro.exe Sophos / HitmanPro

abcde.exe ?

Table 2. Process name lookup list

Unfortunately, at the time of the analysis we were unable to obtain additional files, so we were unable to figure out what the final stage is.
However, CHAINSHOT contacts the following domains via HTTPS to get the final payload:

contact.planturidea[.]net
dl.nmcyclingexperience[.]com
tools.conductorstech[.]com

In both samples we analyzed the final domains used were the same. We have obtained two x86 versions of the shellcode payload with its
embedded PE files and the kernelmode shellcode. While the shellcode payload, FirstStageDropper.dll and kernel shellcode do not differ, the
SecondStageDropper.dll contains a couple of different strings. The following strings are different, possibly indicating they are changed for
every victim, with the final payload directory being an MD5 representation of the “project name” or something similar.

https://github.com/mrexodia/TitanHide
https://mrexodia.cf/reversing/2015/02/05/TitanHide


8/11

Sample 1 Sample 2

User-agent Mozilla/5.0 (Windows NT 6.4; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/36.0.1985.143 Safari/537.36
Edge/12.0

Mozilla/5.0 (Windows NT 6.3; Win64; x64;
rv:10.0) Gecko/20100101 Firefox/10.0

Queried final payload
directories

/0cd173cf1caa2aa03a52b80d7521cc75e
/1cd173cf1caa2aa03a52b80d7521cc75e

/0fa0a5fc0d2e28cc3786e5d6eb273f1fa
/1fa0a5fc0d2e28cc3786e5d6eb273f1fa

Unique string used in
network
communication

148a028d-57c6-4094-b07d-720df09246dd 3784113f-b04e-4c1e-b3be-6b0a22464921

Table 3. String differences in SecondStageDropper.dll

The shellcode payload and PE files partly contain the same code indicating a framework was used to create them. For example, both the
shellcode and CHAINSHOT itself make extensive use of the same exception handling with custom error codes. They also both use the same
code to scan for and bypass EMET. Furthermore, other parts such as the OS version recognition are identical in all samples and the PE files’
compilation timestamps are zeroed out. Another interesting fact is that FirstStageDropper.dll also sends status messages back to the attacker
starting with digit “9”. For example, the following network capture from our local tests show a successful network communication up to the point
where the attacker presumably sends back the command to execute SecondStageDropper.dll:

Figure 7. Network capture of a successful attack reproduced locally in a VM

Additional Infrastructure

One of the domains reported by IceBrg had an associated SSL certificate which was documented in their write up. By searching for other IP
addresses using the same certificate we were able to find a large number of associated domains that were likely also used in similar attack
campaigns. Just like the domain contacted within the Excel documents analyzed, the additional domain names are created in a similar way
using similar hosting providers and registrars and used names which are very similar to official websites to avoid suspicion. The list of domains
can be found in the IOC section.

Conclusion

We uncovered part of a new toolkit which was used as a downloader alongside Adobe Flash exploit CVE-2018-5002 to target victims in the
Middle East. This was possible because the attacker made a mistake in using insecure 512-bit RSA encryption. The malware sends user
information encrypted to the attacker server and attempts to download a final stage implant. It was allegedly developed with the help of an
unknown framework and makes extensive use of custom error handling. Because the attacker made another mistake in using the same SSL
certificate for similar attacks, we were able to uncover additional infrastructure indicating a larger campaign.

Palo Alto Networks customers are protected from this threat in the following ways:

WildFire detects all malicious Excel documents, the Flash downloader and exploit and all CHAINSHOT samples with malicious verdicts
AutoFocus customers can track the samples with the CVE-2018-5002 exploit and CHAINSHOT malware tags
Traps detects and blocks the malicious Excel documents with the Flash exploit

Finally, we’d like to thank Tom Lancaster for his assistance in this investigation.

Indicators of Compromise

Adobe Flash Downloader

189f707cecff924bc2324e91653d68829ea55069bc4590f497e3a34fa15e155c

Adobe Flash Exploit (CVE-2018-5002)

3e8cc2b30ece9adc96b0a9f626aefa4a88017b2f6b916146a3bbd0f99ce1e497

CHAINSHOT Samples

X86 Shellcode Payloads:

https://autofocus.paloaltonetworks.com/#/tag/Unit42.CVE-2018-5002
https://autofocus.paloaltonetworks.com/#/tag/Unit42.ChainShot


9/11

d75de8f7a132e0eb922d4b57f1ce8db47dfcae4477817d9f737762e486283795

2d7cb5ff4a449fa284721f83e352098c2fdea125f756322c90a40ad3ebc5e40d

FirstStageDropper.dll:

a260d222dfc94b91a09485647c21acfa4a26469528ec4b1b49469db3b283eb9a

a09273b4cc08c39afe0c964f14cef98e532ae530eb60b93aec669731c185ea23

SecondStageDropper.dll:

43f7ae58e8e5471917178430f3425061d333b736974f4b2784ca543e3093204b

3485c9b79dfd3e00aef9347326b9ccfee588018a608f89ecd6597da552e3872f

Infrastructure

ftp[.]oceasndata[.]com

dl[.]beanfile[.]com

eukaznews[.]com

exclusivesstregis[.]com

fishing-uae[.]com

api[.]usecisco[.]info

gulfnews[.]uae-travel-advisories[.]com

qatar[.]eng-theguardian[.]com

malomatiaa[.]com

news[.]theqatarpeninsula[.]com

people[.]dohabayt[.]com

qatar[.]doharotanatimes[.]com

sites[.]oceasndata[.]com

qatar[.]smallwarjournal[.]com

qatarembassies[.]com

sa[.]eukaznews[.]com

sec[.]oceasndata[.]com

rss[.]beanfile[.]com

usecisco[.]info

smallwarjournal[.]com

awareness-qcert[.]net

specials[.]fishing-uae[.]com

theqatarpeninsula[.]com

uae-travel-advisories[.]com

eng-theguardian[.]com

securityandpolicing[.]me

api[.]qcybersecurity[.]org

qatar-sse[.]com



10/11

api[.]motc-gov[.]info

youraccount-security-check[.]com

api[.]exclusivesstregis[.]com

newhorizonsdoha[.]com

sandp2018[.]securityandpolicing[.]me

icoinico[.]one

api[.]dohabayt[.]com

thelres[.]com

news[.]gulf-updates[.]com

qatarconferences[.]thelres[.]com

api[.]smallwarjournal[.]com

qcybersecurity[.]org

ikhwan-portal[.]com

gulf-updates[.]com

api[.]qatar-sse[.]com

info[.]awareness-qcert[.]net

api[.]newhorizonsdoha[.]com

internationsplanet[.]com

www[.]winword[.]co

www[.]oceasndata[.]com

people[.]dohabayt[.]com

eng-defenseadvisers[.]com

motc-gov[.]info

beanfile[.]com

news[.]eng-defenseadvisers[.]com

winword[.]co

documents[.]malomatiaa[.]com

bern[.]qatarembassies[.]com

surveydoha[.]com

documents[.]malomatiaa[.]com

dohabayt[.]com

doharotanatimes[.]com

activity[.]youraccount-security-check[.]com

poll[.]surveydoha[.]com

api[.]thelres[.]com

q-miles[.]com

rewards[.]q-miles[.]com



11/11

oceasndata[.]com

api[.]people[.]dohabayt[.]com

bangkok[.]exclusivesstregis[.]com

events[.]ikhwan-portal[.]com

contact[.]planturidea[.]net

dl[.]nmcyclingexperience[.]com

tools[.]conductorstech[.]com

Get updates from 
Palo Alto
Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy Statement.

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

