
1/13

By oR10n

oR10n Labs
or10nlabs.tech/reverse-engineering-the-mustang-panda-plugx-loader

2020-05-24
HomeReverse EngineeringReverse Engineering the Mustang Panda PlugX Loader

Reverse Engineering the Mustang Panda PlugX Loader

Hello everyone! In this series, we will be diving into the inner workings of a new-ish variant of
PlugX malware gaining traction around the Asia Pacific region for the past few months.

Introduction

PlugX is a fully featured remote access trojan (RAT) with various capabilities such as file
upload/download, file operations, registry operations, process operations, keystroke logging,
capturing screenshots or videos, and initiating remote shell on compromised systems.

Based on the analysis reports released by two security companies – Anomali and Avira, this
new variant is primarily used by a suspected China-based APT group being referred to as
"Mustang Panda", to target organizations primarily located in the Asia Pacific region.

For this post, we will reverse engineer the loader component of the new variant to
understand how it loads, decrypts, and executes the encrypted payload in memory. Then, we
will create a quick-and-dirty python script to automate the decryption process so we won’t
need to run the loader every time we want to do a deeper analysis on a payload or perform
bulk analysis. Lastly, I will show you one of the ways to hunt for new encrypted payloads
uploaded in VirusTotal.

https://or10nlabs.tech/reverse-engineering-the-mustang-panda-plugx-loader
https://or10nlabs.tech/
https://or10nlabs.tech/category/re/
https://www.anomali.com/blog/china-based-apt-mustang-panda-targets-minority-groups-public-and-private-sector-organizations
https://insights.oem.avira.com/new-wave-of-plugx-targets-hong-kong/


2/13

But before we get our hands dirty, let us first take a look on how PlugX is initially delivered
and executed on a system.

PlugX Delivery and Execution

As you might have known from previous analysis reports, PlugX is primarily made up of three
main components:

1. A legitimate executable used for loading and executing a malicious DLL
2. A malicious DLL used for decrypting, loading, and executing an encrypted payload
3. An encrypted payload containing the main RAT functionalities

On the earlier variants of PlugX, these three components are typically delivered via phishing
emails containing an attached self-extracting RAR (SFX) archive, acting as a dropper for
these components. However for this variant, this RAR archive was replaced by a malicious
LNK file as seen on the Anomali analysis report.

Note: Logrhythm released an article on April 2018, detailing the evolution and variants of
PlugX over the years.

A general overview of the delivery and execution flow looks like this:

Reverse Engineering the Loader

For our analysis, we will take a deeper look at a sample discovered by Avira in the wild.
These are the details of the PlugX components for our analysis:

Component Filename MD5

https://logrhythm.com/blog/deep-dive-into-plugx-malware/


3/13

Component Filename MD5

Legit exe AdobeInstall.exe c70d8dce46b4551133ecc58aed84bf0e

Loader hex.dll eafaba7898e149895b36ee488e3d579c

Payload adobeupdate.dat 58bdf783da4c627d2f13612a09a9b5a8

Let’s dive in!

As a first step in reverse engineering, it’s a good practice to perform static analysis first to
gain a general overview of the sample that can serve as a guide through out the process.

Checking the sample on CFF explorer shows us that it has only 1 Export function named
CEFProcessForHandlerEx.

It also has a very few Import functions which suggests that this sample dynamically loads
Win32 API functions at runtime via GetModuleHandleA and GetProcAddress.



4/13

Additionally, we can also run a string utility to check out the strings on the sample. I normally
use FIreEye’s FLOSS tool which is a string utility on steroids. Aside from displaying static
ASCII/UNICODE strings, it can also display stack strings and automatically decode strings
that are encoded with simple and well known algorithms.

Here are some of the interesting strings FLOSS found on the sample:

LocalFree 
LocalAlloc 
GetProcAddress 
GetModuleHandleA 
VirtualProtect 
CloseHandle 
CreateFileA 
ReadFile 
\adobeupdate.dat 
GetModuleFileNameA 
kernel32 
GetFileSize 
lstrcatA 
strlen 

Based from these strings, we can come up with a hypothesis on the general flow and
functionality of the sample:

Dynamically loads Win32 API functions from kernel32 at runtime via
GetModuleHandleA and GetProcAddress
Obtains the full path of the running process via GetModuleFileNameA
Performs string operations via strlen and lstrcatA
Allocates a memory buffer via LocalAlloc
Reads a file named adobeupdate.dat via CreateFileA, GetFileSize, ReadFile, and
CloseHandle
Marks an allocated memory buffer as executable using VirtualProtect

Next, we can load the sample on a disassembler like IDA and a debugger like x32dbg. For
debugging, you can open AdobeInstall.exe and set a DLL breakpoint on hex.dll in order to
debug it.

Note: AdobeInstall.exe loads hex.dll from the same directory and PlugX have taken
advantage of this to load the malicious DLL as a form of anti-detection/anti-analysis
technique.

https://github.com/fireeye/flare-floss


5/13

Since there’s only one export function in the DLL, it is fairly safe to assume that the sample
only has one purpose – to load, decrypt, and execute the encrypted payload.

We can easily follow the export function in IDA and dertermine that the main function of the
DLL lies in sub_10001354.

The first few lines of disassembly will show you "\adobeupdate.dat", "kernel32", and
"GetModuleFileNameA" being initiated as stack strings. Usage of stack strings is a common
anti-analysis and anti-detection technique employed by malware. This is typically used to
prevent certain strings from showing up on basic string utilities.



6/13

After initiating the stack strings, the address of GetModuleFileNameA is dynamically
resolved via GetModuleHandleA and GetProcAddress. Upon resolving its address in
kernel32, GetModuleFileNameA is called.

Running through it in x32dbg shows that GetModuleFileNameA returned the full path of the
binary for the running process – which is "C:\Users\user\Desktop\AdobeInstall.exe".

Next, the full path and the character "\" is passed as a parameter in a function
sub_10001000. This function splits the full path using "\" as delimiter and returns the
address of the filename – which is "\AdobeInstall.exe".

A few lines after, the first character of "\AdobeInstall.exe" is replaced by 0x00, thereby
splitting the full path into two different strings in memory "C:\Users\user\Desktop" and
"AdobeInstall.exe".

Next, the address of lstrcatA is also resolved dynamically using the same
GetModuleHandleA and GetProcAddress technique mentioned earlier. lstrcatA is used to
form the full path of the encrypted payload by concatenating "C:\Users\user\Desktop" and
"\adobeupdate.dat".



7/13

 

Now that the full path of the encrypted payload is formed, a call to a function sub_10001084
is made in order to read the file contents of the encrypted payload, get the file size, and load
the contents into a buffer in memory.

The following arguments are pushed into the stack before the function call is made:

Looking closely at the disassembly of the function, we can see that same as before, the
address of CreateFileA, GetFileSize, ReadFile, and CloseHandle are resolved dynamically
using the same GetModuleHandleA + GetProcAddress technique.

After resolving the addresses of the functions, a call to each one is made in the following
order:

CreateFileA to open the encrypted payload
GetFileSize to obtain the file size of the encrypted payload
LocalAlloc to allocate a buffer in memory
ReadFile to read the contents of the encrypted payload and place it in the buffer



8/13

After making these function calls, the address of the buffer containing the contents of the
encrypted payload and the file size are stored in the arguments pushed to the stack earlier.
Then finally, a call to CloseHandle is made and EIP returns to the main function.



9/13

Just a few lines of disassembly after, we can see some instructions assigning the address of
the buffer to a new variable and that variable being passed as a parameter to strlen.

These instructions essentially obtain the encryption key from the encrypted payload and
determine its length via strlen. As you might remember, a string is an array of characters
terminated with a NULL byte. So passing the address of the encrypted buffer to strlen will
give us the length of the first string it sees.

Later on, we will see how this string is used as a key for the decryption routine.

A few lines after, we can see a sub operation being performed on the file size using the
determined key size to compute the file size of the payload without the key and the NULL
byte.

Moving down further on the main function, we can immediately see that there is a loop
before it proceeds to the final set of instructions.

What this loop does is basically read the remaining bytes after the encryption key from the
original buffer and copy it to a new buffer.



10/13

Right after the loop, the key size, key, file size, and new buffer is pushed to the stack and a
call to a function sub_100018D0 is made. This is the function that contains the algorithm to
decrypt the encrypted payload.

Looking closely at the disassembly of the function, we can immediately determine that the
algorithm performs XOR using a multi-byte key.



11/13

Running this on a debugger, shows that the decrypted payload is a PE file.

Going back to the main function after the call to the decryption function, we can see the
address of VirtualProtect being resolved using the same GetModuleHandleA +
GetProcAddress technique.

Upon resolving the address, we can see a call to VirtualProtect to change the access
protection of the buffer containing the decrypted payload to 0x40
(PAGE_EXECUTE_READWRITE).



12/13

Lastly, we can see a call to the address of the buffer to execute the decrypted payload.

..and there you have it folks, PlugX is now loaded to memory and executed on the system.

Automating the payload decryption

To make our lives easier, I created this quick-and-dirty python script to automatically decrypt
payloads for this variant:

Hunting for encrypted payloads in VirusTotal

I’m also sharing this VT hunting YARA rule that I came up with to hunt for encrypted
payloads associated with this variant. The rule is based on the filenames mentioned on the
Avira report.

You may get some false positives on this one, but together with the python script above, this
can be an effective approach to hunt for encrypted payloads that may otherwise go
unnoticed on VT.

That’s it guys! I really hope you learned something new today and as always, thank you for
reading my blog!

PS: Stay tuned for the next post on this series where we’ll reverse engineer some interesting
parts of the PlugX payload itself. Cheers!



13/13

Tags:MustangPanda, PlugX, Reverse Engineering

https://or10nlabs.tech/tag/mustangpanda/
https://or10nlabs.tech/tag/plugx/
https://or10nlabs.tech/tag/reverse-engineering/

