
1/17

June 10, 2020

FlowCloud Version 4.1.3 Malware Analysis
proofpoint.com/us/blog/threat-insight/flowcloud-version-413-malware-analysis

https://www.proofpoint.com/us/blog/threat-insight/flowcloud-version-413-malware-analysis

2/17

Blog
Threat Insight
FlowCloud Version 4.1.3 Malware Analysis

https://www.proofpoint.com/us
https://www.proofpoint.com/us/blog
https://www.proofpoint.com/us/blog/threat-insight

3/17

June 10, 2020 Dennis Schwarz

Proofpoint researchers are continuing to track the threat actor TA410’s use of FlowCloud, a
remote access trojan (RAT). Below is a new in-depth analysis of another version of the
FlowCloud RAT, version 4.1.3. While we do not have many campaign details or targeting
information on this particular sample, this is another version of FlowCloud in the wild. Earlier
this week we provided an analysis of version 5.0.1, which was used during the targeting of
critical U.S. utility providers last year.

It is currently unclear which of the versions is the “newer one” or if there are distinct variants
of FlowCloud being used for different purposes. The version we previously detailed had an
older compilation date (December 15, 2018 – it is unclear whether the date is forged), but a
newer internal version (5.0.1) than the sample discussed here.

One major difference between the two is that version 5.0.1 is written in C++ using extensive
object-oriented programing, Boost library, and a C++ implementation of Protocol buffers—
version 4.1.3 was written in C without any object-oriented techniques and used a C
implementation of Protocol buffers. Version 5.0.1 also makes use of SHA512, a modified (or
broken) AES, and TEA algorithms instead of the MD5 and RC4 as described below. In
general, version 5.0.1 was a larger and more difficult malware to reverse engineer.

FlowCloud has typical RAT functionality such as access to the filesystem, processes,
and services, screenshots, keylogging, command shell, and added functionality via plugins. It
also includes port mapping and Nmap port scanning to help facilitate lateral
movement. Although the additional functionality was not implemented in the analyzed sample
below, there are indicators in the code and configuration data that suggests support for audio
recording, clipboard stealing, and exfiltrating files based on specific search criteria such as
file type and name pattern. These might be implemented
via FlowCloud’s plugin mechanism or may be present in other versions of the malware.

In this blog post we will analyze the following FlowCloud sample:

https://www.proofpoint.com/us/blog/threat-insight/ta410-group-behind-lookback-attacks-against-us-utilities-sector-returns-new
https://www.proofpoint.com/us/blog/threat-insight/ta410-group-behind-lookback-attacks-against-us-utilities-sector-returns-new
https://github.com/protobuf-c/protobuf-c

4/17

SHA256 b75e1391fcb558e42cc05399fa716829114323e1d01aa284445955548302d71f

Per its metadata, it is version 4.1.3 and was compiled on March 21, 2019 (it is unclear
whether the date is forged). It was recently uploaded to VirusTotal on May 12, 2020 by a
submitter from Taiwan. At the time of research, the command and control (C&C)
server (114.55.109[.]199) was still active.

Naming

The name “FlowCloud” comes from a debugging string left in one of the earlier samples we
found:

g:\FlowCloud\trunk\Dev\src\fcClient\Release\fcClientDll.pdb

The name was also used in the configuration data of the sample analyzed for
this blog post as the “product_name”:

1 (product_name): "flowcloud"

2 (product_version): "v4.1.3"

Protocol Buffers

FlowCloud makes extensive use of a data structure known as Protocol
buffers (“protobufs”) in its configuration and C&C communications. “Protocol buffers are
Google's language-neutral, platform-neutral, extensible mechanism for serializing structured
data – think XML, but smaller, faster, and simpler. You define how you want your data to be
structured once, then you can use special generated source code to easily write and read
your structured data to and from a variety of data streams and using a variety of languages.”

As an example, in the analyzed sample, FlowCloud stores its configuration data as a 3344-
byte serialized protobuf as shown in Figure 1:

https://www.virustotal.com/gui/file/b75e1391fcb558e42cc05399fa716829114323e1d01aa284445955548302d71f/
https://developers.google.com/protocol-buffers

5/17

Figure 1 Configuration data serialized as a protobuf

Using the Protocol buffer compiler (“protoc”), the serialized data can be deserialized into a
more human-readable format as shown in Figure 2:

6/17

Figure 2 Configuration data that has been deserialized (truncated for readability)

To recover the names of the fields, the
associated ProtobufCMessageDescriptor and ProtobufCFieldDescriptor structures can
be identified as shown in Figure 3:

Figure 3 Configuration data’s associated ProtobufCMessageDescriptor

https://sjiang1.github.io/autoiodocu/protobuf-c_doc/structProtobufCMessageDescriptor.html
https://sjiang1.github.io/autoiodocu/protobuf-c_doc/structProtobufCFieldDescriptor.html

7/17

We have included an IDA Pro Python script on our GitHub that can be used to parse and
display some of the important fields of these structures as shown in Figure 4:

Figure 4 Parsed ProtobufCMessageDescriptor and ProtobufCFieldDescriptor (truncated for
readability)

The “id” numbers from the structures can be matched with the deserialized data for labeling
as shown in Figure 5:

https://github.com/EmergingThreats/threatresearch/blob/master/flowcloud/ida_protobufc.py

8/17

Figure 5 Labeled protobuf for configuration data (truncated for readability)

The ProtobufCMessageDescriptor structure also starts with magic bytes (e.g. 0x28aaeef9),
so these can be used to identify all the protobufs compiled into the malware. In the analyzed
sample there were 78 protobufs included.

Configuration

In the analyzed sample, a working directory was setup in:

C:\Windows\Fonts\zitbee.fon\

The fully labeled configuration data is available on our GitHub . Most of its fields are self-
identifying and include things such as:

C&C addresses (e.g. “exchange_server”)
C&C ports (e.g. “exchange_server_port”)
Encryption keys (e.g. “xchg_server_key”)
Various installation options (e.g. “install_config”)
Various command options (e.g. “keyboard_policy”)

https://github.com/EmergingThreats/threatresearch/blob/master/flowcloud/flowcloud_config

9/17

The configuration data is also stored as a serialized protobuf and encrypted in a “winver.dat”
file. It is encrypted using a basic XOR and addition algorithm. We have included a Python
script that can be used to decrypt this config file on our GitHub .

Dependencies

FlowCloud uses HTTP to download some dependencies from its C&C server
(“exchange_server: exchange_server_port+1” from the config). Figure 6 shows an example:

Figure 6 Example dependency download

The URIs are hardcoded into the sample. The response data starts with an encrypted 16-
byte header:

Header key (DWORD)
CRC32 checksum (DWORD)
Decrypted/decompressed data length (DWORD)
Encrypted/compressed data length (DWORD)

The header key is used with some XOR and ROR operations to decrypt the remaining bytes
of the header.

After the header there is RC4 encrypted data. The RC4 key is generated by taking a
hardcoded string (e.g. “y983nfdicu3j2dcn09wur9*^&(y4r3inf;'fdskaf'SKF”) and hashing its hex
digest 1000 times with MD5.

The decrypted data starts with another 16-byte header as described above. The data that
follows this inner header is ZLIB compressed and once decompressed contains a PE file.

The downloaded dependencies include:

/SL3716/S8437AEB.DAT - SQLite
/WC413/21FB9FCF.DAT - Nmap

https://github.com/EmergingThreats/threatresearch/blob/master/flowcloud/decrypt_config.py

10/17

/WC413/6EE2EFF7.DAT - Packet.dll (used with Nmap)
/WC413/67B1B02F.DAT - wpcap.dll (used with Nmap)

We have included a Python script on our GitHub that can be used to decrypt these
dependencies.

Command and Control

C&C uses a binary protocol over TCP to “exchange_server:exchange_server_port” from the
config. An example exchange is shown in Figure 7:

Figure 7 Example C&C exchange

Both requests and responses are structured similarly. They start with a 28-byte header called
“HHDR”:

Header key (DWORD)
CRC32 checksum (DWORD)

https://github.com/EmergingThreats/threatresearch/blob/master/flowcloud/decrypt_dependency.py

11/17

“HHDR” (DWORD)
Unknown counter (DWORD)
Unknown hardcoded 1 (DWORD)
Data length (DWORD)
Unknown hardcoded 1 (BYTE)
Hash type (BYTE)

1 is MD5
Compression type (BYTE)

1 is ZLIB
Crypto type (BYTE)

2 is RC4

The header key is used with some XOR and ROR operations to decrypt the remaining bytes
of the header.

Following “HHDR” is a 24-byte header called “HCMD”:

Header key (DWORD)
CRC32 checksum (DWORD)
“HCMD” (DWORD)
Command (DWORD)
Subcommand (DWORD)
Data length (DWORD)

The header key is used with some XOR and ROR operations to decrypt the remaining bytes
of the header.

Following the “HCMD” header is a 16-byte header as described above in the “Dependencies”
section.

After the third header there is RC4 encrypted data. The RC4 key for this data is generated by
taking the “xchg_server_key” from the config and hashing its hex digest one time with MD5.

Once the data is decrypted there is a final 16-byte header and ZLIB compressed data (see
the “Dependencies” section above).

We have included a Python script on our GitHub that can be used to decrypt these requests
or responses. Figure 8 is an example output of our script:

https://github.com/EmergingThreats/threatresearch/blob/master/flowcloud/decrypt_comms.py

12/17

Figure 8 Example parsing of a C&C request

 The decrypted data is a serialized protobuf. For example, the names of
the protobufs involved with command 1 subcommand 2 are:

FcNet__MsgUsr
FcNet__MsgUsr__System
FcNet__MsgUsr__System__Adapter

This command is used to send various system information to the C&C server as shown in
Figure 9:

13/17

Figure 9 Labeled protobuf for command 1 subcommand 2 (edited for privacy)

C&C Commands

We have identified the following commands that can be executed via C&C command polls:

14/17

Command 2 – filesystem related
Subcommand 0 - get drive information
1 - get directory listing
2 - create directory
3 - rename directory
4 - write file
5 - read file
6 - remove directory
7 - get file attributes
8 - set file attributes and times
9 - add file to "filemgr" list (see below)
10 - search directory for files with a given file name pattern
11 - ShellExecute "open" file with arguments
12 - add directory to "folderimage" list (see below)

3 – take a screenshot
5 – Exfiltrate data related (see below)

0 - get exfiltrate data size
1 - get exfiltrate data file count
2 - get exfiltrate data item list
3 - change status of exfiltrate data

6 – process related
 0 - get process list
1 - kill process

7 – service related
 0 - get service list
1 - start service
2 - stop service
3 - delete service
4 - set service start type

9 – system related
 0 - get installed software
4097 – reboot
4098 – reboot
4099 – NtRaiseHardError
4100 – copy %SYSTEM%\winver.exe to %WIN%\System\winver.exe
then NtRaiseHardError

10 – cmd.exe command shell
 4097 – write command to shell

15/17

11 – lateral movement related
 4097 - setup port mapping using https://github.com/windworst/LCX
4098 - remove port mapping
4099 - get port mappings
8193 - start Nmap scan
8194 - replies with "Unsupported yet."
8195 - get Nmap scan results

Data Exfiltration Managers

In addition to the C&C commands, FlowCloud has some additional functionality organized as
“data exfiltration managers" that include:

“filemgr” – exfiltrate files as specified by a C&C command
“folderimage” – exfiltrate directories as specified by a C&C command
“screen” - exfiltrate screenshots
“keylog” - exfiltrate keylogging data

 Keylogging data is gathered by an external program and sent to FlowCloud via a
named pipe (e.g. “\\.\pipe\namedpipe_keymousespy_english”)

 “audio” - possibly audio recording
 The config and code hint at this functionality, but it is not implemented in the
analyzed sample

 “smtfile” - possibly search for and exfiltrate files based on file types and name patterns
 The config and code hint at this functionality, but it is not implemented in the
analyzed sample

 “plugin” - download and execute additional plugins
 PE file exports associated with plugins:

 “pluginInfo”
“startModule”
“setOtherInterface2”

“clipboard” - possibly steal clipboard contents
 The config and code hint at this functionality, but it is not implemented in the
analyzed sample

These exfiltration managers run in their own execution threads and some are controlled by
“policies” in the config. They store their data in various SQLite databases and then another
execution thread will eventually exfiltrate the data to the C&C server.

As an example, the “screen” exfiltration manager takes continuous screenshots according to
its “screen_policy”:

state – is policy active
cycle_time – sleep time between screenshots
cache_count – maximum number of screenshots waiting to be exfiltrated

https://github.com/windworst/LCX

16/17

bit_depth – bit depth of screenshot

A screenshot is taken. Depending on its size, the data may be broken up into chunks. The
data is then compressed with ZLIB and encrypted with RC4 (uses “file_key” from config). As
described above, 16-byte encrypted headers are attached to the compressed and encrypted
data.

Two additional headers are prepended to the compressed and encrypted data. They are
encrypted similarly to the 16-byte, 28-byte, and 24-byte headers above. The first header is
96-bytes:

Header key (DWORD)
CRC32 checksum of header (DWORD)
CRC32 checksum of data (DWORD)
Product name (16-bytes)
Product version (16-bytes)
Unknown hardcoded 1 (DWORD)
Timestamp (QWORD)
File attributes (DWORD)
Data length (QWORD)
Creation time (QWORD)
Last access time (QWORD)
Last write time (QWORD)
Length of the next header (DWORD)

The second header is at least 24-bytes, but its length depends on the number of data
chunks and length of a filename:

Header key (DWORD)
CRC32 checksum of header (DWORD)
Header length (DWORD)
Offset to end of chunk list (DWORD)
Offset to start of chunk list (DWORD)
Number of chunks (DWORD)
File name and chunk list (variable length)

The encrypted screenshot data is then saved to a SQLite database. In the analyzed sample
this was stored in the file “data\E70EEF62”. We have included an example of the schema
used on our GitHub, but it basically consists of a “file” table to store metadata about the data
to exfiltrate and a “file_data” table that stores the data.

Periodically a separate execution thread will go through the SQLite databases created by the
exfiltration managers and send the data to the C&C server. It uses the same C&C protocol
as described above, but using the “file_server,” “file_server_port,” and “file_server_key”

https://github.com/EmergingThreats/threatresearch/blob/master/flowcloud/screen_schema

17/17

values from the config.

The Proofpoint threat research team analyzed and performed reverse engineering on a
recently discovered version (4.1.3) of the FlowCloud RAT. While the version that we analyzed
is for Windows only, we believe that there may be additional variants. One piece of evidence
that may support the theory that there are additional FlowCloud variants, is the “plateform”
(sic) field detailed in Figure 9 above. This is an enumerated data type that can have the
following values:

FC_NET__USR_LIST__USR__SYSTEM__PLATEFORM_TYPE__WINDOWS
FC_NET__USR_LIST__USR__SYSTEM__PLATEFORM_TYPE__LINUX
FC_NET__USR_LIST__USR__SYSTEM__PLATEFORM_TYPE__MAC
FC_NET__USR_LIST__USR__SYSTEM__PLATEFORM_TYPE__ANDROID

While we have only seen versions of FlowCloud for Windows, this implies there may be other
implementations of FlowCloud for other operating systems.

ET and ETPRO Suricata/SNORT Signatures

2842895 - ETPRO MALWARE FlowCloud Dependency Download M1

2842896 - ETPRO MALWARE FlowCloud Dependency Download M2

2842897 - ETPRO MALWARE FlowCloud Dependency Download M3

2842898 - ETPRO MALWARE FlowCloud Dependency Download M4

Subscribe to the Proofpoint Blog

