
1/8

September 17, 2020

Complex obfuscation? Meh… (1/2)
decoded.avast.io/janrubin/complex-obfuscation-meh/

by Jan RubínSeptember 17, 20207 min read

For some time now, we’ve been monitoring a new strain of malicious programs that we are
referring to as “Meh” (we will explain why later on). It all started when we came across large
amounts of files with randomly generated strings at their beginning, followed by a compiled
AutoIt script… and what a ride it has been since. In this blog series, we will describe how
we peeled away at Meh’s obfuscation and what we found thereafter.

Analysis

Meh is composed of two main parts. The first part is a crypter, we named MehCrypter, that
consists of multiple stages, and is distributed as a compiled AutoIt script prepended with a
randomly generated string sequence. This string sequence is skipped by the AutoIt
interpreter that scans for the magic bytes that determine the file format and effectively
obfuscates the file without influencing its functionality.

The second part is a password stealer, called Meh. The stealer is the core of the malware
and holds many functionalities. It is capable of stealing clipboard contents, keylogging,
stealing cryptocurrency wallets, downloading additional files via torrents, and much more.
Nearly all of its functionalities are performed in subthreads, executed from injected
processes. We will focus on the password stealer in our next blog post.

MehCrypter

First and foremost, Meh is a password stealer/keylogger. But to get there, we need to chew
through several layers of the MehCrypter. First, let’s take a look at a snippet of what the
actual crypter looks like from a high level view:

https://decoded.avast.io/janrubin/complex-obfuscation-meh/
https://decoded.avast.io/author/janrubin/

2/8

A snippet of the MehCrypter AutoIt script
The string at the beginning of the file is randomly generated and its length varies as well.
We have seen samples with several MB of data prepended in this area to samples with
almost no data at all.

Upon a closer look, however, the file also contains code which is actually a compiled AutoIt
script which can be interpreted by the AutoIt interpreter. The interpreter is designed in such
a way that it searches the entire file content until it finds the string AU3!EA06 . Thus, the
whole prepended string is skipped completely and serves only as a confusion technique to
avoid detection.

The decompilation yields a very readable script which serves a single purpose: concatenate
hard coded hexadecimal strings, decode them, and load the result PE using reflective
loading via a custom AutoIt PE loader.

3/8

A snippet of an AutoIt PE loader
Note that up to this point, the crypter is very generic and we have seen at least five different
families using it so far, with the most known being Agent Tesla and XMRig.

MehCrypter dropper

From the script described above, we can manually extract the binary. This binary is a very
simple dropper written in Borland Delphi which makes several HTTP POST requests to the
C&C server in order to download three additional files:

http://83[.]171.237.233/s2/pe.bin
http://83[.]171.237.233/s2/base.au3
http://83[.]171.237.233/s2/autoit.exe

After these files are downloaded, they are saved into the C:\testintel2\ directory and
the file base.au3 is executed (i.e. interpreted by autoit.exe). pe.bin is an encrypted
Meh password stealer binary. But we will get to that later.

Furthermore, the dropper also tries to clean up the environment from previous installations
of the Meh password stealer, which we’ll discuss in depth in the next part of this blog series.
Specifically, it attempts to terminate several processes:

notepad.exe
werfault.exe
vbc.exe

4/8

systeminfo.exe
calc.exe

These processes are used by Meh for later PE injections. At this stage it also removes its
installation folder C:\programdata\intel\wireless .

We would like to mention one file that is also created by the Meh dropper:
C:\testintel2\a.txt

This file contains only three bytes: meh . This was so hilarious upon the first look that we
decided to name the whole family Meh, including its crypter, MehCrypter.

base.au3 uses the same crypter (MehCrypter) as the original sample. However, it
contains a shellcode only instead of a whole PE binary. Thus, it omits the PE loader part
and it is executed using the CallWindowProc API function.

base.au3 shellcode

base.au3 shellcode has two parts. In the first part, the shellcode constructs yet another
shellcode on the stack. We can see its beginning at the address 0x00000025 . The second
shellcode is executed later via an indirect jump.

Assembly of the base.au3 shellcode with the beginning of the second shellcode
The second part is an unencrypted binary file. The MZ header starts at the address
0x0000168A .

5/8

Assembly of the base.au3 shellcode with the beginning of the binary
As we might guess, the second (constructed) shellcode is in fact another PE loader that just
loads and executes the hardcoded binary file. This binary is the last stage of the crypter’s
envelope and is a stager for the Meh password stealer.

Meh stager

After the long journey of peeling away MehCrypter’s layers, we finally reach the Meh stager,
written in Borland Delphi. This stager is the third (and final) PE loader, which decrypts the
aforementioned pe.bin file using a very simple XOR cipher.

pe.bin decryption

The decryption function takes two inputs – a base64-encoded ciphertext and a key.
Fortunately, both of these are contained in the pe.bin .

The contents of the pe.bin file can look like this:

6/8

The contents of pe.bin file with the highlighted XOR key
As can be seen in the screenshot above there is a randomly generated string at the
beginning of the file, similarly to the initial AutoIt script. After a series of random letters,
however, we can see a string delimited by pipes, followed by a base64 string. These are
exactly the parameters the decryption function needs. A corresponding decryptor written in
Python can be found below.

The key, as shown above, is not used in this exact form. The malware replaces the first
character of the key-string with “ a ” and omits the last letter. Thus, the actual key is
asUzmbiYd .

After that, the base64 string is decoded and a one-byte key is derived from the XOR key
string:

The bit-negated version of this one-byte key is then used to decrypt the content of the file.
As mentioned before, the cipher is a simple XOR cipher:

Due to a bad key-derivation procedure, the actual size of the key-space is just 256 keys.
Therefore, an analyst can bruteforce the decryption key, e.g. by trying to decrypt the PE file
header looking for MZ magic bytes.

The whole decryptor written in Python can be found here.

Campaign overview

The surge of Meh and MehCrypter infections started mid-June where we were counting
several thousands infections per day. The malware is most prevalent in Spain where Avast
blocked infection attempts on more than 80,000 of our users. The second most targeted

https://github.com/avast/ioc/blob/master/Meh/extras/decryptor_pe_bin.py

7/8

country is Argentina with more than 2,000 attacked users.

Map illustrating the countries Meh has targeted from June to September 2020

Graph illustrating Meh’s spread in time (hits)

Summary

In this post, we looked into a MehCrypter family that is used to obfuscate many malware
families circulating in the wild. One of these families is the Meh password stealer, which we
will describe in detail in the next part of the series, so stay tuned!

IoCs

File name Hash

8/8

Initial
AutoIt
script

94c2479d0a222ebdce04c02f0b0e58ec433b62299c9a537a31090bb75a33a06e

Stage 1 –
Dropper

43bfa7e8b83b54b18b6b48365008b2588a15ccebb3db57b2b9311f257e81f34c

Stage 2 –
Shellcode

34684e4c46d237bfd8964d3bb1fae8a7d04faa6562d8a41d0523796f2e80a2a6

Stage 3 –
Shellcode
2

2256801ef5bfe8743c548a580fefe6822c87b1d3105ffb593cbaef0f806344c5

Stage 4 –
Meh
stager

657ea4bf4e591d48ee4aaa2233e870eb99a17435968652e31fc9f33bbb2fe282

pe.bin 66de6f71f268a76358f88dc882fad2d2eaaec273b4d946ed930b8b7571f778a8

base.au3 75949175f00eb365a94266b5da285ec3f6c46dadfd8db48ef0d3c4f079ac6d30

autoit.exe 1da298cab4d537b0b7b5dabf09bff6a212b9e45731e0cc772f99026005fb9e48

URL

http://83[.]171.237.233/s2/pe.bin

http://83[.]171.237.233/s2/base.au3

http://83[.]171.237.233/s2/autoit.exe

Repository: https://github.com/avast/ioc/tree/master/Meh

Tagged ascrypter, obfuscation, reversing, stealer

https://github.com/avast/ioc/tree/master/Meh
https://decoded.avast.io/tag/crypter/
https://decoded.avast.io/tag/obfuscation/
https://decoded.avast.io/tag/reversing/
https://decoded.avast.io/tag/stealer/

