
1/14

Abhijit Mohanta

Revenge RAT Targeting Users in South America
uptycs.com/blog/revenge-rat-targeting-users-in-south-america

The Uptycs threat research team recently came across multiple document samples that
download Revenge RAT. The campaign currently seems to be active in Brazil. All of the
malware samples we received have the same properties. One of the samples we received
has the name “Rooming List Reservas para 3 Familias.docx” (SHA-256:
91611ac2268d9bf7b7cb2e71976c630f6b4bfdbb68774420bf01fd1493ed28c7). The
document has only a few detections in VirusTotal.

Figure 1: VirusTotal detections for the document. (Image via VirusTotal.)

Upon opening the document, a series of events happen that lead to the download of
Revenge RAT malware hosted on a Brazilian website (hxxp://azulviagens[.]online). Azul
Viagens is a legitimate hotel chain in Brazil and the official website of the hotel can be found
here.

Attackers registered the fake domain name and used a room reservation document file to
infect the end user. The attack is multi-stage with the components used in the attack spread
across multiple files on the attacker’s server. The WHOIS records for
hxxp://azulviagens[.]online seems to have been registered on December 10, 2020 with the
email ID mmpereiramm30@gmail.com.

The Attack Flow

The components of the attack span multiple stages. Figure 2 (below) shows the steps
involved in the attack.

https://www.uptycs.com/blog/revenge-rat-targeting-users-in-south-america
https://www.uptycs.com/products/use-cases/threat-hunting
https://www.azulviagens.com.br/
mailto:mmpereiramm30@gmail.com.

2/14

Figure 2: The attack flow.

Step 1: The DOCX file (“Rooming List Reservas para 3 Familias.docx”) used in the
attack vector downloads the “1.docx” (template) from the CnC server
Steps 2 and 3: The embedded “Microsoft_Excel_Macro-Enabled_Worsksheet1.xlsm”
file in "1.docx" (template) downloads the PowerShell code “A.txt” from the CnC server
and executes it in memory.
Step 4: The PowerShell code in “A.txt” downloads “index.mp3” from the CnC server
and saves it as “index.vbs.”
Step 5: Upon execution, “index.vbs” creates “opera.vbs,” which contains code to
execute “opera.ps1” created in the next step.
Step 6: “index.vbs” downloads “1.txt” and saves it as “opera.ps1,” which has
obfuscated Revenge RAT in it.
Step 7: “opera.vbs” executes “opera.ps1.”

A detailed analysis of files used during various stages of the attack is provided below.

The Initial Document

The initial document, “Rooming List Reservas para 3 Familias.docx,” used as the attack
vector is a DOCX file. The document uses a technique known as Dynamic Office Template
Injection to bypass security products. This allows the attacker to store the malicious file on a
remote server. This technique can evade anti-malware solutions that rely on static detection.

3/14

The document has the structure shown in Figure 3 (below). The structure contains a file
named “footer.xml.rels.” The “target” fields in the file point to the templates hosted on the
CnC server. There are several URLs in the “target” fields that point to files “1.docx” all the
way to “9.docx” hosted on the CnC server. Each of the files has the same content (the same
SHA-256: 338b2d8d76f4028bfbd177127371b2509971606553d606c534316dc40cfa8fb9).

Figure 3: Structure of the DOCX and footer.xml.res pointing to the malicious template. (Click
to see larger version.)

When the victim opens the document, one of the templates is downloaded and executed.

The Template File

The template file("1.docx" ... "9x.docx") follows the structure shown in Figure 4 (below). The
settings.xml in the structure have the “target” fields that point to XLSM files, which are
present in the “embeddings'' directory in the structure of the DOCX file.

The XLSM files “Microsoft_Excel_Macro-Enabled_Worksheet.xlsm” to
“Microsoft_Excel_Macro-Enabled_Worksheet9.xlsm” have the same contents (same SHA-
256: 32f1a502126b1932e1def04b98d8be235c8d25ef7268f8cb35d460cd073a88b2). When
the template file ("1.docx" ... "9x.docx") is executed by Microsoft Word, it executes one of the
XLSM files (“Microsoft_Excel_Macro-Enabled_Worksheet.xlsm” to “Microsoft_Excel_Macro-
Enabled_Worksheet9.xlsm”).

https://f.hubspotusercontent00.net/hubfs/2617658/figure3-crop.png
https://f.hubspotusercontent00.net/hubfs/2617658/figure3-crop.png

4/14

Figure 4: XLSM files inside the 1.docx template. (Click to see larger version.)

The XLSM File

The XLSM file follows the structure shown in Figure 5 (below). The structure contains
macros in the “VBAProject.bin” file. The following screenshot shows the stream containing
the macros.

https://f.hubspotusercontent00.net/hubfs/2617658/figure4-crop.png
https://f.hubspotusercontent00.net/hubfs/2617658/figure4-crop.png

5/14

Figure 5: Macros in XLSM.

There are two important macros present in the BIN file: “Macro 1” kills the Microsoft Word
process “winword.exe” and “Macro 2” downloads and executes the PowerShell code present
at the URL

“hxxp://azulviagens[.]online/A.txt” in memory.

Figure 6 (below) shows the contents of “A.txt.”

6/14

Figure 6: PowerShell script in hxxp://azulviagens[.]online/A.txt.

When the PowerShell code in “A.txt” is executed, it downloads the contents of “index.mp3”
and saves it to file the “index.vbs” and executes it.

Index.vbs

Figure 7 (below) shows the code in “index.vbs.” When “index.vbs” is executed it creates
another two files, “opera.vbs” and “opera.ps1” in the “C:\Users\Public\” directory. “Index.vbs”
downloads the contents of hxxp://azulviagens[.]online/1.txt and saves it to “opera.ps1.” The
“index.vbs” file places the following command in “opera.vbs”:

l.exe -nologo -ExecutionPolicy Unrestricted -File C:\Users\Public\Opera.ps1

The command is then executed. When executed, “opera.vbs” executes the file “opera.ps1."

Figure 7: Code in index.mp3 (index.vbs). (Click to see larger version.)

Opera.ps1

“Opera.ps1” is a highly obfuscated PowerShell script (see Figure 8, below). One thing that
catches our eye is the string “4D 5A,” which indicates the magic header of a Windows
executable.

https://f.hubspotusercontent00.net/hubfs/2617658/figure7-lg.png
https://f.hubspotusercontent00.net/hubfs/2617658/figure7-lg.png

7/14

Figure 8: 4D5A in opera.ps1.

After de-obfuscating the PowerShell code, we were able to retrieve the Windows executable,
which is the Revenge RAT. Below is the description of the Revenge RAT we extracted.

Similar PowerShell code was also found hosted on x-root.net, which has also been
registered in recent months. Uptycs’ EDR capabilities can decode the obfuscated
PowerShell code, as shown in the screenshot below (Figure 9).

Figure 9: Deobfuscated PowerShell code. (Click to see larger version.)

The Revenge RAT

Revenge RAT was first seen mid-2016. The RAT has been coded in .NET. The Revenge
RAT we extracted is not a packed binary and code is clearly visible. Below is a description of
the various classes and methods present in the decompiled code.

Program

The “Program” class shown in Figure 10 (below) contains the main function of the program.
The main() function creates a mutex and then executes the rest of the code.

https://f.hubspotusercontent00.net/hubfs/2617658/figure9.png
https://f.hubspotusercontent00.net/hubfs/2617658/figure9.png

8/14

Figure 10: Program class. (Click to see larger version.)

RAT Configuration

Figure 11 (below) contains the configuration for the RAT, which is used during execution.

Figure 11: RAT configuration.

Below are some members of the config class and their functionality:

host: CnC server
port: CnC port
id: Unique identity of the installed RAT on the victim machine

https://f.hubspotusercontent00.net/hubfs/2617658/figure10.png
https://f.hubspotusercontent00.net/hubfs/2617658/figure10.png

9/14

currentMutex: Mutex placed by the RAT on the system
stopwatch(): This is a member function that can be use to reset the stopwatch

IdGenerator

The class IdGenerator shown in Figure 12 (below) is used for creating a unique ID for the
victim machine, which the RAT is going to send to the CnC server. A unique string ID is
generated by retrieving various system attributes using the methods in the class. Below are
some of the methods:

GetActiveWindow: Get active window or window of the application used by the user
GetAV: Get the antiviruses installed on the system
GetCamera: Get information about the camera
GetCpu: Get CPU information
GetHardDiskSerialNumber: Get hard disk serial number
GetIp: Get IP address
GetSystem: Get processor information
SendInfo: Concatenate information collected by previous methods into a string “id”

https://f.hubspotusercontent00.net/hubfs/2617658/figure12-lg.png

10/14

Figure 12: Components of the IdGenerator class. (Click to see larger version.)

Client

The client class implements the network client of the RAT. It has the following methods:

Ping: Pings the CnC server
TCPReceive: Received data to the server
TCPSend: Send data to the server

Handler

The Handler class shown in Figure 13 (below) is used to process the CnC command
received from the attacker.

Figure 13: CnC commands. (Click to see larger version.)

Below is the list of commands:

PNC: Reset the stopwatch
P: Send the active windows to the CnC
IE: Check for installed plugins
LP: Invoke plugin
UNV: ninstall, restart the RAT

https://f.hubspotusercontent00.net/hubfs/2617658/figure12-lg.png
https://f.hubspotusercontent00.net/hubfs/2617658/figure13-lg.png
https://f.hubspotusercontent00.net/hubfs/2617658/figure13-lg.png

11/14

Variants of Revenge RAT are known to have many other capabilities as listed below:

Screen capture
Keylogging
Video capture
Credential dumping
Audio capture

Uptycs EDR Detections

The following images show Uptycs EDR detection for the threat.

Figure 14: Uptycs EDR detections. (Click to see larger version.)

https://f.hubspotusercontent00.net/hubfs/2617658/figure14.png
https://f.hubspotusercontent00.net/hubfs/2617658/figure14.png

12/14

Figure 15: Process graph in Uptycs EDR. (Click to see larger version.)

Figure 16: Process graph continued. (Click to see larger version.)

Indicators of Compromise

Below is the list of IOCs seen in the Revenge RAT attack.

Hashes

https://f.hubspotusercontent00.net/hubfs/2617658/figure15.png
https://f.hubspotusercontent00.net/hubfs/2617658/figure15.png
https://f.hubspotusercontent00.net/hubfs/2617658/figure16.png
https://f.hubspotusercontent00.net/hubfs/2617658/figure16.png

13/14

Initial attack document
91611ac2268d9bf7b7cb2e71976c630f6b4bfdbb68774420bf01fd1493ed28c7

Initial attack document

77d6651de47bff4c24fc26fa018ea648b0e14e276e8240fae6b1724b8638c46a

1.docx(template)

338b2d8d76f4028bfbd177127371b2509971606553d606c534316dc40cfa8fb9

Microsoft_Excel_Macro-Enabled_Worksheet.xlsm

32f1a502126b1932e1def04b98d8be235c8d25ef7268f8cb35d460cd073a88b2

A.txt

4b65e5785692950f8100b22f2827d65ba93e99dd717eb444af035e96fcd84763

opera.ps1

03f5ff9b6a6b24f76799cc15fe3f1fbf1ca9d6dda30a4154125ed5dd5834290c

Revenge RAT

73f113a6146224c4a1f92f89055922a28322787c108e30000a0a420fa46ed9e2

URLs

hxxp://azulviagens[.]online

Cdtpitbull[.]hopto[.]org

YARA Rule

rule upt_Revenge_RAT {

meta:

	 description="Revenge-RAT"

	

sha256="73f113a6146224c4a1f92f89055922a28322787c108e30000a0a420fa46ed9e2"

	 author = "abhijit mohanta"

	 date = "20 Dec 2020"

strings:

	 $upt_Revenge_RAT0 = "Revenge-RAT" ascii wide nocase

	 $upt_Revenge_RAT1 = "mscoree.dll" ascii wide nocase

	 $upt_Revenge_RAT2 = "REVEGERRRRR.exe" ascii wide nocase

	 $upt_Revenge_RAT3 = "keepAlivePing!" ascii wide nocase

	 $upt_Revenge_RAT4 = "AntiVirusProduct" ascii wide nocase

	 $upt_Revenge_RAT5 = "FirewallProduct" ascii wide nocase

condition:

	 all of ($upt_Revenge_RAT*)

}

14/14

