
 Electronic copy available at: https://ssrn.com/abstract=3153488

Beyond	automated	tools	and	Frameworks:	the	shellcode	injection	
process

Author: Dr Craig S Wright GSE GSM LLM MStat

Abstract	/	Lead	

This article is going to follow from previous articles as well as going into some of the fundamentals
that you will need in order to understand the shellcode creation process, how to use Python as a
launch platform for your shellcode and that the various system components are. This is designed as a
precursor to the actual injection process where we will in a later article next month introduce the
actual injection process and start to move from automatic exploit frameworks (such as Metasploit)
into being able to create and execute one’s own exploit successfully. In order to do this, we need to
start understanding just how code works and to know where to find the fundamentals of the Python
programming language. This article will start a monthly series designed to take the reader from a
novice to being able to create and deploy their own shellcode and exploits.

Electronic copy available at: https://ssrn.com/abstract=3153488

 Electronic copy available at: https://ssrn.com/abstract=3153488

Introduction		

Automated frameworks (including Metasploit) have simplified the testing and exploitation process.
This of course comes with a price. Many penetration testers have become tool jockeys with little
understanding of just how software functions. This script kiddie approach to code testing does have its
place. It has allowed us to drastically increase the number of people working on testing systems for
vulnerabilities and in assessing the risks these pose. At the same time, if these individuals do not
progress further, simply relying on the ability to leverage the efforts of others, we will hit bottlenecks
in the creation of new tests and processes.

In previous articles, we have covered a number of topics to do with the creation of shellcode. In this
one we shall start to introduce the means that will allow the tester to use that code without having to
rely on an external framework. In subsequent articles this will be expanded into the creation of
standalone exploit kits.

In order to do this, we also need to take a step back and explain the system and the tools we will use
in more detail. To achieve this, we will start with describing the various components that are used and
to providing an introduction to the Python programming language. This will also extend into a simple
method to analyse shellcode using GCC such that we can come to understand what the shellcode
others have created is designed to do. This is a useful skill when reversing malware as well as a good
way to learn from the existing code base and even to leverage some of the various tools that are freely
available already.

What	is	shellcode	again?	

First and foremost, shellcode is an essential part of any exploit. This does not really inform us as to
what it is or how it functions. Simply put, shellcode is an array of hex values that are arranged in such
a way as to act as a set of assembly language instructions in order to make the machine it is run on do
some function. This function can be to spawn a shell or to execute arbitrary code of the testers design.
It is a fundamental part of any buffer overflow attack, but that is not all it is used for.

Just about any exploit that you may discover in the wild or as a part of a framework will target
vulnerabilities using shellcode. This can be as the payload of a buffer overflow attack, a heap spray or
other form of injection.

"\xeb\x1a\x5e\x31\xc0\x88\x46\x07\x8d\x1e\x89\x5e\x08\x89\x46"
"\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\xe8\xe1"
"\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68\x23\x41\x41\x41\x41"
"\x42\x42\x42\x42";

Code 1: Shellcode sample1

We will start by analysing this small segment of shellcode (Code 1). To do this, we will start by
compiling this shellcode source into an executable file.

1 This sample of shellcode has been taken from Zillion (2002). This page goes into detail as to the operation of
the shellcode and the reader is encouraged to step through this. The reader will find countless many examples
online with a simple Google search and many good examples are also included within the Metasploit
framework.

Electronic copy available at: https://ssrn.com/abstract=3153488

Disassembling	Shellcode	

We will start by first compiling and then disassembling the shellcode sample we have introduced
above (Code 1). The debugger gdb, objdump or nasm2 work well for this task. To do this, we take the
shellcode from above and paste it into a file using vi. That is, “vi shellcode.c” as can be seen in figure
1.

Figure 1: Making our shellcode executable, “vi shellcode.c”.

We have added a main() statement and placed our shellcode sample into a character array to aid in
compiling it. We need to compile the sample so that we can load it into a disassembler or debugger.
These tools will interpret the hex instructions for us and return a series of assembly instructions for us
to analyse. This C “skeleton program” can be compiled into a binary executable using gcc (see Code
2).

sudo gcc -g -o shellcode shellcode.c

Code 2: Using GCC to compile the shellcode sample

We can see in figure 2 that we have created an executable file called “shellcode”. I have used the
SIFT binary image for this analysis, but there are many good pre-configured analysis images based on
Linux that are freely available. In addition, using one of the standard Linux distributions and installing
tools such as NASM will enable you to create a shellcode analysis system very easily.

The sample of shellcode used in this article is by no means the simplest, but it is well known. Many
examples of shellcode will actually be far smaller than this, but some can also be quite complex at the
same time.

2 OllyDby, Immunity and IDA Pro all work well when analysing shellcode on a Windows host.

Electronic copy available at: https://ssrn.com/abstract=3153488

Figure 2: Our compiled executable, “shellcode”.

Loading the compiled code into GDB is simple. Just execute the command, “gdb shellcode”. Once it
is loaded into GDB, we just have to use the gdb disassemble command with the “shellcode[]” array
we created as the object it will analyse as gdb will interpret the contents of the shellcode array as if it
was assembly code. This is displayed in figure 3.

Figure 3: Our disassembled “shellcode”.

Altering this shellcode sample can be as simple as changing the shell being called. In “Code 1”, we
can change the call to spawn “/bin/sh” to something such as a call to “/bin/ksh” by changing the hex
entry, “\x2f\x62\x69\x6e\x2f\x73\x68” to “x2f\x62\x69\x6b\x6e\x2f\x73\x68”.

Electronic copy available at: https://ssrn.com/abstract=3153488

Figure 4: Altering the “shellcode”.

With this simple change, we have altered the shellcode in a manner that allows us to control its
objective.

What	if	I	use	Windows?	

For those of us who are more aligned to using Windows, we can load and disassemble our shellcode
in the same way using IDA Pro or OllyDbg. Starting with a tool such as “Shellcode2Exe.py” (Zeltser,
2011) or “ConvertShellcode” we can convert our shellcode sample into an executable in Windows
and load it into IDA Pro.

Loading the shellcode into IDA Pro (Fig 4) we see a visually simplified view of the same disassembly
we completed in GDB (Fig 3). This display can be of use to people who are less familiar with coding
as it displays the jumps (and conditional jumps) in a more structured manner.

Electronic copy available at: https://ssrn.com/abstract=3153488

Figure 5: IDA disassembled “shellcode”.

Now we have to start learning to interpret what these assembly instructions actually mean.

Assembly	Instructions	

In the last article3 we started to detail what a system register is. We need to extend this and to start to
look at other parts of the system. To understand assembly processing, we need to understand the
concept of LIFO or Last in First out. Think a stack of dishes when you think of the stack in memory.
Just as you do not try to take a disk from the base of a large stack (well not without consequences),
stack calls pull the last item entered and return that moving one by one to the previously added entries
until the first to have been added to the stack is removed as the last item.

3 “Starting to write your own shellcode” in Hakin9, Jan 23 2012.

Electronic copy available at: https://ssrn.com/abstract=3153488

In particular, when working with the stack, the two assembly commands that you need to have a
strong understanding of are push and pop.

 “PUSH” saves the contents of a register onto the stack.
 “POP” grabs the saved contents from the stack and puts it into a specific register.

In this, we can think of the stack as the endless tape in a turning machine4. As we move along the
stack we are adding and removing values we have saved previously.

A good and quick introduction to assembly coding is available in “Assembler: The Basics In
Reversing”5. In this you will find a small but critical list of instructions that you will need to know
when you start to create shellcode. It includes:

 ADD (addition)
 AND (logical AND)
 CMP (compare)
 TEST (test two values)
 DEC (decrement)
 DIV (division)
 INC (increment)
 INT (interrupt handler)
 LEA (load effective address)
 MOV (move)
 MUL (multiplication)
 NOP (no operation)
 OR logical OR)
 POP (See above in the stack section)
 PUSH (See above in the stack section)
 XOR (exclusive OR)

From here we start to move to conditional statements and jumps. That is, we can branch to different
functions based on the input or other values we have in the registers and flags. Changing the
execution path updates the value held in the EIP register. This is used to add jumps, calls and loops to
your code. The main jump statements and their uses are displayed in Table 1.

Jumps are enacted unconditionally (JMP, CALL, RET) when the code always branches to another
location in memory. These are fixed controls that always behave in a set manner if the code reaches a
point where it will execute them.

A conditional jump (JCC, JE, JZ etc.) are used to control execution branches (See Table 1). These
forms of jumps are used to branch into different execution paths based on the values retuned to the
jump statement. That is, these control the branching of a code segment based on whether certain
conditions have been fulfilled. Often, these conditionals are based on the returned value in a Boolean
statement (see Table 2).

Most conditionals actually change the values held in a destination operand or register. There are some
that do not (CMP, TEST). CMP is an implied SUB and TEST an implied ADD function.

4 Here we are of course ignoring the necessary memory and processor constraints.
5 This paper is currently available online at http://flip-edesign.com/basics_of_assembler.pdf

Electronic copy available at: https://ssrn.com/abstract=3153488

Jump Action Flags

JA Jump if (unsigned) above CF = 0 and ZF = 0

JB Jump if (unsigned) below CF = 1

JC Jump if carry flag set CF = 1

JE Jump if equal ZF = 1

JG Jump if (signed) greater than ZF = 0 and SF=OF

JGE Jump if (signed) greater than or equal to SF = OF

JL Jump if (signed) less than SF != OF

JLE Jump if (signed) less than or equal to ZF = 1 and SF != OF

JMP Jump Always jumps

JNE Jump if not equal ZF = 0

JNZ Jump if not zero ZF = 0

JZ Jump if zero ZF = 1

Table 1: Jcc Assembly Jumps

The effects of a conditional instruction are stored in the flags register. For instance, in “Code 3”, the
statement “Cmp EBX EAX” will not result in the ZF bit (zero flag in the flags register) being set as
EBX and EAX are not equal. In this operation, the values stored in both EAX and EBX will not
change and will remain the same after the operation as before.

…
1 Mov EAX 04
2 Mov EBX 10
3 Mov ECX 04
4 Cmp EBX EAX
5 JZ EDX
6 Cmp EBX EBX
7 JZ EDX
8 Sub EAX ECX
9 JZ EDX
…

Code 3: Testing conditionals

The statement “Cmp EBX EBX” will result in the ZF bit (zero flag in the flags register) being set as
EBX – EBX would equal zero (that is they are the same value). Conversely, statement “Cmp EAX
ECX” will result in ZF being set, but it will also result in the EAX register being modified.

In this example (Code 3), with the values set in lines 1 to 3, the statement at line 4 will not set ZF and
as such the conditional at line 5 will not execute. The statement at line 6 will set the ZF flag and the
jump at line 7 would take the execution to the value held in the EDX register. Hence, the test at line 8

Electronic copy available at: https://ssrn.com/abstract=3153488

and the conditional statement at line 9 will only execute if EDX contained the value referencing the
memory location for line 86.

Logical Operation Source Destination Result
 AND 1 1 1
 1 0 0
 0 1 0
 0 0 0
 OR 1 1 1
 1 0 1
 0 1 1
 0 0 0
 XOR 1 1 0
 1 0 1
 0 1 1
 0 0 0
 NOT 0 N/A 1
 1 N/A 0

Table 2: Logical Operations

The TEST instruction is similar to the CMP instruction in that it does not change the values stored in
the registers but acts as an AND instruction (Table 2).

In the next article we will continue this process by converting “If-Else” and “If-Else-If-Else” loops to
and from assembly code. In this, we will take C/C++ statements and write them as assembly code and
vice versa. This will continue into examining loops and stack functions.

Loops are important parts of any program code and in injected code are regularly deployed by
attackers in order to:

 Encrypt and decrypt data and network traffic,
 Log keystrokes while checking for selected key codes,
 Port scan or ping sweep systems incrementally, and
 Connect to a C&C server by scrolling through a list of available systems.

Using	Python	to	deliver	shellcode	

In next article we will start to use python to deliver your shellcode. Before you do this, you will need
to have some experience with this scripting language. To do this, you need to start with a quick
introduction to learning more about Python if you do not already have this skill.

python.exe <script_name.py> 127.0.0.1 80

Code 4: Shellcode sample7

6 Interestingly, if the register EDX was to contain the memory location for statements 5, 7 or 9 this would result
in an endless execution loop and a possible DoS against the system as the program looped endlessly to the same
call.
7 This sample of shellcode has been taken from Zillion (2002). This page goes into detail as to the operation of
the shellcode and the reader is encouraged to step through this. The reader will find countless many examples
online with a simple Google search and many good examples are also included within the Metasploit
framework.

Electronic copy available at: https://ssrn.com/abstract=3153488

Python is a script interpreter and interactive interpreter at the same time allowing developers to either
run and test code samples or to create executable scripts. Once we have found a site, we can use
Python to simply deploy our exploit and shellcode. We see in “Code 4” just how simple it is to deploy
an exploit script written in Python against a web server running on the local host. What we need to do
is learn just how to write this script so we can deploy the shellcode we are learning to both write and
to alter.

Learning	Python	

There are many good resources available for those who want to learn Python. Some of the ones I have
found to really work are included below:

 Google Python Class http://www.youtube.com/watch?v=tKTZoB2Vjuk
 PythonLearn http://www.py4inf.com/
 The Python Tutorial http://docs.python.org/tutorial/
 Beginner's Guide to Python http://wiki.python.org/moin/BeginnersGuide
 Interactive Python tutorial http://www.learnpython.org/

Once you have the basic skills, we can take these and use them in developing deployment platforms.
With these skills, you will find yourself able to do far more than use a framework.

Conclusion	

Gaining a comprehensive understanding of shellcode takes time, but it is well worth the effort. In
following articles, we will extend this process further as we start to detail how we can follow
shellcode and interpret the jumps and calls made within it. In doing this, we will not only learn how to
successfully modify the shellcode we have copied from others, extending its use, but to also learn to
create our own. More, we will be able to reverse engineer hostile shellcode and to understand what
purposes it has been created for.

Shellcode can be said to have a shelf life. As samples become popular and are used more widely in
the underground community, they are slowly added into IDS and Anti-Malware signatures. Widely
deployed shellcode, including that used in the Metasploit project, has a particularly low shelf-life.
This is not to say that it will not be useful against many sites, but that it will be less likely to have
value in testing highly secure sites.

In many cases, the alteration of small sections of the shellcode can result in the signatures that have
been created to detect, alert and block it becoming ineffective. For instance, making small changes to
a piece of existing shellcode to run “/bin/csh” in place of the standard call to “/bin/sh” can increase
the useful life of the shellcode. As we start to learn how shellcode is created and formed, we can also
start to alter it and extend it running different payloads or changing its form to avoid detection.

Python is a scripting language with a strong support for shellcode. A tester with a good understanding
of Python and shellcode will be able to create their own exploit packages. This increases the value of
the tester immensely. Instead of being one of many people who have the capability to run Metasploit
or some other automated framework, you become one of a select few people who can actually create
their own tools and exploits.

Anybody who desires to become an advanced pen-tester will find it essential to gain proficiency in at
least one scripting language. This of course will require dedicated effort as there is no replacement for
real world use in learning to code in any language (even a scripted language such as Python).

Electronic copy available at: https://ssrn.com/abstract=3153488

Python is the language of choice for many penetration testers and there is a wide community within
the information security profession developing and extending it. For this reason, Python should be a
high priority on any testers to learn list. There are innumerable examples of Python scripts, tools and
methodologies to enhance your own tools readily available with the ease of a Google search. More,
there are free tutorials and interactive lessons.

References	

Foster, J., Osipov, V., Bhalla, N., and Heinen, N. (2005) “Buffer Overflow Attacks: Detect, Exploit,
Prevent” Syngress, USA

Zeltser, L (2011) “http://zeltser.com/reverse-malware/convert-shellcode.html” Online at:
http://zeltser.com/reverse-malware/convert-shellcode.html

zillion (2002) “Writing Shellcode” (safemode.org) Online at:
http://www.safemode.org/files/zillion/shellcode/doc/Writing_shellcode.html

Author's	bio	

About the Author:

Craig Wright (Charles Sturt University)is the VP of GICSR in Australia. He holds the GSE,
GSE-Malware and GSE-Compliance certifications from GIAC. He is a perpetual student with
numerous post graduate degrees including an LLM specializing in international commercial
law and ecommerce law, A Masters Degree in mathematical statistics from Newcastle as well
as working on his 4th IT focused Masters degree (Masters in System Development) from
Charles Stuart University where he lectures subjects in a Masters degree in digital forensics.
He is writing his second doctorate, a PhD on the quantification of information system risk at
CSU.

Electronic copy available at: https://ssrn.com/abstract=3153488

