
1/7

Waiting for goDoH
sensepost.com/blog/2018/waiting-for-godoh/

Reading time ~12 min

Posted by Leon Jacobs on 24 October 2018
Categories: Bypass, Command execution, Dns, Experiment, Ioc, Malware, Research, Tools,
Tunnelling

or DNS exfiltration over DNS over HTTPS (DoH) with godoh

“Exfiltration Over Alternate Protocol” techniques such as using the Domain Name System as
a covert communication channel for data exfiltration is not a new concept. We’ve used the
technique for many years at SensePost, including Haroon & Marco’s 2007 BH/DC talk on
Squeeza. In the present age this is a well understood topic, at least amongst Infosec folks,
with a large number of resources, available, online that aim to enlighten those that may not
be familiar with the concept. There are also practical techniques for detecting DNS
Tunnelling on your network.

Using DNS as a covert communication channel has many benefits when considering the
monitoring capabilities of a target. By utilising a protocol that underpins technologies such as
email and web browsing, one may not immediately expect DNS to be used for anything other
than, well, DNS. Alas, it is possible to use a completely legitimate protocol for two-way
communication in and out of a network, abusing a possibly overlooked monitoring
opportunity (if not a necessity). This technique does not come without cost to the attacker
though. DNS covert communication is one of the slowest methods of the several options an
attacker may have. Especially when compared to malware that make use of HTTP/S to
communicate.

Many organisations have also managed to adjust their architectures and monitoring to
defend against this two decade old idea, since malware and attackers alike have taken
advantage of it. Using split horizon DNS, monitoring the size and rate of requests as well as
analysing the labels in a lookup all provide opportunities to detect and prevent successful
tunnelling. From an attackers perspective, this increases complexity when trying to stay
under the radar while still having a reliable channel back into the network. By tweaking the
behaviour of the DNS-channel such as the length of a hostname’s labels and the rate of
requests detection can be bypassed but this will almost always come with a speed trade off.
Simply not allowing recursive name lookups to the outside world would obviously also
prevent the attack, but at the cost of some usability. Thankfully for defenders, monitoring

https://sensepost.com/blog/2018/waiting-for-godoh/
https://sensepost.com/blog/bypass/
http://10.10.0.46/blog/command%20execution/
https://sensepost.com/blog/dns/
https://sensepost.com/blog/experiment/
https://sensepost.com/blog/ioc/
https://sensepost.com/blog/malware/
https://sensepost.com/blog/research/
https://sensepost.com/blog/tools/
https://sensepost.com/blog/tunnelling/
https://github.com/sensepost/godoh
https://attack.mitre.org/wiki/Technique/T1048
https://en.wikipedia.org/wiki/Domain_Name_System
https://seclists.org/bugtraq/1998/Apr/79
https://sensepost.com/blog/2007/finallyull-release-of-blackhat-defcon-timing-stuff../
https://github.com/sensepost/squeeza/blob/master/sqlreturnchannelviadns.rb
https://blogs.akamai.com/2017/09/introduction-to-dns-data-exfiltration.html
https://www.icann.org/news/blog/what-is-a-dns-covert-channel
https://resources.infosecinstitute.com/dns-tunnelling/
https://www.sans.org/reading-room/whitepapers/dns/detecting-dns-tunneling-34152
https://en.wikipedia.org/wiki/Split-horizon_DNS

2/7

DNS is relatively simple in that you only need to focus on DNS at a protocol level, and
probably only from the few caching forwarders you allow to make recursive, outbound
lookups to the world.

Until now. Fast forward a few years from the original DNS tunnelling discussions, and we are
presented with a new RFC that describes a protocol called DNS-over-HTTPS, or DoH. Meet
RFC8484. Basically, it is possible to have a full RFC1035 compliant DNS conversation, over
HTTPS. Think of it as a JSON API to make DNS lookups. A simple HTTP GET request and a
predictable JSON response format, all via a provider such as Google. Right there is where
attacker spidey senses should have tingled. Using legitimate and more often than not,
trusted domains such as google.com to “front” your traffic to a C2 has been a thing for a
while. Domain Fronting has seen a decent enough uptake where it has been used for
censorship circumvention as well as in some malware campaigns. The present struggles of
domain fronting aside, by abusing DNS over HTTPS we can once again achieve the same
level of evasion, albeit at a much slower rate but using a trusted domain.

I built a quick proof of concept called “godoh” with the purpose of demonstrating DoH as an
exfiltration channel, but also to give defenders some tooling to test with so that monitoring
and detections for this technique can be built. I figured this DoH exfiltration technique was a
neat idea, but literally while writing this post I have since discovered other existing mentions
of this technique. And yesterday at the recent ATT&CK conference, @dtmsecurity also
released some tooling for red teamers to make use of this exact same idea in the popular
adversary simulation toolkit, Cobalt Strike. Nonetheless, allow me to take you through my
thought process and finally give you some tooling to play with this on your own networks.

Imagine you are on a network that has relatively good DNS monitoring. They are capable of
detecting its use as an exfiltration channel (or don’t allow external zones to resolve via DNS
in the first place). They also have a fancy Layer7 proxy/firewall that does URL content
classification and strictly blocks based on that. The google.com domain is whitelisted for
whatever reason, and therefore https://dns.google.com/ probably isn’t blocked.

A simple piece of malware making use of DNS tunnelling may typically have code running on
a computer that periodically polls for commands to run, and responds with the output of
those commands encoded as a series of A record lookups to an attacker controlled domain
that are reconstructed server-side.

https://en.wikipedia.org/wiki/DNS_over_HTTPS
https://tools.ietf.org/html/rfc8484
https://tools.ietf.org/html/rfc1035
https://dns.google.com/
https://giphy.com/embed/3o6fIZjYglR6qpOXKM
https://en.wikipedia.org/wiki/Domain_fronting
https://signal.org/blog/looking-back-on-the-front/
https://www.fireeye.com/blog/threat-research/2017/03/apt29_domain_frontin.html
https://arstechnica.com/information-technology/2018/04/google-disables-domain-fronting-capability-used-to-evade-censors/
https://github.com/sensepost/goDoH
https://twitter.com/aboutsecurity/status/1054816725135491072?s=12
https://github.com/magisterquis/dnsbotnet/commit/00ef10d9819b4199470e590f77de1c1bcab8e1df
https://www.mitre.org/attackcon
https://twitter.com/dtmsecurity/status/1054823866562953216
https://dns.google.com/

3/7

Example traffic flow for traditional C2 using DNS.
I ported the exact same protocol idea to simply use a DNS over HTTPS provider for exactly
the same lookups. The lookups themselves did not change (and don’t need to, we are still
talking valid DNS remember), but merely the transport used to ask DNS questions and parse
an answer.

Modified traffic flow, fronting DNS lookups using a provider such as Google.
Consider this architecture and the monitoring implications for a moment. Now, one can no
longer rely on the fact that DNS is a very specific protocol that could be sinkholed and
controlled on a network, but instead, we know have the added complexity of an HTTPS

https://sensepost.com/img/pages/blog/2018/waiting-for-godoh/traditional_dnsc2-1.png
https://sensepost.com/img/pages/blog/2018/waiting-for-godoh/doh_c2.png

4/7

connection, to an often trusted domain such as google.com, proxying these DNS
requests in and out of a network. Once a request is made to a DoH provider such as
https://dns.google.com/, they in turn use traditional DNS to resolve a name and respond with
an answer to the DoH client. But it’s not just Google, there are many DoH providers available
today, and one can quickly see this is a harder problem to solve all of a sudden.

Since godoh is written in Golang, a single executable for most platforms can be built that
contains both the server-side and client-side code needed. Just like traditional DNS
tunnelling, you would need to configure a domain (or subdomain) to have its name server
point to your c2 server and run the godoh c2 command from there. The c2 command
starts a DNS server specifically geared towards understanding how to have conversations
with agents using DNS. On the client side, the godoh agent command is run to connect to
a c2 using any of the DoH providers supported by godoh. It is here where the agent and a
DoH provider have conversations that are finally translated into questions for the c2 DNS
server to answer. Simple, yet effective.

In practice, the server-side component for godoh looks like this:

godoh server-side C2 interactions example.
In the screenshot above, a new agent connected to the C2 and the command ls -lah
/tmp/pwnd was issued to be executed by the agent. Once completed, the agent sent the
output back to the C2 (in the form of a series of DNS A record lookups) where the server
finally decrypted the payload and presented the output to the screen. On the agent side, the
invocation and execution of the command looked as follows:

https://dns.google.com/
https://github.com/curl/curl/wiki/DNS-over-HTTPS#publicly-available-servers
https://sensepost.com/img/pages/blog/2018/waiting-for-godoh/Screenshot_2018-10-23_at_23_11_01.jpg

5/7

godoh agent interaction
As you can see, the agent started to poll for new commands (every three seconds as
indicated by the -t flag) via DNS TXT record lookups. Once a command was received, it
was decrypted and executed on the host. Once done, the output was sent back to the C2
server via DNS A record lookups for a total of 5 requests for the complete conversation.
What is interesting to note here is that the client knows if the server successfully received a
packet (and could decrypt and validate a crc32 checksum) based on the IP address in the
response data. A response of 1.1.1.1 indicates a successful receipt and decryption of
data.

It is also possible to download files with godoh . Keep in mind that this is still DNS, which is
limited in packet size, so downloading large files take lots of requests, which directly
translate into lots of time.

godoh file download example.
By simply issuing the download /tmp/pwnd command, the agent read the contents of the
target file and sent it back to the C2.

godoh agent file download
From the agents perspective, downloading a file simply means reading its contents and
sending it back to the C2 with DNS A record lookups all using DoH.

https://sensepost.com/img/pages/blog/2018/waiting-for-godoh/Screenshot_2018-10-23_at_23_11_17.jpg
https://sensepost.com/img/pages/blog/2018/waiting-for-godoh/Screenshot_2018-10-23_at_23_21_36.jpg
https://sensepost.com/img/pages/blog/2018/waiting-for-godoh/Screenshot_2018-10-23_at_23_23_37.jpg

6/7

godoh Windows client executing the whoami /groups command and returning the output to
the C2.
What you should have noticed in the screenshots for the agent output by now is the contents
of the labels fields. These are the full hostnames for the specially crafted protocol that would
have been appended to the target domain to form DNS lookups. If you are interested in the
details, this code comment attempts to shed some light on the meanings of the labels
themselves. The server-side component interpreting data can be found here. In short, the
protocol works as follows:

Once started, make a DNS TXT record lookup to the target domain in the form of
agentidentifier.targetdomain .

Once the server receives the lookup, if it is the first time seeing this agent identifier the
C2 would record the existence of this new identifier as a potential target to interact with.
If there are no commands to be executed, just respond with the default “no commands”
response. This loop repeats itself infinitely.
If there are commands to be executed, encode, compress and encrypt the command
and send it along within the TXT lookup response.
The agent then parses the TXT record response and decrypts, decompresses and
decodes the command to execute it.
When complete, the output goes through a process of encoding and encryption, and
finally translation , where the encrypted data is translated into chunks to be sent as
DNS A record lookups.
Server side, a control flag is read to understand if an incoming request starts a new
stream, is part of a pending stream or is the end of a stream and decides based on that
what the next step should be.
Once a DNS lookup stream is complete, the protocol type is checked (as in, is this
simply command output to be echoed to screen or a file download where the contents
should be saved to file) and the appropriate action is taken.

When looking at this traffic using an HTTP proxy, this conversation looks something like this:

https://sensepost.com/img/pages/blog/2018/waiting-for-godoh/Screenshot_2018-10-24_at_07_35_52.jpg
https://github.com/sensepost/goDoH/blob/b7e8e6a6a661bb6392744a534e5dfb572acde752/protocol/utils.go#L14-L38
https://github.com/sensepost/goDoH/blob/944ce30fc754155b0f30214598491590220282ee/dnsserver/server.go#L289-L366
https://github.com/sensepost/goDoH/blob/944ce30fc754155b0f30214598491590220282ee/cmd/agent.go#L49-L50
https://github.com/sensepost/goDoH/blob/944ce30fc754155b0f30214598491590220282ee/dnsserver/server.go#L221-L229
https://github.com/sensepost/goDoH/blob/944ce30fc754155b0f30214598491590220282ee/dnsserver/server.go#L236-L240
https://github.com/sensepost/goDoH/blob/944ce30fc754155b0f30214598491590220282ee/protocol/constants.go#L15-L17
https://github.com/sensepost/goDoH/blob/944ce30fc754155b0f30214598491590220282ee/utils/utils.go#L18-L38
https://github.com/sensepost/goDoH/blob/944ce30fc754155b0f30214598491590220282ee/dnsserver/server.go#L278-L282
https://github.com/sensepost/goDoH/blob/944ce30fc754155b0f30214598491590220282ee/cmd/agent.go#L64-L66
https://github.com/sensepost/goDoH/blob/944ce30fc754155b0f30214598491590220282ee/utils/utils.go#L41-L60
https://github.com/sensepost/goDoH/blob/944ce30fc754155b0f30214598491590220282ee/cmd/agent.go#L121-L126
https://github.com/sensepost/goDoH/blob/944ce30fc754155b0f30214598491590220282ee/protocol/utils.go#L12-L92
https://github.com/sensepost/goDoH/blob/944ce30fc754155b0f30214598491590220282ee/cmd/agent.go#L134
https://github.com/sensepost/goDoH/blob/944ce30fc754155b0f30214598491590220282ee/dnsserver/server.go#L310
https://github.com/sensepost/goDoH/blob/944ce30fc754155b0f30214598491590220282ee/dnsserver/server.go#L123
https://github.com/sensepost/goDoH/blob/944ce30fc754155b0f30214598491590220282ee/dnsserver/server.go#L175-L189
https://github.com/sensepost/goDoH/blob/944ce30fc754155b0f30214598491590220282ee/dnsserver/server.go#L124-L173

7/7

godoh C2 communications example viewed in a HTTP proxy.
If you are keen to play with this in your own environment then you can get godoh
here: https://github.com/sensepost/goDoH. Prebuilt binaries are available, but keep in mind
that they are built using a publicly known encryption key available in the source code. Ideally,
you should build your own versions with a unique key, easily generated with make
key before make .

https://sensepost.com/img/pages/blog/2018/waiting-for-godoh/Screenshot_2018-10-24_at_08_08_55.jpg
https://github.com/sensepost/goDoH
https://github.com/sensepost/goDoH/blob/master/utils/key.go#L5

