
THE ELEPHANT IN THE ROOM MARSCHALEK

322 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

THE ELEPHANT IN THE ROOM
Marion Marschalek

Cyphort Inc., Austria

Email marion@cyphort.com

ABSTRACT
At the beginning of 2015, the fi rst espionage software
designed for large-scale operations with allegedly European
roots was reported. Researchers uncovered malware dubbed
‘Babar’ by its creators and determined that it fi tted the profi le
of an espionage campaign initially documented by the
Communications Security Establishment Canada (CSEC).
PowerPoint slides created by CSEC and leaked through
whistleblower Edward Snowden link Babar to an operation
named ‘SNOWGLOBE’ and attribute it ‘with moderate
certainty’ to French intelligence.

This paper puts the spotlight on Babar and other malware
families related to SNOWGLOBE, including NBOT, Bunny
and Casper. The technical fi nesse of the espionage toolkit will
be examined, outlining implementation details and
peculiarities. In the second part the paper will discuss
possibilities and impossibilities of attribution, explaining the
inter-family relations between the different binaries as well as
analysing the link to the CSEC documents and the credibility
of attribution conducted by CSEC.

Finally, the examination will close with a proposal for future
research on what more is to uncover of the SNOWGLOBE
operation.

INTRODUCTION
In the past year more and more cases of nation-state espionage
involving malware have surfaced and have been discussed
publicly. The United States, United Kingdom, Russia and
China, among others, are known to operate a cyber espionage
apparatus in order to aid military operations. At the beginning
of 2015, researchers uncovered a collective of malware
families which is potentially one of the rare approaches to
malware-aided espionage conducted by a European nation-
state actor outside of the ‘Five Eyes’ alliance. The uncovered
malware fi ts the profi le of an operation dubbed
‘SNOWGLOBE’, fi rst mentioned in a leaked presentation of
the Communications Security Establishment Canada (CSEC).

The slides describe a CNO (covert network operation)
involving different malware strains which were used to target
entities of political interest in Canada, Norway and Iran among
other nations. Of special interest to SNOWGLOBE seems to
have been Iran, where a number of universities along with the
Atomic Energy Organization were among the targets.
Furthermore, CSEC documents malware with the internal
project name ‘Babar’, which happens to be a French cartoon
character. CSEC assesses ‘with moderate certainty’ that
operation SNOWGLOBE is likely to be conducted by a
French intelligence agency.

The mystery around Babar was fi rst brought to the public by
French newspaper Le Monde, which published an article
referencing the CSEC slides in March 2014 [1]. Almost a year
later, researchers fi nally identifi ed what comes close to the
Babar malware mentioned by CSEC. Babar is an espionage

tool, the most sophisticated one among a menagerie of related
families. Other SNOWGLOBE tools are NBOT, Bunny and
Casper, all of which were uncovered along with Babar. The
SNOWGLOBE malware has previously been analysed by
security company Kaspersky Lab, which dubbed it ‘Animal
Farm’ [2]. Next to the malware discussed in this paper,
Kaspersky reports two more ‘cartoonesque’ miscreants,
namely Tafacalou and Dino.

SNOWGLOBE’S MALWARE FAMILIES
The fi rst family examined was NBOT, a simple denial of
service bot which was active from around 2010 to 2012. The
malware includes modules to perform fl ooding of a specifi ed
URL with packages of different protocols, such as plain TCP,
HTTP GET or POST with different confi gurations. Besides
that, not much functionality can be found in NBOT binaries.

What makes NBOT interesting is the way it is implemented, as
it does not give the impression of regular crimeware. The
samples are well designed, come with a handful of clear text
strings and have no binary protection whatsoever. On deeper
inspection it becomes clear that this family really sticks out
from the norm, and on following the breadcrumbs one
eventually stumbles over related samples with very similar
traits.

The second identifi ed family was Bunny, a multi-threaded bot
with an integrated scripting engine [3]. The family name is
derived from a project name embedded in the malware
dropper. Bunny incorporates a Lua interpreter and downloads
and executes Lua scripts to reach a certain level of
polymorphism. The Lua scripts can call back into the C++
code of the malware and alter its behaviour at runtime. Bunny
was seen being spread in a spear-phishing campaign in
December 2011, in which a PDF document exploiting
CVE-2011-4369 was used to install the malware [4].

Also among the stash of related binaries we discovered a DLL,
itself part of a fairly sophisticated piece of espionage malware.
Further investigation led to the dropper of said DLL, which
came with the internal project name Babar64 [5]. Babar is a
French cartoon character (an elephant), as well as the name of
a malware family mentioned in a classifi ed slide deck from
CSEC [1]. The slides were leaked by Edward Snowden and
fi rst discussed in an article published by French newspaper Le
Monde [6] in April 2014. The CSEC slides mention
SNOWGLOBE as the internal name of the campaign involving
Babar and related malware and attribute it ‘with moderate
certainty’ [1, p.22] to an unspecifi ed French intelligence
agency.

From an analyst’s perspective, Babar is somewhat more
complex than the other families. It comes with solid espionage
capabilities, it performs keylogging and invades Windows
processes to steal data from instant messengers, softphones,
browsers and offi ce applications. The Babar implant comes
with a userland rootkit component in order to hook APIs of
interest in dedicated remote processes and steal data on the fl y.

While Babar could be called the crown jewel within the
espionage toolset, it is not the latest creation. CSEC mentioned
Babar for the fi rst time in 2009, the analysed binaries were
probably compiled at a later point in time, but probably not
later than 2012. It is assumed that the Babar binaries at hand
are a later version of the malware described by CSEC.
Researchers uncovered one of the newer malware families of

THE ELEPHANT IN THE ROOM MARSCHALEK

323VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

the same group in March 2015 [7]. Casper (as in Casper the
Friendly Ghost) matches with TFC, Bunny and Babar on a
binary level and doubtlessly comes from the same authors. It
is so-called reconnaissance malware, used to collect data
from an infected machine in order to identify the owner and/
or machine-specifi c settings.

Casper is known to have been spread through a watering hole
attack. The attackers had taken control of the server hosting the
website of the Syrian Ministry of Justice in April 2014 to deploy
their malicious infrastructure. Two Flash zero-day exploits were
involved in spreading Casper to potential targets [8].

All uncovered families can be linked with each other, and
several binary attributes match with traits described in the
CSEC documents.

THE ACTORS IN THE SPOTLIGHT

NBOT

NBOT is a family of denial-of-service bots which, according
to compilation time stamps, was created in 2010. The binaries
are well structured and multi-threaded, written in C++ and
not heavily protected as one would expect non-targeted
malware to be. The bots connect to a C&C server and
exchange data in clear text via HTTP. The C&C domains are
hard coded in the binaries. Currently, two different domains
are known, http://callientefever.info/ and http://fullapple.net/,
both of which were registered in 2009 and active until 2010.
From 2010 onwards, the domains were sinkholed by security
vendor Kaspersky Lab.

As a means of stealth, the bots create an svchost.exe process
and inject a remote thread to execute their binary payload in
the context of svchost.exe. NBOT also implements a
mechanism to dynamically load APIs at runtime, identifi ed by
hashes of API names. The hash function is simple, using
left-sided rotation and XOR with the key AB34CD77h to
calculate the hashes:

for (i=0; i<expcount; i++) {
 elen = strlen(exports[i]);
 result = 0;
 otherresult = 0xAB34CD77;
 for (j=0; j<elen; j++) {
 result = (rotl(result,7) ^ exports[i][j]);
 }
 otherresult ^= result;
 otherresult ^= 0xAB34CD77;
 printf(“%8x\t\t%s\n”, otherresult, exports[i]);
 }

The bots come with a custom confi guration embedded as
strings in the binaries, which will be stored as a linked list in

memory during start up. A large portion of the confi guration
attributes’ names start with the string ‘NBOT_’ (see Table 1).
It is notable that two confi guration terms start with ‘TFC_’,
an abbreviation for ‘Tafacalou’, according to another piece of
malware used by the same actors [2]. Tafacalou is
reconnaissance malware, a platform used in the fi rst stage of
an attack, dedicated to installing high-profi le malware on
selected target machines. It is assumed that NBOT inherited
these values from the TFC code base.

The binaries are written in C++, and for every action the bots
can take they generate an object of an ‘action class’ at start
time. NBOT shows extensive fl ooding capabilities, as well as
functionality to generate statistics on performance and a
means for self-update. The dedicated actions can be of the
kinds shown in Table 2.

ATCLEAR TCPFLOOD SET

PING WEBFLOOD UPLOAD

EXEC POSTFLOOD UPDATE

HTTPF STATISTICS PLUGIN

ASPFLOOD KILL

Table 2: Dedicated actions.

NBOT does not show capabilities of espionage or data
exfi ltration, and no system reconnaissance is performed. It is
not perfectly clear what the intentions of the attackers were.
Building a botnet out of unprotected binaries implies it will be
a short-lived one. Also, denial-of-service attacks are not known
to meet the common interests of nation-state attackers. An
interesting side note to NBOT is that the binaries come with
the Accept-Language of all HTTP requests set to ‘fr’ (French).

Bunny
The Bunny malware family got its name from a link to debug
information embedded in the dropper malware. The path to
the associated .pdb fi le contains the respective project name
‘bunny 2.3.2’. The malware is multi-threaded with an
integrated Lua engine, making it a scriptable bot which can
change its behaviour to a certain extent. Bunny shows a
number of interesting anti-analysis features, most of which
seem intended for evasion of anti-virus engine emulators and
sandboxes. The following features were found:

• An emulator check is made by searching the module fi le
name for strings such as ‘TESTAPP’ (known to be used
by the Bitdefender engine), ‘klavme’, ‘myapp’ and
‘afyjevmv.exe’ (assumed to be used by Kaspersky).

• The module path name must be more than fi ve characters
long and contain either ‘msapps\’ or ‘Perf Manager\’,

NBOT_VER NBOT_PORT NBOT_BOOL_SEND_DATA

NBOT_ACTION NBOT_MAX_REQ NBOT_DATA

NBOT_URL NBOT_MAX_DATA NBOT_COMMAND_LINE

NBOT_FORCE_ACTION NBOT_LAST_IMAGE TFC_Confi g_Key

NBOT_TIME NBOT_UUID TFC_Confi g_Name

NBOT_TIMEOUT NBOT_STATS_END NotifUrl

NBOT_HOST NBOT_STATS_URL SyncUrl

Table 1: Confi guration attribute names.

THE ELEPHANT IN THE ROOM MARSCHALEK

324 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

which is the directory into which the Bunny dropper
drops its payload.

• The creation timestamp of the dropped payload is
changed to the creation timestamp of the system’s
explorer.exe to hinder forensic analysis.

• Using the EnumProcesses API, Bunny checks whether
fewer than 15 processes are running on the system. If
that is the case, execution is aborted.

• Bunny performs hook detection on time retrieval APIs,
namely NtQuerySystemTime, GetSystemTimeAsFileTime
and GetTickCount. Every API is called twice to calculate
a delta, while performing a sleep(1000) operation between
iteration one and iteration two. The fi nal condition is that,
if any of the three deltas is below 998 milliseconds,
execution will abort. This can only be the case if any of
the three APIs’ return values is modifi ed by a system
monitoring solution, like a sandbox.

• A subset of API names is obfuscated using the same
hashing algorithm and key as NBOT.

• Installed anti-virus products are enumerated by querying
the Windows Management Interface (WMI) and
adapting the system infi ltration method, for example,
either injecting the malicious payload into an existing
svchost.exe process or creating a new process into which
to inject.

• The dropped implant is not started by the dropper, merely
a registry key for loading at boot time is created. This is
effective in tricking sandboxes, as a reboot is required to
invoke the implant. This is curious though, as the fact that
deletion of the dropper is the implant’s task means that the
dropper will remain on the system until reboot as well.

The Bunny implant is compiled with Visual Studio compiler,
with performance optimization options set. It is not clear
whether this was intended for purposes of obfuscation or if
the authors did indeed aim for performance-optimized
binaries. Clearly, though, a tremendous amount of inlined
code and repeated constants make analysis of the binaries
signifi cantly more diffi cult than usual.

Remote servers and confi guration

At initialization Bunny decrypts an XML-format
confi guration fi le stored in its resource section, revealing
three URLs among timeout settings and encryption keys:

• http://le-progres.net/images/php/test.php?rec=11206-01

• http://ghatreh.com/skins/php/test.php?rec=11206-01

• http://www.usthb-dz.org/includes/php/test.
php?rec=11206-01

All three of these URLs served as C&C contacts, sending
commands or Lua scripts to the infected host. It is interesting
that two of the domains are actually fake domains resembling
legitimate websites (le-progres.net and usthb-dz.org), while
one is a legitimate domain (ghatreh.com).

Multi-threading model and operation mode
The Bunny implant comes with a solid multi-threading
model. The malware runs a main thread, which manages four
worker threads and performs C&C command parsing and Lua
script execution. The worker threads are dedicated to
receiving commands and scripts. Each worker has a dedicated
method for receiving instructions, which is either separately
via HTTP from the server, aggregated through a downloaded
data fi le or as tasks to be confi gured as scheduled tasks. Next
to that, the main thread also runs sub threads to maintain log
fi les created by the malware during execution and to keep
track of the overall system load created by the malware.

The threads are coordinated via named events, global fl ag
variables, and in some cases mutexes or semaphores are also
used. The main action of the malware is carried out in the
main thread, which parses commands and executes Lua
scripts provided by the worker threads via command fi les.

Commands & Lua integration
The bot supports a total of 20 commands (see Table 3), which
are received from the C&C as encrypted data but contained in
the binaries in clear text.

mainfrequency restarthearer crontaskr

getconfi g Restart crontaskl

ftpput cleanhearer Maxpostdata

ftpget timeout seturl

sendfi le Waitfor Stop

getfi le updatedietime setcpulimit

uninstall crontaska

Table 3: Commands supported by the bot.

Figure 1: Bunny’s mode of operation.

THE ELEPHANT IN THE ROOM MARSCHALEK

325VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

The most notable actions of the bot can be summarized as
follows:

• Downloads and executes Lua scripts to instrument its
own code.

• Can install managed tasks (named ‘crontask’) for its
integrated engine.

• Can maintain FTP connections.

• Can send and receive fi les via HTTP.

• Writes runtime information to local fi les.

• Provides encryption for local data and network
communication.

Lua execution is achieved by an integrated Lua 5.1
interpreter. C/C++ bindings provided through the C/Invoke
library enable the Lua scripts to call back into the Lua
interpreter and instrument the engine. The Lua interpreter is
very small (roughly 180KB compiled), thus it can easily be
integrated into an application. The C/Invoke bindings enable
Lua to be completely independent from the C/C++
application, so injected scripts can be pure Lua code.

The Lua interpreter is a powerful code base which enables
Bunny to change functionality on the fl y, as different scripts
are downloaded and executed. The scripts defi ne the
functionality as they perform callbacks to the C/C++ code in
the malware binary. The potential of the Lua interpreter can
be investigated on the project homepage [9].

Babar

Babar is a fully fl edged piece of espionage software, able to
invade running processes on the machine, hook API calls to
steal sensitive data on the fl y, log keystrokes and exfi ltrate the
stolen information to its remote server. The dropper binary
contains a link to debug information, giving away the internal
project name ‘Babar64’.

Babar, like all other related binaries, is not packed or
protected by a crypter. For C&C communication and for data
handling the malware uses 128-bit AES encryption, while the
keys are hard coded in the binaries. Interestingly, Babar uses
the same technique as Bunny for obfuscation of a subset of
APIs, which are loaded dynamically at runtime. A different
hashing algorithm is used though: the authors have adapted

the SHA-1 algorithm to generate 32-bit hashes instead of the
usual 160-bit hashes.

As seen before in Bunny, enumeration of installed security
solutions is performed by querying WMI. The SHA-256
hashes of the names of installed products are compared
against a hard-coded set of hashes.

System infi ltration
The Babar dropper drops an implant to the application data
folder of the current user and spawns a regsvr32.exe process
to load the implant. The implant will inject itself into a
randomly chosen desktop process, and from there propagate
further to a maximum of two more victim processes as a
means of persistence. Babar operates from a main instance
which will be the fi rst invaded process, and keeps two backup
instances. Should the carrier process of the main instance be
terminated, one of the child instances will take over as the
main one.

Code injection is performed in the classical fi le infector way,
by mapping a shared object to the memory of the victim
process and invoking a function stub as remote thread. The
function stub loads the Babar DLL and calls one of its
exports, with the export name communicated via shared
memory. This way the Babar DLL can propagate silently
among remote processes.

Regsvr32.exe, along with the according parameters to load
the Babar implant, will be invoked through a registry key at
startup. It is curious, though, that the loading process remains
in memory and is never terminated.

Functionality

The spying activities are performed either locally through the
Babar instance or via a global Windows hook invading all
processes running on the same desktop. Instance-local
capabilities are basic, spying on window names or snooping
on the clipboard data, while the global hooks manage to steal
information directly from Windows API calls.

A summary of the capabilities is as follows:

• Logging keystrokes

• Taking screenshots

• Capture of audio streams from softphone applications

Figure 2: Babar’s mode of operation.

THE ELEPHANT IN THE ROOM MARSCHALEK

326 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

• Stealing of clipboard data

• Capture of system and user default language, keyboard
layout

• Capture of names of desktop windows.

The rootkit component

The Babar implant applies a global Windows hook to load its
DLL into the process space of other processes. This
effectively means that code provided by the hooking DLL
gets executed whenever an arbitrary desktop process receives
an event of a type specifi ed by the hook.

Babar installs hooks for types 2 and 3, which are
WH_KEYBOARD and WH_GETMESSAGE. This way
Babar has control over all keyboard and message events
received by any application on the same Windows desktop.

Once in the context of a desired target process, the malware
goes on to hook specifi c APIs of interest. This is achieved by
applying the detours technique, which implements trampoline
functions to be invoked every time a hooked API is called
[10]. To achieve this, Babar rewrites the in-memory code for
target APIs. A call to a hooked API then results in the calling
application invoking a trampoline function, which performs
the malicious activity and then passes control on to the
legitimate API.

Babar supports trampoline functions for APIs involved in
Internet communication, fi le creation and sound processing.

WSARecv DirectSoundCaptureCreate waveOutClose

Send DirectSoundCreate8 waveOutWrite

Closesocket DirectSoundCaptureCreate8 waveInOpen

CreateFileW CoCreateInstance waveInClose

DirectSoundCreate waveOutOpen waveInAddBuffer

Table 4: Supported functions.

Babar’s hooking attempts are limited to a list of processes and
document extensions, defi ned in the malware confi guration:

• Internet communication: iexplore.exe, fi refox.exe, opera.
exe, chrome.exe, Safari.exe, msnmsgr.exe

• File creation: excel.exe, winword.exe, powerpnt.exe,
visio.exe, acrord32.exe, notepad.exe, wordpad.exe.txt,
.rtf, .xls, .xlsx, .ppt, .pptx, .doc, .docx, .pdf, .vsd

• Media: skype.exe, msnmsgr.exe, oovoo.exe, nimbuzz.exe,
googletalk.exe, yahoomessenger.exe, x-lite.exe.

Calling home
The Internet communication module of Babar is located in a
separate export, which will be invoked through remote thread
injection at runtime. The analysed sample of Babar comes
with two hard-coded C&C server domains:

• http://www.horizons-tourisme.com/_vti_bin/_vti_msc/
bb/index.php

• http://www.gezelimmi.com/wp-includes/misc/bb/index.
php

At the time of analysis the server pointed to by horizons-
tourisme.com was still hosting bits of C&C infrastructure
used by Babar. With directory traversal activated, researchers
from ESET were able to pull a minimalistic directory
structure, showing directories named as follows:

• bb28

• d13

• tfc422

Clearly, the directory belonging to Babar is ‘bb28’. Meanwhile,
‘tfc422’ matches with strings found in the NBOT malware, i.e.
‘TFC_’. The purpose of the ‘d13’ directory remains unknown,
although it is assumed that it serves for requests of a third
malware family named ‘Dino’. The only script inside the bb28
directory is a .php script named confi g.inc, which contains
variables that look familiar from Babar’s confi guration, such as
‘user’, ‘id’ or ‘seq’ (see Figure 3).

Casper

Thorough investigation led to the discovery of a handful of
other related binaries, among which was an implant which
obviously carries the signature of the infamous cartoonists.
After Bunny and Babar, a third family with a cartoon
character name caught our attention, named Casper, as in
Casper, the Friendly Ghost.

The analysed binaries share several parts of source code with
the other cartoon families and also show some techniques we

Figure 3: Excerpt from PHP script found on Babar’s C&C.

THE ELEPHANT IN THE ROOM MARSCHALEK

327VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

have already seen before. The list of features that some or all
of the families have in common is as follows:

• Proxy bypass code

• Enumeration of installed anti-virus solutions through WMI

• Embedded and encrypted confi guration in XML format

• Partial API name hashing, Casper sharing the algorithm
with NBOT and Bunny

• Payload deployment by remote thread injection through
mapping of section objects

• Use of unhandled exception fi lters, calling ExitProcess in
the case of an exception.

An interesting twist to Casper is that its binaries have been
seen before, spread in a watering hole attack in Syria in April
2014. Researchers from Kaspersky have reported on the
watering hole and two zero-day exploits that were involved
[8], and researchers from ESET provided the necessary link
between Casper and the watering hole [7]. The attack had
been launched from http://jpic.gov.sy/, a website operated by
the Syrian Ministry of Justice.

Plainly spoken, Casper is reconnaissance malware aiming to
gather sensitive information about the target system and loading
second-stage malware should the target be of interest. It is a
typical approach in targeted attacks to operate in several stages
while using dedicated types of malware for different tasks.

In fact, the analysed binaries have a very similar mode of
operation to related families. The malware dropper will place
an infector binary named ‘aiomgr.exe’ into a directory named
‘INTEL Audio Interface Device Manager’, which is located
in the system’s common program fi les folder. The naming
convention, which resembles that of Windows services and
applications, has been seen before in related families, with
artefact names such as ‘netmgr’, ‘ntrass’, ‘IPSec’ and
‘MSSecurity’. Once started, the Casper infector spawns a
svchost.exe process and injects its malicious payload. This is
achieved by mapping a shared memory object to the remote
process, which is then invoked as a remote thread. Casper
then goes on to collect information about the target system,
including the following:

• Operating system version and system architecture

• Default web browser

• Country and organization info from the system settings

• Running processes

• Applications registered for auto-run

• Installed applications.

Casper’s C&C server is the same as the watering hole server,
http://jpic.gov.sy/. This is a rather uncommon practice, but
given that acquisition of compromised web servers in a
region like Syria is considerably diffi cult, the decision of the
attackers seems plausible.

Casper, like Bunny and Babar, comes with the ‘AV strategy’
feature, where the installed anti-virus product is queried through
WMI and, based on the specifi c product, a dedicated system
infi ltration technique is chosen. This means the process injection
technique differs between strategies, as well as persistence
technique implementation and the overall decision as to
whether or not to proceed with infection. A detailed analysis of
Casper’s strategy can be found at ESET’s research blog [7].

INTER-FAMILY RELATIONS
From a binary analyst’s perspective, there is little room for
doubt that all the discussed binaries stem from the same
authors. In practice, this is hard to prove though – explanation
of relationships among binaries is often tedious and hard to
understand, even for individuals with expertise in binary
analysis.

In general, a binary itself does not give away who wrote it,
who controlled it, who the infected victims were or what the
aim of the operation that involved it was. A standalone binary
does not even give away which operation involved it. We
cannot conclude from a binary its context. What we can do,
though, is determine related binaries, which in most cases
helps a great deal in the investigation.

In the case of the SNOWGLOBE malware, a number of binary
attributes from different domains can be derived, which in
conjunction proves that the families all stem from the same
authors. The matrix shown in Table 5 provides an overview.

Attribute NBOT Bunny Babar Casper
Shared code Proxy bypass x x x x

AV enumeration - x x x

Timestamp formatting x x x x

Shared techniques Encrypted confi g - x x x

Partial API hashing x x x x

Dynamic API loading technique x x x x

AV evasion ‘strategies’ - x x x

Persistence technique x x x -

Exception handling x x x x

String constants Typo in WMI handling error message - x x -

English grammar mistakes x x x x

Capital letter string constants x x - x

Artefacts File/Regkey naming scheme x x x x

Shared C&Cs x x x -

French-language domains/websites - x x -

Table 5: Overview of attributes shared between families.

THE ELEPHANT IN THE ROOM MARSCHALEK

328 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

The families share code, which despite differences in compiler
settings can certainly be identifi ed as identical on a source-code
level. The discovery of proxy settings, enumeration of anti-
virus products via WMI, and the formatting of timestamps for
log fi les are three modules which were frequently found. On
the list of shared techniques are: the hashing of a subset of
APIs, occasionally even with the same algorithm and key; the
‘strategies’ in system infi ltration based on installed anti-virus
products; and the habit of encrypted confi gurations hard coded
in the binaries, which in clear text resemble XML format.
String constants formatted in the same fashion or coming with
equally misspelled vocabularies are considered a strong link as
well. Last but not least, shared C&C server domains are a clear
indication that not only the same authors but also the same
operators are behind the malware families.

As seen in this example, the attribute extraction and matching
technique shows an obvious link among the families. This is
perhaps as close as research can get to binary stylometry, the
objective of prooving that a set of binaries stems from the
same authors. A credible link can only be built by leveraging
attributes from different domains. By choosing attributes from
domains such as implementation details, techniques used,
coding habits and operational infrastructure, the risk of being
caught up in comparing unrelated entities such as compiler
behaviour or sole infrastructure is minimized.

ATTRIBUTION ASPECTS
Little doubt remains that the analysed binaries match with
descriptions of operation SNOWGLOBE, conducted by
Canadian intelligence [1]. CSEC mentions that one of the
implants comes with the internal name ‘Babar’, which
matches with the .pdb path in the Babar64 binaries at hand.
Also, the beaconing contains the misspelled ‘MSI’ instead of
‘MSIE’ in the User-Agent string, as outlined in the leaked
document. Furthermore, the slides mention a ‘locale option of
artefact within spear-phishing attack set to “fr_FR”’. While
no details of spear-phishing attacks are known, the same
locale has been found within the NBOT binaries as a setting
for HTTP request headers.

Slide number 10 of the CSEC document says that the C&C
infrastructure ‘seems to be found primarily, but not
exclusively on French-language sites’. This holds true for a
number of domains, especially for Bunny’s and Babar’s
remote servers. Keep in mind though, that this helps solely in
underlining the statement that CSEC was analysing the same
binaries, not that the actor was French.

All three families give the impression of having been
developed by a team of skilled software developers, rather
than being the product of a malware author operating in the
criminal underground. What’s more, none of the binaries
makes any attempt to hide its intentions, which is a common
trait among targeted malware. Heavy obfuscation or the use
of crypters easily raises the suspicions of heuristics-based
malware scanners. Another interesting fact is that the
attackers used at least one 0-day exploit in the spreading of
Bunny in 2011 and at least two more in 2014 in the spreading
of Casper. The use of 0-day exploits itself does not indicate
whether or not a nation state is involved, but it does suggest
that the actor had a good amount of resources available, as
well as a certain amount of determination.

However, besides the CSEC document there was no obvious
indication that the discussed malware families were created by

or for French intelligence services. As is often the case with
digital crime, the chances are high that no proof will ever be
found and research will be limited to educated guesses.

PECULIARITIES AND FUN FACTS

Bunny possesses the capability to upload and download fi les
via HTTP. Successful downloads are handled with status code
418, which is not defi ned in the RFC of HTTP, but is
specifi ed in the RFC April Fools Day edition RFC2324.
HTTP status code 418 says ‘I’m a teapot’.

The partial obfuscation of API names with a weak hashing
algorithm does not serve well as protection from binary
analysts as it is easy to bypass. However, it does make sense
to trick malware detection solutions which apply heuristics
based on static analysis of imports.

There is a typo in the registry key name
‘isakmpAutoNegociate’ (should be ‘isakmpAutoNegotiate’),
which gives away the non-legitimate use of what seems to be
a standard Windows key. For malware writers it makes sense
to use legitimate-looking names for artefacts on the system to
trick analysts. In order to make full use of the stealth effect
though, correct spelling of the names is crucial.

One of the Babar C&C domains is an Algerian travel agency,
with offi ce in Bir Mourad Raïs. A contact with close ties to
Algeria has noted that the existence of this travel agency is
highly unlikely, and that even if it did exist, the possession of
a domain hosted in the United States is highly unlikely for an
Algerian company. Thus we conclude that this domain, and
maybe other seemingly legitimate domains, are fake web
representations not operated by real-world companies.

FUTURE RESEARCH

Bits of information from the leaked CSEC slides indicate the
existence of so far unknown malware and that the entire
operation SNOWGLOBE is much bigger than currently
known. It is clear that further investigation will eventually
lead to the uncovering of more pieces of the puzzle.

Also, the analysis of Tafacalou, Dino and the likely related
NGBD malware remains for future research. Further
victimology needs to be conducted in order to determine the
outreach of the SNOWGLOBE operation and currently
targeted individuals.

ACKNOWLEDGEMENTS

My deepest gratitude goes to a number of fellow researchers
involved in the investigation of the SNOWGLOBE malware:
Paul Rascagnéres, Joan Calvet, Morgan Marquis-Boire,
Sebastien Larinier, Matthieu Suiche, Alexandre Dulaunoy,
Raphäel Vinot, Fred Arbogast, Alexei Bulazel and Michael
Shalyt.

REFERENCES

[1] SNOWGLOBE: From Discovery to Attribution.
Communications Security Establishment Canada.
http://www.spiegel.de/media/media-35683.pdf.

[2] Animals in the APT Farm. Kaspersky Securelist.
https://securelist.com/blog/research/69114/animals-
in-the-apt-farm/.

THE ELEPHANT IN THE ROOM MARSCHALEK

329VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

[3] Marschalek, M. EvilBunny: Suspect #4.
https://drive.google.com/fi le/d/0B9Mrr-
en8FX4M2lXN1B4eElHcE0/view.

[4] Dillon, B. Analysing CVE-2011-4369.
http://blog.9bplus.com/analysing-cve-2011-4369-
part-one/

[5] Marschalek, M. Shooting Elephants.
https://netzpolitik.org/wp-upload/Elephantosis.pdf.

[6] Untersinger, M.; Follorou, J. Quand les Canadiens
partent en chasse de « Babar ». Le Monde.
http://www.lemonde.fr/international/
article/2014/03/21/quand-les-canadiens-partent-en-
chasse-de-babar_4387233_3210.html.

[7] Calvet, J. Casper Malware: After Babar and Bunny
another Espionage Cartoon.
http://www.welivesecurity.com/2015/03/05/casper-
malware-babar-bunny-another-espionage-cartoon/.

[8] Zakorzhevsky, V. New Flash Player 0-day
(CVE-2014-0515) used in watering-hole attacks.
Kaspersky Securelist. http://old.securelist.com/en/
blog/8212/New_Flash_Player_0_day_CVE_2014_
0515_used_in_watering_hole_attacks.

[9] The Lua Project. http://www.lua.org/.

[10] Hunt, G.; Brubacher, D. Detours: Binary Interception
of Win32 Functions. Proceedings of Usenix
conference ‘99. http://research.microsoft.com/
pubs/68568/huntusenixnt99.pdf.

APPENDIX

Sample hashes

MD5 SHA-256
Nbot

8132ee00f64856cf10930fd72505cebe 82daadf1558692587f82d6ad545b7e6ba2c98a88a20604e2f074f39248aa2712

2a64d331964dbdec8141f16585f392ba a1973790e277b489110ae8ed625c13c2e9a79afaa2aed5d27904dcfa46481ae3

e8a333a726481a72b267ec6109939b0d 4f4b484acc053687d6e4365f0f19e926b1a44cc665182aa6b9417fa43264b240

51cd931e9352b3b8f293bf3b9a9449d2 43861501e7e7bb546b55a9323d1cff132dddb750b3e86823af7ea08d45357e28

d5a80844c54059654688ae7abfc1fad9 5ef78d7c2d3b7201e540e6c1909174c7133fca8bafc44ac53ce275e04559c393

Bunny
3bbb59afdf9bda4ffdc644d9d51c53e7 be14d781b85125a6074724964622ab05f89f41e6bacbda398bc7709d1d98a2ef

b8ac16701c3c15b103e61b5a317692bc 7d1e5c4afb1682087d86e793b3fc5a8371dc7c28e27e7196e3b258934f6bafb5

c40e3ee23cf95d992b7cd0b7c01b8599 c6a182f410b4cda0665cd792f00177c56338018fbc31bb34e41b72f8195c20cc

eb2f16a59b07d3a196654c6041d0066e c9197a1fa5f911d11c51a66cfc1424063ed80547ca3f8637b77d06f36fc96e7d

Babar
4525141d9e6e7b5a7f4e8c3db3f0c24c aa73634ca325022dd6daff2df30484ec9031939044cf4c2a004cbdb66108281d

9fff114f15b86896d8d4978c0ad2813d c72a055b677cd9e5e2b2dcbba520425d023d906e6ee609b79c643d9034938eb

8b3961f7f743daacfd67380a9085da4f 82e6f9c10c7ba737f8c79deae4132b9ff82090ccd220eb3d3739365b5276c3c8

4582D9D2120FB9C80EF01E2135FA3515 57437a675cae8e71ac33cd2e001ca7ef1b206b028f3c810e884223a0369d2f8a

4592f10c654d613080fe9fa3c1591f20 213bddc35d737867bb168aaf0fb4165bf1afd2216d7662344402f08318650038

Casper
4d7ca8d467770f657305c16474b845fe 8e6402c8703e9f10493222a26afeb0fc575bb879d6c82d89c1a79aa75be645d0

cc87d090a1607b4dde18730b79b78632 daa56e7acd5fb69ecefdbf5179c5ef4776ccc41ebe7e14920f11b84678c83a00

