
1/10

MontysThree: Industrial espionage with steganography
and a Russian accent on both sides

securelist.com/montysthree-industrial-espionage/98972/

Authors

 Denis Legezo

In summer 2020 we uncovered a previously unknown multi-module C++ toolset used in
highly targeted industrial espionage attacks dating back to 2018. Initially the reason for our
interest in this malware was its rarity, the obviously targeted nature of the campaign and the
fact that there are no obvious similarities with already known campaigns at the level of code,
infrastructure or TTPs. To date, we consider this toolset and the actor behind it to be new.
The malware authors named the toolset “MT3”; following this abbreviation we have named
the toolset “MontysThree”.

https://securelist.com/montysthree-industrial-espionage/98972/
https://securelist.com/author/denislegezo/


2/10

Following the MT3 abbreviation we named the toolset MontysThree

The malware includes a set of C++ modules used for persistence, obtaining data from a
bitmap with steganography, decryption of configuration tasks (making screenshots,
fingerprinting the target, getting the file, etc.) and their execution, and network
communications with major legitimate public cloud services such as Google, Microsoft and
Dropbox. MontysThree is configured to search for specific Microsoft Office and Adobe
Acrobat documents stored in current documents directories and on removable media. The
malware uses custom steganography and several encryption schemes: besides custom
XOR-based encryption, the modules rely on 3DES and RSA algorithms for configuration
decryption and communications.

MontysThree contains natural language artifacts of proper Russian language and
configuration that seek directories that exist only on Cyrilic localised Windows versions.
While most external public cloud communications use token-based authorisation, some
samples contain email-based accounts for them, which pretend to be a Chinese lookalike.
We consider these names to be false flags. Many more artifacts suggest that the malware
was developed by a Russian-speaking actor and is targeting Cyrillic Windows versions.

How the malware spreads

The initial loader module is spread inside RAR self-extracting archives (SFX) with names
related to employees’ phones list, technical documentation and medical test results. There
are no lures, only PE files (masquerading a .pdf or .doc file), but such titles are now a typical
trick used in spear-phishing – “corporate info update” or “medical analysis results”. One of
the loaders (MD5 da49fea229dd2dedab2b909f24fb24ab) has the name “Список телефонов

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/10/06171929/image1.jpg


3/10

сотрудников 2019.doc” (“Employee phone list”, in Russian). Other loaders have the names
“Tech task.pdf” and “invitro-106650152-1.pdf”. The latter is the name of a medical laboratory
in Russia. All of them seem like typical spear-phishing tricks. The SFX script is as follows:

Path=%TEMP%\
SavePath
Setup=rundll32.exe "invitro-106650152-1.pdf",Open
Silent=1
Overwrite=1
Update=U
Delete=invitro-106650152-1.pdf

On execution, the SFX script calls the Open() function (we’ll return to this exported name) of
the decompressed loader executable in the %TEMP% directory and deletes it. Judging by
the filename, it most likely imitates medical analysis results, given that “Invitro” is a prominent
medical laboratory in Russia. This initial PE32 is the first loader module.

How modules work and communicate

Execution flow of MontysThree’s modules

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/10/06172926/image2-Copy.jpg


4/10

The diagram above shows the overall execution flow of the MontysThree modules. Four
modules and their features are listed in the table below. The modules share common
communication conventions. When dealing with shared data, such as the configuration and
detailed execution log, the malware initializes the structure in thread local storage (TLS),
which in its turn refers to heap structures. Interestingly, besides RAM, the execution log is
stored on disk in a file, encrypted with a one-byte XOR.

The entry point DllEntryPoint() works just like a construtor, which allocates the structure with
TlsAlloc() and saves it in a global variable. Modules must export a function named Open(),
which takes no parameters (but could parse the command line) and returns a four-byte error
code.

Module name Features

Loader This anti-detection module is in charge of custom steganography, kernel
module decryption.

Kernel This kernel (main) module is in charge of decrypting the config XML, then
parsing and executing the corresponding tasks in it.

HttpTransport Network module to communicate with Google, Microsoft, Dropbox
legitimate public cloud services, as well as with WebDAV sources. The
module is able to make requests through RDP and Citrix in a naive way
using legitimate clients.

LinkUpdate Persistence module is a Windows Quick Launch .lnk modifier. With this
naive persistence method users would run the Loader module by
themselves every time along with the browsers from the Windows Quick
Launch toolbar.

Now let’s take a look how the developers mixed strong modern cryptography standards with
custom XOR-based ones.

Task Encryption in use

Steganography To decrypt the kernel module the initial loader uses a custom algorithm.

Logs encryption The malware logs exist in memory as well as in encrypted files on disk
at the same time. In RAM the developers store the logs in plaintext, on
disk they use one-byte XOR.

Config
encryption

Kernel module uses strong encryption algorithms. Configuration data is
encrypted with 3DES and the key is encrypted using RSA. All the keys
– RSA public/private as well as encrypted 3DES – are stored inside the
module’s .data section.



5/10

Network module
encryption

Initially encrypted HttpTransport is made of four binary blobs stored in
the kernel module. The kernel concatenates them and decrypts them
with a custom XOR-based algorithm. A round key of four bytes length
is used

Communications
encryption

The encryption algorithm is RSA using the same public and private
keys stored inside the kernel module .data section.

Loader module: Bitmap decryptor and next stage launcher

If the filename of the bitmap containing the steganography-encrypted data is provided to the
loader as an argument, the loader decrypts the next stager from the pixel array. In the first
iteration, it extracts the steganography parameter data. To do so, the algorithm takes the last
bits of the bytes.

The IID, IParam and ISize parameters are kept in the first 384 bytes of the pixel array,
meaning that only the last bit of every pixel array’s byte is needed. As a result, the module
gathers 48 bytes of steganography configuration structure with the fields, determining the
next decryption stages.

Field Offset Features

IID 0x00 Determines one or two decryption layers would apply to the following
pixel array.

IParam 0x04 Determines which bits from pixel arrays bytes would form the next
kernel module.

ISize 0x28 The decrypted kernel module’s resulting size.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/10/06173017/image3.png


6/10

After extracting the steganography parameters, the next stager is decrypted using a two-step
algorithm. Firstly, the IParam algorithm chooses the bits from the pixel array’s bytes. Then, if
IID equals 2, a custom dexoring operation using a four-byte round key is applied on the
gathered bytes. The initial key for the first four-byte decryption has the hardcoded value
0x23041920. Then the formula for the round XOR key for the next bytes is:
key ^= 8 * (key ^ (key << 20))

We consider this steganography algorithm to be custom made and not taken from some
open source third-party repository. Surprisingly, the decryption result is not injected into some
process’s memory, but dropped to disk as a file named msgslang32.dll. The loader then
simply uses the Windows API functions LoadLibraryW() and GetProcAddress() to run the
next stager’s Open() function, as we previously saw with the loader module.

Kernel module: Config decryptor and tasks dispatcher

The kernel module contains three encryption keys used for configuration decryption and C2
communications. Public and private RSA keys are stored in the .data section as
PUBLICKEYBLOB and PRIVATEKEYBLOB respectively. These are used to encrypt C2
communications and to decrypt the 3DES key as well. The third 3DES key is also stored in
the .data section in its encrypted form; this key is used to decrypt an embedded .cab archive
containing the XML config. To decompress the .cab archive the module uses Window’s
standard system utility, “expand.exe”. We’ll see another common software usage in the
HttpTransport module.

The XML configuration contains valuable data that helps us understand the campaign
operator’s interest. It is structured using various “tasks” for the malware, such as
fingerprinting the target using its OS version, process list and capturing screenshots; but also
grabs the list of users’ recent documents with any of the extensions .doc, .docx, .xls, .xlsx,
.rtf, .pdf, .odt, .psw, .pwd from the several recent documents directories in
%USERPROFILE% and %APPDATA%, including %APPDATA%\Microsoft\Office\Последние
файлы. This folder name translates to “Recent files” in Russian, suggesting that the malware
is aimed at Cyrillic localised Windows versions.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/10/06173048/image4.png


7/10

Config holds the tasks scheduling (screenshot top), access tokens (here Dropbox, redacted),
directories and extensions of interest. One directory exists only on Cyrillic Windows localized
versions

We observed several Cyrillic text strings such as “Снимок рабочего стола” (desktop
snapshot), “Системная информация” (system information), “Время выхода” (exit time).

Config tasks description starts with MT3D and contains proper short phrases in Russian

The decrypted config structure is as follows:

Field Size Content

Magic 4 bytes MT3D. All parsed files must have this as a prefix to be valid

Creation
time

4 bytes Timestamp, task config creation time stored as Epoch time

Header
size

4 bytes Header size has to be greater than 18. Observed value is e.g. 0x7E

XML size 4 bytes XML task description has to be greater than zero. Observed value
is e.g. 0x662D

XML body XML
size

The task’s description and schedule in XML format

While the samples we looked at didn’t contain RTTI information, the execution logs allowed
us to recover the C++ class names. After the kernel module parses the tasks from the
configuration into memory, the main class that processes the instruction is CTask. CTask’s
IoControl() method is in charge of handling the corresponding tasks and in turn runs the
following methods:

CTask method Features

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/10/06173144/image5.png


8/10

MainIoControl() Handler of “Main” task in XML. In case of a RESET command the
file, serving as a “pipe”, will be deleted. Any other command here will
be logged, but not executed

FileIoControl() Handler of “File” task with PUT, DEL, FIND, WATCH,
WATCH_REMOVABLE, RUN and LOGS subcommands

SysInfoIoControl() Handler of “SysInfo” task with SCREENSHOT, INFO and TASKLIST
subcommands

HttpIoControl() Handler of “Http” task with SENDRECV subcommand

GDriveIoControl() Handler of “GDrive” task with SENDRECV subcommand

DropboxIoControl() Handler of “Dropbox” task with SENDRECV subcommand

All methods used for external communications first decrypt the HttpTransport module and
use it to transmit the corresponding data RSA-encrypted. The RSA keys in use are the same
aforementioned keys used to decrypt the 3DES config key. In a separate Window procedure,
the malware monitors if a USB device is plugged in, searching for files of interest.

HttpTransport module: network tasks

The HttpTransport module exists as four encrypted chunks of data inside the .text section of
the kernel module. When the kernel needs to communicate, it decrypts this module and, as
usual for MontysThree, runs the Open() function, passing command line arguments.

Depending on the arguments transmitted from the kernel module, the module may upload or
download content using RDP, WebDAV, Citrix and HTTP protocols. Downloading data from
Google and Dropbox public services using user tokens is implemented in HttpTransport as
well. In case of HTTP GET/POST requests, the malware would receive a steganography
bitmap picture using Windows API HTTP-related functions from a corresponding URL.

The aforementioned communication protocols themselves aren’t implemented inside the
module. The malware authors make use of legitimate Windows programs like RDP, Citrix
clients and Internet Explorer already installed on the target’s machine. For example, the
module executes a task to send some data to a URL and receive the reply through an RDP
connection as follows: edit the .rdp file to silently run Internet Explorer on the remote
machine; paste the URL to the browser via the clipboard; wait and paste the contents to the
opened web page via the clipboard as well; wait and receive the result through the clipboard
again.

To copy data, the malware literally sends Ctrl+C, Ctrl+V and Ctrl+A. Perhaps it’s the first time
we have seen such a method of “RDP communication”. The Citrix communication is done
using a similar procedure: the malware doesn’t implement the protocol but rather searches



9/10

for Windows Quick Launch .lnk for XenApp pnagent.exe, runs Internet Explorer remotely and
communicates with it through the clipboard using special keyboard shortcuts.

Dropbox and Google data upload and download relies on another principle: its
implementation uses the custom class CSimpleHttp to authenticate and send HTTP
requests. For WebDAV communication, the developers simply use the “net use” Windows
command.

LinkUpdate

This auxiliary module is in charge of achieving persistence on the host. It changes the .lnk
files in the Windows Quick Launch panel to run the loader along with legitimate applications
such as browsers when the user executes them using the modified link.

Who is behind this malware

As we mentioned at the beginning, to date we have observed no similarities or overlaps with
known campaigns in terms of TTPs, infrastructure or malware code. So far, we attribute this
activity and the use of MontysThree to a new actor. Some samples contain account details
used for communicating with public cloud services, which pretend to be of Chinese origin.
Taking into consideration all the aforementioned Cyrilic artefacts, we consider these account
names to be false flags.

We assume that the actor behind MontysThree is both Russian-speaking and is going after
Russian-speaking targets. Some of the filenames of the RAR SFX archives used for
spreading the malware were written in Russian and referenced a Russian medical laboratory,
used to entice the user to open the file. The XML configuration showcased data fields and
Windows titles written in Russian, as well as specific folder paths that exist on Cyrilic
localised versions of Windows. We also saw some grammatical errors in the malware’s
English log message strings.

Let’s sum up

Typically we see targeted malware that is mostly going after governmental entities, diplomats
and telecom operators, which are fruitful for state-sponsored actors. Industrial espionage
cases like MontysThree are far more rare.

The overall campaign sophistication doesn’t compare to top notch APT actors in terms of
spreading, persistence method. And some aspects of the malware – logging in RAM and
files at the same time, keeping the encryption keys in the same file, running an invisible
browser on the remote RDP host – seem immature and amateurish in terms of malware
development.



10/10

On the other hand, the amount of code and therefore effort invested, in MontysThree is
significant. The toolset demonstrates some tech-savvy decisions: Storing 3DES key under
RSA encryption, custom steganography to avoid IDS and the use of legitimate cloud storage
providers to hide the C2 traffic.

File Hashes

Loader
1B0EE014DD2D29476DF31BA078A3FF48

 0976C442A06D2D8A34E9B6D38D45AE42
 A2AA414B30934893864A961B71F91D98

Kernel
 A221671ED8C3956E0B9AF2A5E04BDEE3

 3A885062DAA36AE3227F16718A5B2BDB
 3AFA43E1BC578460BE002EB58FA7C2DE

HttpTransport
 017539B3D744F7B6C62C94CE4BCA444F

 501E91BA1CE1532D9790FCD1229CBBDA
 D6FB78D16DFE73E6DD416483A32E1D72

Domains and IPs

autosport-club.tekcities[.]com
 dl10-web-stock[.]ru

 dl16-web-eticket[.]ru
 dl166-web-eticket[.]ru
 dl55-web-yachtbooking[.]xyz

Industrial threats
Malware Descriptions
Russian-speaking cybercrime
Targeted attacks

Authors

 Denis Legezo

MontysThree: Industrial espionage with steganography and a Russian accent on both sides

Your email address will not be published. Required fields are marked *

https://securelist.com/tag/industrial-threats/
https://securelist.com/tag/malware-descriptions/
https://securelist.com/tag/russian-speaking-cybercrime/
https://securelist.com/tag/targeted-attacks/
https://securelist.com/author/denislegezo/

