
CARBANAK Week Part Two: Continuing the CARBANAK
Source Code Analysis

fireeye.com/blog/threat-research/2019/04/carbanak-week-part-two-continuing-source-code-analysis.html

Threat Research
April 23, 2019 | by Michael Bailey, James T. Bennett

Update (April 30): Following the release of our four-part CARBANAK Week blog series, many
readers have found places to make the data shared in these posts actionable. We have updated
this post to include some of this information.

In the previous installment, we wrote about how string hashing was used in CARBANAK to
manage Windows API resolution throughout the entire codebase. But the authors used this
same string hashing algorithm for another task as well. In this installment, we’ll pick up
where we left off and write about CARBANAK’s antivirus (AV) detection, AV evasion,
authorship artifacts, exploits, secrets, and network-based indicators.

Antivirus Evasions

Source code unquestionably accelerates analysis of string hashes. For example, the
function AVDetect in AV.cpp iterates processes to detect AV by process name hash as shown
in Figure 1.

1/14

https://www.fireeye.com/blog/threat-research/2019/04/carbanak-week-part-two-continuing-source-code-analysis.html
https://www.fireeye.com/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/michael-bailey
https://www.fireeye.com/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/cap-james-t-bennett
https://www.fireeye.com/blog/threat-research/2019/04/carbanak-week-part-one-a-rare-occurrence.html


Figure 1: Antivirus detection by process name hash

What does CARBANAK do with this information? It evades AV according to what is installed.
Figure 2 shows the code for an AVG evasion that the authors disabled by commenting it out.
Based on this, it appears as if the AVG evasion was retired, but FLARE team member Ryan
Warns confirmed in November 2017 that it still worked with one minor tweak. FLARE
disclosed this to AVG immediately upon confirming it. Avast indicates that after our
disclosure, they updated the affected DLL to ignore DLL_PROCESS_DETACH and leave its
hooks in place.

2/14

https://twitter.com/nopandroll


Figure 2: Commented out source code to unload AVG user-space hooks

In November of 2017, FLARE also disclosed an evasion for Trend Micro’s detection of
process injection that remained active in the CARBANAK source code. The evasion mirrors a
technique used in Carberp that replaces remote heap allocation and a call
to CreateRemoteThread with memory mapping and queueing of an asynchronous
procedure call via QueueUserAPC. Following our disclosure, Trend Micro indicated that they
had updated their behavior monitoring rules and released OfficeScan XG SP1 in December
2017 with a new “Aggressive Event” detection feature that covers this behavior.

Author Characterization

Having source code could pose unique opportunities to learn about the individuals behind
the keyboard. To that end, I searched for artifacts in the source code dump that might point
to individuals. I found the most information in Visual Studio solution files. Most of these
referenced drive O: as the source root, but I did find the following host paths:

C:\Users\hakurei reimu\AppData\Local\Temp
C:\Users\Igor\AppData\Local\Temp
E:\Projects\progs\Petrosjan\WndRec\...
E:\Projects\progs\sbu\WndRec\...

Unfortunately, these data points don’t yield many answers. If they are observed in later
artifacts, connections might be inferred, but as of this writing, not much else is known about
the authors.

Source Code Survey

The CARBANAK source code contained numerous exploits, previous C2 hosts, passwords,
and key material. I decided to comprehensively search these out and determine if they led
to any new conclusions or corroborated any previous observations.

Exploits
3/14

https://github.com/hzeroo/Carberp/blob/master/source - absource/pro/all source/RemoteCtl/hvnc2/core/svchost_inj.cpp#L8


I wanted to know if the CARBANAK authors wielded any exploits that were not publicly
disclosed. To the contrary, I found all the exploits to be well-documented. Table 1 breaks out
the escalation code I reviewed from the CARBANAK source code dump.

Name CVE Notes

PathRec 2013-
3660

Exploit proof of concept (poc) from May 2013

Sdrop 2013-
3660

Exploit poc from June 2013

NDProxy 2013-
5065

NDProxy.sys exploit originally authored by secniu

UACBypass UAC bypass by DLL hijacking found in Carberp

COM UAC bypass by disabling elevation prompts and dialogs via the
IFileOperation COM interface

CVE-2014-
4113

2014-
4113

Win32k.sys exploit derived from code that can be found online

BlackEnergy2 AppCompat shim-based UAC bypass

EUDC 2010-
4398

UAC bypass by EUDC exploitation

Table 1: Exploits for elevation found in CARBANAK source code

The CARBANAK source code also contains code copied wholesale from Mimikatz including
the sekurlsa module for dumping passwords from lsass.exe and Terminal Services patching
code to allow multiple remote desktop protocol connections.

Secrets

My analysis included an audit of passwords and key material found in the source code and
accompanying binaries. Although many of these were used for debug versions, I curated
them for reference in case a need might arise to guess future passwords based on
passwords used in the source code. Table 2 shows recovered passwords used for RC2-

4/14

https://www.exploit-db.com/exploits/25611
https://www.exploit-db.com/exploits/25912
http://www.secniu.com/ndproxy-local-system-exploitcve-2013-5065/
https://github.com/hzeroo/Carberp/blob/master/source - absource/pro/all source/BJWJ/source/exploit/UAC_bypass.cpp
https://www.pretentiousname.com/misc/win7_uac_whitelist2.html
https://ideone.com/fork/ByJlWj
https://www.blackhat.com/docs/asia-14/materials/Erickson/Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
https://nvd.nist.gov/vuln/detail/CVE-2010-4398
https://github.com/gentilkiwi/mimikatz


encrypted communications and other purposes along with the corresponding name in the
source code and their status as they were encountered (active in source code, commented
out, or compiled into a binary).

Credential Identifier Per Source Code Password Status

ADMIN_PASSWORD 1He9Psa7LzB1wiRn Active

ADMIN_PASSWORD 1234567812345678 Commented out

ADMIN_PASSWORD cbvhX3tJ0k8HwnMy Active

ADMIN_PASSWORD 1234567812345678 Commented out

N/A 1234567812345678 Compiled

Table 2: Passwords found in CARBANAK source code and binaries

I found an encrypted server certificate in a debug directory. This seemed like it could
provide a new network-based indicator to definitively tie operations together or catch new
activity. It was trivial to brute force this container by adapting a publicly available code
sample of X509 handling in C# to cycle through passwords in a popular password list. The
password was found in less than 1 second because it was the single-character password “1”.
The certificate turns out to be for testing, hence the weak password. The certificate is shown
in Figure 3, with details in Table 3.

5/14

https://msdn.microsoft.com/en-us/library/ms148440.aspx


Figure 3: Test Company certificate

Parameter Value

Subject CN=Test Company

Issuer CN=Test Company

Serial
Number

834C6C3985506D8740FB56D26E385E8A

Not Before 12/31/2004 5:00:00 PM

Not After 12/31/2017 5:00:00 PM

Thumbprint 0BCBD1C184809164A9E83F308AD6FF4DBAFDA22C

Signature
Algorithm

sha1RSA(1.3.14.3.2.29)

6/14



Public Key Algorithm: RSA

Length: 2048

Key Blob:

30 82 01 0a 02 82 01 01 00 e4 66 7f d2 e1 01 53

f9 6d 26 a6 62 45 8b a8 71 ea 81 9a e6 12 d4 1c

6f 78 67 6d 7e 95 bb 3a c5 c0 2c da ce 48 ca db

29 ab 10 c3 83 4e 51 01 76 29 56 53 65 32 64 f2

c7 84 96 0f b0 31 0b 09 a3 b9 12 63 09 be a8 4b

3b 21 f6 2e bf 0c c1 f3 e4 ed e2 19 6e ca 78 68

69 be 56 3c 1c 0e a7 78 c7 b8 34 75 29 a1 8d cc

5d e9 0d b3 95 39 02 13 8e 64 ed 2b 90 2c 3f d5

e3 e2 7e f2 d2 d1 96 15 6e c9 97 eb 97 b9 0e b3

be bc c3 1b 1e e1 0e 1c 35 73 f4 0f d9 c3 69 89

87 43 61 c9 9e 50 77 a2 83 e4 85 ce 5a d6 af 72

a9 7b 27 c5 f3 62 8d e7 79 92 c3 9b f7 96 ed 5c

37 48 0a 97 ee f7 76 69 a2 b9 25 38 06 25 7d 8a

e4 94 b2 bb 28 4a 4b 5d c5 32 0d be 8e 7c 51 82

a7 9e d9 2c 8e 6b d8 c7 19 4c 2e 93 8d 2d 50 b4

e0 a4 ed c1 65 a4 a1 ba bf c7 bf 2c ec 28 83 f4

86 f2 88 5c c4 24 8b ce 1d 02 03 01 00 01

Parameters: 05 00

7/14



Private Key Key Store: User

Provider Name: Microsoft Strong Cryptographic Provider

Provider type: 1

Key Spec: Exchange

Key Container Name: c9d7c4a9-2745-4e7f-b816-8c20831d6dae

Unique Key Container Name: 5158a0636a32ccdadf155686da582ccc_2bb69b91-
e898-4d33-bbcf-fbae2b6309f1

Hardware Device: False

Removable: False

Protected: False

Table 3: Test Company certificate details

Here is a pivot shared by @mrdavi51 demonstrating how this self-signed certificate is
still hosted on several IPs.

Great findings, loving the series! Did you know the public cert in part two
you found is still hosted on two servers? https://t.co/zZYRgPvHVr

— mrdavi5 (@mrdavi51) April 24, 2019

FireEye has observed the certificate most recently being served on the following IPs (Table
4):

IP Hostname Last Seen

104.193.252.151:443 vds2.system-host[.]net 2019-04-26T14:49:12

185.180.196.35:443 customer.clientshostname[.]com 2019-04-24T07:44:30

213.227.155.8:443  2019-04-24T04:33:52

94.156.133.69:443  2018-11-15T10:27:07

8/14

https://twitter.com/mrdavi51
https://t.co/zZYRgPvHVr
https://twitter.com/mrdavi51/status/1121038442710949891?ref_src=twsrc%5Etfw


185.174.172.241:443 vds9992.hyperhost[.]name 2019-04-27T13:24:36

109.230.199.227:443  2019-04-27T13:24:36

Table 4: Recent Test Company certificate use

While these IPs have not been observed in any CARBANAK activity, this may be an indication
of a common developer or a shared toolkit used for testing various malware. Several of
these IPs have been observed hosting Cobalt Strike BEACON payloads and METERPRETER
listeners. Virtual Private Server (VPS) IPs may change hands frequently and additional
malicious activity hosted on these IPs, even in close time proximity, may not be associated
with the same users.

I also parsed an unprotected private key from the source code dump. Figure 4 and Table 5
show the private key parameters at a glance and in detail, respectively.

Figure 4: Parsed 512-bit private key
9/14



Field Value

bType 7

bVersion 2

aiKeyAlg 0xA400 (CALG_RSA_KEYX) – RSA public key exchange algorithm

Magic RSA2

Bitlen 512

PubExp 65537

Modulus 0B CA 8A 13 FD 91 E4 72 80 F9 5F EE 38 BC 2E ED

20 5D 54 03 02 AE D6 90 4B 6A 6F AE 7E 06 3E 8C

EA A8 15 46 9F 3E 14 20 86 43 6F 87 BF AE 47 C8

57 F5 1F D0 B7 27 42 0E D1 51 37 65 16 E4 93 CB

P 8B 01 8F 7D 1D A2 34 AE CA B6 22 EE 41 4A B9 2C

E0 05 FA D0 35 B2 BF 9C E6 7C 6E 65 AC AE 17 EA

Q 81 69 AB 3D D7 01 55 7A F8 EE 3C A2 78 A5 1E B1

9A 3B 83 EC 2F F1 F7 13 D8 1A B3 DE DF 24 A1 DE

Dp B5 C7 AE 0F 46 E9 02 FB 4E A2 A5 36 7F 2E ED A4

9E 2B 0E 57 F3 DB 11 66 13 5E 01 94 13 34 10 CB

Dq 81 AC 0D 20 14 E9 5C BF 4B 08 54 D3 74 C4 57 EA

C3 9D 66 C9 2E 0A 19 EA C1 A3 78 30 44 52 B2 9F

10/14



Iq C2 D2 55 32 5E 7D 66 4C 8B 7F 02 82 0B 35 45 18

24 76 09 2B 56 71 C6 63 C4 C5 87 AD ED 51 DA 2ª

D 01 6A F3 FA 6A F7 34 83 75 C6 94 EB 77 F1 C7 BB

7C 68 28 70 4D FB 6A 67 03 AE E2 D8 8B E9 E8 E0

2A 0F FB 39 13 BD 1B 46 6A D9 98 EA A6 3E 63 A8

2F A3 BD B3 E5 D6 85 98 4D 1C 06 2A AD 76 07 49

Table 5: Private key parameters

I found a value named PUBLIC_KEY defined in a configuration header, with comments
indicating it was for debugging purposes. The parsed values are shown in Table 6.

Field Value

bType 6

bVersion 2

aiKeyAlg 0xA400 (CALG_RSA_KEYX) – RSA public key exchange algorithm

Magic RSA1

Bitlen 512

PubExp 65537

Modulus 0B CA 8A 13 FD 91 E4 72 80 F9 5F EE 38 BC 2E ED

20 5D 54 03 02 AE D6 90 4B 6A 6F AE 7E 06 3E 8C

EA A8 15 46 9F 3E 14 20 86 43 6F 87 BF AE 47 C8

57 F5 1F D0 B7 27 42 0E D1 51 37 65 16 E4 93 CB

11/14



Table 6: Key parameters for PUBLIC_KEY defined in configuration header

Network Based Indicators

The source code and binaries contained multiple Network-Based Indicators (NBIs) having
significant overlap with CARBANAK backdoor activity and FIN7 operations previously
observed and documented by FireEye. Table 7 shows these indicators along with the
associated FireEye public documentation. This includes the status of each NBI as it was
encountered (active in source code, commented out, or compiled into a binary). Domain
names are de-fanged to prevent accidental resolution or interaction by browsers, chat
clients, etc.

NBI Status Threat Group Association

comixed[.]org Commented
out

Earlier CARBANAK activity

194.146.180[.]40 Commented
out

Earlier CARBANAK activity

aaaabbbbccccc[.]org Active

stats10-google[.]com Commented
out

FIN7

192.168.0[.]100:700 Active

80.84.49[.]50:443 Commented
out

52.11.125[.]44:443 Commented
out

85.25.84[.]223 Commented
out

qwqreererwere[.]com Active

12/14

https://www.fireeye.com/blog/threat-research/2017/06/behind-the-carbanak-backdoor.html
https://www.fireeye.com/blog/threat-research/2017/06/behind-the-carbanak-backdoor.html
https://www.fireeye.com/blog/threat-research/2018/08/fin7-pursuing-an-enigmatic-and-evasive-global-criminal-operation.html


akamai-technologies[.]org Commented
out

Earlier CARBANAK activity

192.168.0[.]100:700 Active

37.1.212[.]100:700 Commented
out

188.138.98[.]105:710 Commented
out

Earlier CARBANAK activity

hhklhlkhkjhjkjk[.]org Compiled

192.168.0[.]100:700 Compiled

aaa.stage.4463714.news.meteonovosti[.]info Compiled DNS infrastructure overlap with
later FIN7 associated
POWERSOURCE activity

193.203.48[.]23:800 Active Earlier CARBANAK activity

Table 7: NBIs and prevously observed activity

Four of these TCP endpoints (80.84.49[.]50:443, 52.11.125[.]44:443, 85.25.84[.]223, and
37.1.212[.]100:700) were new to me, although some have been documented elsewhere.

Conclusion

Our analysis of this source code dump confirmed it was CARBANAK and turned up a few
new and interesting data points. We were able to notify vendors about disclosures that
specifically targeted their security suites. The previously documented NBIs, Windows API
function resolution, backdoor command hash values, usage of Windows cabinet file APIs,
and other artifacts associated with CARBANAK all match, and as they say, if the shoe fits,
wear it. Interestingly though, the project itself isn’t called CARBANAK or even Anunak as the
information security community has come to call it based on the string artifacts found
within the malware. The authors mainly refer to the malware as “bot” in the Visual Studio
project, filenames, source code comments, output binaries, user interfaces, and manuals.

The breadth and depth of this analysis was a departure from the usual requests we receive

13/14

https://www.fireeye.com/blog/threat-research/2017/06/behind-the-carbanak-backdoor.html
https://www.fireeye.com/blog/threat-research/2017/06/behind-the-carbanak-backdoor.html
https://www.fireeye.com/blog/threat-research/2017/03/fin7_spear_phishing.html
https://www.fireeye.com/blog/threat-research/2017/06/behind-the-carbanak-backdoor.html
https://www.rsa.com/content/dam/en/white-paper/the-carbanak-fin7-syndicate.pdf


on the FLARE team. The journey included learning some Russian, searching through a
hundred thousand of lines of code for new information, and analyzing a few dozen binaries.
In the end, I’m thankful I had the opportunity to take this request.

In the next post, Tom Bennett takes the reins to provide a retrospective on his and Barry
Vengerik’s previous analysis in light of the source code. Part Four of CARBANAK Week is
available as well.

Previous Post
Next Post

14/14

https://www.fireeye.com/blog/threat-research/2019/04/carbanak-week-part-three-behind-the-backdoor.html
https://www.fireeye.com/blog/threat-research/2017/06/behind-the-carbanak-backdoor.html
https://www.fireeye.com/blog/threat-research/2019/04/carbanak-week-part-four-desktop-video-player.html
https://www.fireeye.com/content/fireeye-www/en_US/blog/threat-research/2019/04/carbanak-week-part-three-behind-the-backdoor.html
https://www.fireeye.com/content/fireeye-www/en_US/blog/threat-research/2019/04/carbanak-week-part-one-a-rare-occurrence.html

	CARBANAK Week Part Two: Continuing the CARBANAK Source Code Analysis
	Threat Research
	Antivirus Evasions
	Author Characterization
	Source Code Survey
	Exploits
	Secrets
	Network Based Indicators

	Conclusion



