
1/15

February 6, 2020

Living off another land: Ransomware borrows vulnerable
driver to remove security software

news.sophos.com/en-us/2020/02/06/living-off-another-land-ransomware-borrows-vulnerable-driver-to-remove-security-
software/

Sophos has been investigating two different ransomware attacks where the adversaries
deployed a legitimate, digitally signed hardware driver in order to delete security products
from the targeted computers just prior to performing the destructive file encryption portion of
the attack.

The signed driver, part of a now-deprecated software package published by Taiwan-based
motherboard manufacturer Gigabyte, has a known vulnerability, tracked as CVE-2018-
19320. The vulnerability, published along with proof-of-concept code in 2018 and widely
reported at the time, was disclaimed by the company, who told the researcher who tried to
report the bug that “its products are not affected by the reported vulnerabilities.” The
company later recanted, and has discontinued using the vulnerable driver, but it still exists,
and it apparently remains a threat.

https://news.sophos.com/en-us/2020/02/06/living-off-another-land-ransomware-borrows-vulnerable-driver-to-remove-security-software/
https://nvd.nist.gov/vuln/detail/CVE-2018-19320
https://www.secureauth.com/labs/advisories/gigabyte-drivers-elevation-privilege-vulnerabilities
https://www.bleepingcomputer.com/news/security/asus-gigabyte-drivers-contain-code-execution-vulnerabilities-pocs-galore/


2/15

The sha1RSA Authenticode signature for the driver, with serial number
248472542c24ab8e429229acf121ca26 and thumbprint
32daee48ae406222c2bb92c4f1b7f516e537175a, expired on October 17, 2013.

In this attack scenario, the criminals have used the Gigabyte driver as a wedge so they could
load a second, unsigned driver into Windows. This second driver then goes to great lengths
to kill processes and files belonging to endpoint security products, bypassing tamper
protection, to enable the ransomware to attack without interference.



3/15

This is the first time we have observed ransomware shipping a trusted, signed (yet
vulnerable) third party driver to patch the Windows kernel in-memory, load their own
unsigned malicious driver, and take out security applications from kernel space. The
ransomware that was being installed in both instances calls itself RobbinHood.

Ransomware trying to circumvent security products is not new. For example, Nemty kills
processes and services using regular taskkill, and Snatch ransomware figured out how to
reboot PCs into Safe Mode to get around endpoint protection. Obviously, doing the process
killing from kernel mode has a lot of advantages.

This article takes a deep dive on how the attackers do it. We’re publishing this information
now so other defenders can anticipate and enact defenses against this novel attack, where
adversaries bring a vulnerable third party driver to subvert the Windows kernel, terminate
defenses, and encrypt files unhindered by endpoint protection software.

Attacking Windows defenses

https://www.bleepingcomputer.com/news/security/nemty-ransomware-update-lets-it-kill-processes-and-services/
https://news.sophos.com/en-us/2019/12/09/snatch-ransomware-reboots-pcs-into-safe-mode-to-bypass-protection/


4/15

We’ve recently seen the RobbinHood ransomware family perform this strategy to encrypt
files without being hindered by endpoint protection software. They successfully subvert a
setting in kernel memory on Windows 7, Windows 8 and Windows 10.

Without diving into the ransomware or data encryption itself, we’re going to focus on the
module with which the adversaries can kill encountered endpoint protection software. This
part of the attack consists of several files embedded in STEEL.EXE. All of these files are
extracted to C:\WINDOWS\TEMP

STEEL.EXE Kill application This is the application that kills the processes and files of
security products, using kernel drivers.

ROBNR.EXE Driver installer Deploys both the benign, signed third-party driver, and
the criminals’ unsigned kernel driver. Once deployed, the
unsigned driver gets loaded by abusing a known
vulnerability in the third-party driver.

GDRV.SYS Vulnerable
kernel driver

A benign but outdated Authenticode-signed driver that
contains a vulnerability.

RBNL.SYS Malicious
kernel driver

The malicious driver that can kill processes and delete
files from kernel space.

PLIST.TXT List of
processes
(and their
associated
files) to
destroy

This is a text file containing the names of the applications
the malicious driver will kill and delete. This text file is not
embedded in STEEL.EXE and may be tailored to the
victim’s environment.

STEEL.EXE

The STEEL.EXE application kills the processes and deletes the files of security applications.
In order to do this, STEEL.EXE deploys a driver. The driver runs in kernel mode and is
therefore optimally positioned to take out processes and files without being hindered by
security controls like endpoint protection. Even though they run under NT
AUTHORITY/SYSTEM, most parts of an endpoint security product run in user space.

The STEEL.EXE application first deploys ROBNR.EXE, which installs the malicious
unsigned driver RBNL.SYS.

Once this driver is installed, STEEL.EXE reads the PLIST.TXT file and instructs the driver to
delete any application listed in PLIST.TXT, then killing their associated processes. If the
process was running as a service, the service can no longer automatically restart as the
associated file has been deleted.



5/15

Once the STEEL.EXE process exits, the ransomware program can perform its encryption
attack without being hindered by the security applications that have been taken out
decisively.

ROBNR.EXE

This application is dropped to the disk by STEEL.EXE. This is a convenient application that
drops and installs both the vulnerable GDRV.SYS driver, and the malicious RBNL.SYS
driver.

64-bit Windows computers have a mechanism called driver signature enforcement which
means that Windows only allows drivers to be loaded that have been properly signed by both
the manufacturer and Microsoft. This is a requirement for all drivers in order to be loaded on
64-bit versions of Windows.

The malware authors did not bother to sign their malicious driver as it involves purchasing a
certificate. Also, a purchased certificate can be revoked by the certificate authority causing
the driver to no longer work, as it will no longer be accepted by Windows.

Instead, the malware authors chose a different route. The properly signed third party
GDRV.SYS driver contains a privilege escalation vulnerability as it allows reading and writing
of arbitrary memory. The malware authors abuse this vulnerability in order to (temporarily)
disable driver signature enforcement in Windows – on-the-fly, in kernel memory. Once driver
signature enforcement is disabled, the attackers are able to load their unsigned malicious
driver.

Disabling Driver Signature Enforcement

The attackers are able to disable driver signature enforcement by changing a single variable
(a single byte) that lives in kernel space. On Windows 7 (or older), this variable is called
nt!g_CiEnabled (NTOSKRNL.EXE). On Windows 8 and 10, this variable is called
ci!g_CiOptions (CI.DLL). In order to resolve the location of this variable, the attackers use a
strategy taken from DSEFix.

On Windows 8 or 10, the trick starts by loading the standard Windows component CI.DLL as
a data library using DONT_RESOLVE_DLL_REFERENCES in their process. Once CI.DLL is
loaded, they query the location of CI.DLL in kernel memory via the GetModuleBaseByName
function. It uses NtQuerySystemInformation(SystemModuleInformation …) to get the
kernel addresses of all loaded kernel modules.

https://github.com/hfiref0x/DSEFix/blob/master/README.md


6/15



7/15

Decompiled: Showing how the variable is found that controls Driver Signing Enforcement.

Decompiled: Showing how to get a module’s kernel address.
Once they know those kernel addresses, the attackers resolve the exported CiInitialize
function from the module’s export address table.Then they disassemble the instructions of
that function in order to find the call CipInitialize() instruction. Once that function is found,
they look for the mov dword ptr [address],ecx instruction. That address is g_CiOptions as
shown in the figure below.



8/15

Decompiled: Showing how to find the location of g_CiOptions using the HDE disassembler.



9/15

Now that they know the location of the g_CiOptions variable in kernel space, the vulnerable
third party driver is dropped to disk and started. See this article on the exact vulnerability.
Any vulnerable driver that allows arbitrary read/write in kernel will do. So even though the
attackers are using the GDRV.SYS driver to do this today, there’s no reason they will
continue to use it if it becomes untenable to do so.

There are many other vulnerable drivers (with a similar vulnerability) in addition to the
Gigabyte driver that these or other attackers may choose to abuse later, such as ones from
VirtualBox (CVE-2008-3431), Novell (CVE-2013-3956), CPU-Z (CVE-2017-15302), or ASUS
(CVE-2018-18537). But in these attacks, we’ve only seen the Gigabyte driver being abused
in this way.

Decompiled: Showing how the malicious driver is deployed.

The malicious driver

Once the malicious driver is successfully deployed and started, the ROBNR.EXE process
exits. Then STEEL.EXE starts processing the PLIST.TXT file, listing all the applications to
kill.

This malicious kernel driver is used to terminate processes and delete the associated files. It
employs several tricks to kill these applications, even when they are in-use and protected by
tamper protection mechanisms employed by security products.

https://www.secureauth.com/labs/advisories/gigabyte-drivers-elevation-privilege-vulnerabilities


10/15

Decompiled: How the malicious driver starts. 



11/15

Decompiled:

How the malicious driver processes commands (IOCTL) from STEEL.EXE.
The following string was found in the malicious driver, indicating it was likely built by the
same authors behind the RobbinHood ransomware.

C:\Users\Mikhail\Desktop\Robnhold\x64\Win7Release\Robbnhold.pdb

Deleting Files

The malicious driver has various ways to delete files. But it does not pick one way, it runs
them all sequentially, in order to ensure the file really gets deleted.

To delete files that are in-use the malicious driver issues an I/O Request Packet (or IRP, a
low-level message passed between device drivers) directly on the NTFS.SYS storage
device. By clearing the ImageSectionObject and DataSectionObject pointers, the storage
device assumes the files are not in-use and the file is safely deleted, even when the file is
still running as a process!

This trick is similar to the technique mentioned on this blog post.

https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/i-o-request-packets
http://0tutorials.blogspot.com/2011/10/learn-to-force-delete-running-file.html


12/15

Decompiled: The malicious driver

uses multiple ways to delete a file. 



13/15

Decompiled: How the malicious driver deletes a file that is in-use.

Terminating Processes

Once the files are deleted, STEEL.EXE kills all the processes associated with the files.
Again, it uses its malicious kernel driver to terminate the processes.



14/15

Decompile: How the malicious driver terminates a process.
Endpoint protection processes that rely on object handle filtering for their tamper protection
cannot prevent a kernel mode termination of processes or deletion of files. The process
handles opened by the malicious driver are kernel handles, and kernel handles cannot be
filtered. So, the malicious kernel driver can kill these processes without interference of
endpoint security controls. One solution is for the endpoint protection process to watch for
any process trying to install these vulnerable kernel mode drivers, and prevent the
installation from taking place.

If the process was running as a service, the Service Control Manager of Windows will
(usually) try to restart the process that just got killed. But it will fail to do so as the related file
no longer exists. Consequently, the application is effectively and permanently disabled. The
failed attempts to restart the service show up in Event Logs.

When STEEL.EXE has killed all the processes and files in the PLIST.TXT list, it exits. Now
the ransomware can encrypt all the files on the system unhindered.

What users can do to prevent this type of attack

Computers that are fully patched and have no known vulnerabilities can still end up in ruin
because this attacker brings his own vulnerability. So what can you do to prevent the initial
access by the attacker?

Adopt a three-pronged approach to minimize your risk of falling victim to an attack.

1. Threat protection that disrupts the whole attack chain

Today’s ransomware attacks use multiple techniques and tactics, so focusing your defense
on a single technology leaves you very vulnerable.

 Instead, deploy a range of technologies to disrupt as many stages in the attack as possible.
And integrate the public cloud into your security strategy.

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_ob_operation_registration


15/15

2. Strong security practices

These include:

Use multi-factor authentication (MFA)
Use complex passwords, managed through a password manager
Limit access rights; give user accounts and admins only the access rights they need
Make regular backups, and keep them offsite and offline where attackers can’t find
them
Lock down your RDP; turn it off if you don’t need it, use rate limiting, 2FA or a VPN if
you do
Ensure tamper protection is enabled – other ransomware strains attempt to disable
your endpoint protection, and tamper protection is designed to prevent this from
happening

3. Ongoing staff education

People are invariably the weakest link in cybersecurity, and cybercriminals are experts at
exploiting normal human behaviors for nefarious gain. Invest – and keep investing – in staff
training.

IoCs

We analyzed the following files in the course of this investigation

SHA256 Filename

791c32a95f401f7464214960e49e716656f6fd6fff135ac2a6ba607236d3346e STEEL.EXE

99c3cc348f8ee4e87bce45b1dd185d31830c370ac43fd3e39ac50340f029ef79 ROBNR.EXE

0b15b5cc64caf0c6ad9bd759eb35383b1f718edf3d7ab4cd912d0d8c1826edf8 RBNL.SYS

31f4cfb4c71da44120752721103a16512444c13c2ac2d857a7e6f13cb679b427 GDRV.SYS

Acknowledgments

SophosLabs would like to acknowledge the contributions of Anand Ajjan, Richard Cohen,
Sivagnanam Gn, Roland Gyorffi, Erik Loman, Peter Mackenzie, Vikas Singh, Gabor
Szappanos, Alex Vermaning and Michael Wood to the analysis for this post.


