
How North Korea-Backed Lazarus Group Is Weaponizing Open Source to Target Developers 1

How North Korea-Backed
Lazarus Group Is Weaponizing
Open Source to Target Developers

Sonatype Security Research

How North Korea-Backed Lazarus Group Is Weaponizing Open Source to Target Developers 2

Since January 2025 alone, Sonatype’s automated malware detection systems uncovered and blocked 234 unique open
source malware packages that can be attributed to the North Korea-backed Lazarus Group, offering unique insights
into how nation-state actors are using increasingly sophisticated methods to exploit the open source ecosystem. These
packages — nearly all designed to mimic legitimate developer tools — target software engineers and CI/CD environments
to gain initial access, exfiltrate data, and potentially implant more persistent malware.

This campaign continues a disturbing trend: adversaries are increasingly embedding themselves within the software
development life cycle (SDLC), leveraging developer trust, open source norms, and registry openness to deliver malicious
payloads at scale. The open source ecosystem, built on a foundation of community and shared contribution, is being
systematically co-opted as a new vector for state-sponsored espionage. While each package alone may appear
unremarkable, taken together they reveal a sophisticated strategy of deception, persistence, and exploitation with over
36,000 potential victims.

This whitepaper provides a technical deep-dive into the Lazarus Group’s 2025 campaign so far, analyzing their tactics,
techniques, and procedures (TTPs) within the npm and PyPI ecosystems. We will examine the malware’s behavior,
discuss the strategic implications for software supply chain security, and offer actionable guidance for mitigation.

unique Lazarus packages
234 36,000

potential victims

How North Korea-Backed Lazarus Group Is Weaponizing Open Source to Target Developers 3

Who is the Lazarus Group?
The Lazarus Group — also tracked as Hidden Cobra by U.S. intelligence agencies — is a state-sponsored threat actor
linked to North Korea’s Reconnaissance General Bureau, its primary foreign intelligence agency. The group has operated
for over a decade and is responsible for some of the most high-profile cyberattacks in recent history.

How Lazarus Typically Operates
Lazarus campaigns are known for their high operational discipline, using customized malware frameworks and creative
tradecraft. Common tactics include:

While originally focused on financial theft and sabotage, Lazarus has shifted toward covert access operations, targeting
sectors such as defense, finance, crypto, and now software development. Their operations often support broader
national goals, including sanctions evasion, espionage, and foreign technology acquisition. Their evolution from disruptive
attacks to stealthy, long-term infiltration campaigns demonstrates a maturation of their strategic objectives, with the
software supply chain now clearly in their crosshairs.

2014 2016 2017 2025

Spear-phishing targeting developers,
system admins, and business personnel,
often using fake job offers or collaboration
requests on platforms like LinkedIn and
GitHub.

Command-and-control (C2)
communication via legitimate services like
GitHub, Slack, or Dropbox to blend in with
normal network traffic.

Supply chain infiltration by targeting
upstream development workflows and
third-party code.

Loader or dropper architecture with
modular and multi-stage malware.

Sony Pictures hack

The deployment
of destructive
malware and

the public leak
of extensive

corporate data.

Bangladesh
Bank heist

An attempted
theft of nearly
$1 billion from

the central bank
via the SWIFT

network.

WannaCry
ransomware attack

A global
ransomware

outbreak
affecting more
than 200,000

computers across
150 countres.

ByBit hack

A compromised
upstream resource

used by ByBit
resulted in the

theft of 401,000
Ethereum coins, a
record-breaking

$1.5 billion.

How North Korea-Backed Lazarus Group Is Weaponizing Open Source to Target Developers 4

Why Lazarus Is Targeting Open Source
The surge of activity in H1 2025 demonstrates a strategic pivot: Lazarus is now embedding malware directly
into open source package registries, namely npm and PyPI, at an alarming rate. These ecosystems present
unique advantages:

The packages below were caught and analyzed
by Sonatype’s automated malware detection and
research team between January and July 2025,
flagged for behavior including:

•	 Auto-execution of payloads upon importing
dependency for payload delivery

•	 Collection of host information and credentials

•	 Delivery of secondary droppers or trojans

•	 Obfuscation and package impersonation tactics

This shift reinforces
a broader industry
trend: nation-state
actors are no longer
bypassing the supply
chain — they are
becoming part of it.

Trust-based execution: Developers routinely install
packages with limited scrutiny or sandboxing. The npm install
or pip install commands are often executed with implicit
trust, making them a perfect entry point.

Automated propagation: Malicious dependencies can
rapidly spread through CI/CD pipelines or transitive installs.
A single malicious package can poison countless applications
downstream without any further human interaction.

Concentrated dependency risk: Many critical open source
projects are maintained by just one or two individuals,
creating single points of failure. The OpenSSF’s Census III
report, with contributions from Sonatype, notes that “Among
top non-npm projects, 17% had only one developer and 40%
had one or two developers accounting for more than 80% of
commits.” This lets adversaries target a few key maintainers
to inject malware into widely used packages.

High-value access: Developer environments and build
systems often contain credentials, API tokens, and SSH keys.

Long dwell time: Once integrated into software components,
malicious payloads can persist undetected for months.

Lazarus Packages Discovered in 2025 by Month

U
ni

qu
e

Pa
ck

ag
e

Ve
rs

io
ns

https://openssf.org/resources/census-iii-of-free-and-open-source-software/
https://openssf.org/resources/census-iii-of-free-and-open-source-software/

How North Korea-Backed Lazarus Group Is Weaponizing Open Source to Target Developers 5

Key Techniques and Trends

1. Impersonation of Trusted Packages

Many of the packages caught were designed to impersonate or resemble legitimate development libraries.
For instance:

•	 npm:winston-compose: Spoofing winston, a flexible logger for Node.js with over 10 million downloads every week,
through the use of combo-squatting.

•	 npm:nodemailer-helper: Attempting to impersonate nodemailer, a popular SMTP tool used with Node.js, with over 5
million downloads every week, again via the use of combo-squatting.

•	 npm:servula and npm:velocky: Brandjacking the npm:pino package, a popular logger for Node.js, with over 10
million downloads every week. In this scenario they had replaced the README.md contents with that of the legitimate
pino package but changed enough text to make it seem like a fork, attempting to trick open source consumers into
downloading (see Figure 1).

•	 pypi:pycryptoconf & pypi:pycryptoenv: Combo-squatting the pypi:pycrypto, a popular collection of hashing
functions and encryption algorithms with over 1.5 million weekly downloads.

Figure 1: Real and illegitimate README files

README.md from legitimate pino package:

README.md from illegitimate servula package:

README.md from illegitimate velocky package:

How North Korea-Backed Lazarus Group Is Weaponizing Open Source to Target Developers 6

However, upon closer inspection, it’s revealed they’re also attempting to cross-brand-squat the package’s
documentation. The attackers are also using the PKG-INFO from the pypi:oscrypto package, a popular encryption
library with over 5 million weekly downloads (see Figure 2).

These mimicry tactics exploit typos, visual confusion, or “lookalike” names (known as
typosquatting), which remain highly effective against unsuspecting developers and automated
build pipelines. We also observed instances of “brand-jacking,” where attackers use the names
of well-known companies or projects in their package names (e.g., internal-company-logger) to
imply legitimacy, as well as combo-squatting, which combines trusted names with extra words
to create deceptive but plausible identifiers.

PKG-INFO from legitimate oscrypto package:

PKG-INFO from illegitimate pycryptoconf package:

PKG-INFO from illegitimate pycryptoenv package:

Figure 2: Real and illegitimate PKG-INFO files

How North Korea-Backed Lazarus Group Is Weaponizing Open Source to Target Developers 7

2. Payload Characteristics and Behavioral Insights

Once installed, the latest packages execute a multi-stage attack designed to maintain stealth, achieve persistence, and
exfiltrate sensitive data. This analysis breaks down the attack chain of a recently discovered malicious npm package,
‘vite-postcss-helper,’ to illustrate the group’s operational tactics.

The dropper in this package contacts a command-and-control (C2) server to fetch a heavily obfuscated loader.
The loader then performs host profiling to evade sandboxes and proceeds to execute multiple, distinct final payloads
in separate processes. These payloads are designed for comprehensive data theft, including a clipboard stealer
for capturing sensitive information in real time, a credential harvester named “BeaverTail” targeting browser and
cryptocurrency wallet data, a broad file stealer that hunts for valuable documents, and often a Windows-specific
keylogger and screenshot utility for user surveillance.

Figure 9: Initial dropper

Figure 10: Second-stage payload values used to deobfuscate
remaining code

Stage 1: The Initial Dropper

The attack’s entry point is a malicious script, or “dropper,”
embedded within an otherwise functional-looking npm
package. In the vite-postcss-helper example, this
dropper was found in package/lib/private/prepare-
writer.js. Its role is singular and critical: to contact a
remote C2 server and dynamically execute the next stage
of the attack. By using eval() on the server’s response, the
attackers avoid including the more overtly malicious code
directly in the initial package, thereby bypassing static
analysis and scanners.

Stage 2: The Obfuscated Loader

Once the dropper executes the C2 server’s response, a
heavily obfuscated loader script is deployed on the victim’s
machine. This loader acts as the central dispatcher for the
final payloads. Its key characteristics are:

•	 Heavy obfuscation: It utilizes techniques like hex-
encoding and variable mangling to make the code
unreadable and evade signature-based detection.

•	 Modularity: The loader contains multiple embedded
payloads and uses the child_process.spawn() command
to launch each one in a separate, detached process.
This modular design enhances stealth and ensures that
even if one payload is detected, the others can continue
to operate.

•	 Evasion: It then conducts host profiling to check for
virtualized or sandbox environments. If detected, it may
terminate or alter its behavior to avoid analysis.

How North Korea-Backed Lazarus Group Is Weaponizing Open Source to Target Developers 8

Stage 3: Final Payload Characteristics & Evasion Techniques

Before the final payloads begin their data exfiltration tasks, it’s crucial to understand their shared design principles,
which are centered on stealth and evasion. The Lazarus Group doesn’t deploy a single, monolithic malicious file; instead,
the loader spawns multiple, independent payloads as separate Node.js processes. This modularity is a key characteristic,
making the attack highly resilient and difficult to fully eradicate. If one payload is detected and terminated, the others can
continue operating unaffected.

The most prominent evasion technique is sophisticated host profiling. The malware performs detailed checks to
determine if it is running within a virtual machine (VM) or a sandboxed analysis environment. By identifying system
artifacts unique to virtualization software like VMware, VirtualBox, or QEMU, the payload can either alter its behavior or
terminate execution entirely to prevent security researchers from observing its true function.

The code snippet in Figure 13, taken from one of the payloads, clearly demonstrates this cross-platform
anti-analysis check.

Once the loader confirms it is running in a real user
environment, it proceeds to detonate the remaining four
payloads. These payloads are not designed for resource-
intensive tasks like cryptocurrency mining. Their sole
focus is data exfiltration. The primary tools observed in
this campaign include:

•	 A clipboard stealer and remote shell for capturing
sensitive, copied data and maintaining remote access.

•	 The “BeaverTail” credential stealer, which targets
browser passwords and cryptocurrency wallet data.

•	 A broad file stealer that recursively scans the file
system for valuable documents and configuration files.

•	 A Windows-specific keylogger and screenshotter for
comprehensive user surveillance.

The specific functions of these exfiltration-focused
payloads are analyzed in detail in the following section.

Figure 11: Obfuscated payload #1 — a clipboard stealer

Figure 12: Payload spawner to execute one of five modules

Figure 13: Host profiling to determine if altered behavior is needed

How North Korea-Backed Lazarus Group Is Weaponizing Open Source to Target Developers 9

3. Focused on Exfiltration, Not Mining

New Analysis Insight:

Out of the malicious packages identified, more than 90 were engineered for secrets exfiltration, meaning they actively
sought to collect environment variables, credentials, and tokens from developer systems.

In contrast, there were zero indications of cryptomining-related behavior across the dataset.

This demonstrates that Lazarus is not singularly pursuing opportunistic monetization like resource
hijacking for mining. Instead, they are leveraging open source to silently harvest sensitive data and
pave the way for long-term access to lucrative financial information and espionage operations. The
stolen credentials are not the end goal. They are the key to unlocking the kingdom — gaining access
to source code repositories, cloud infrastructure, and internal networks.

Additionally, more than 120 were classified as droppers, meaning they serve as delivery mechanisms for further malware
— another indication of multi-stage targeting strategies rather than one-time payloads.

After gaining initial access, Lazarus uses several layered techniques to exploit developer environments. A common
method involves exfiltrating environment variables to a remote server, followed by executing server-sent code via
eval. This typically fetches the BeaverTail loader, which scans for and exfiltrates data from crypto wallets (MetaMask,
Phantom, Binance, Coinbase), Solana’s id.json, macOS keychain entries, and browser-stored credentials.

Example: react-babel-purify

Figure 14: Malicious section of code after deobfuscation

In a novel technique, the smart-request-buffers package makes a request to a remote endpoint, then passes the
contents of the cookie in the response to an eval() statement. The cookie contains the BeaverTail loader Figure 15:
Cookie containing BeaverTail loader

Figure 15: Cookie containing BeaverTail loader

The safe-array-push package doesn’t rely on a remote endpoint — the index.js file contains the obfuscated
BeaverTail source.

How North Korea-Backed Lazarus Group Is Weaponizing Open Source to Target Developers 10

A Case Study in Data Exfiltration
The vite-postcss-helper package serves as a good example of the group’s exfiltration-focused strategy, deploying
a suite of specialized tools to steal a wide array of data. The final four payloads are described in more detail below.

1.	 Clipboard stealer and remote shell: This payload establishes a persistent WebSocket
connection to the C2 server. It continuously monitors the victim’s clipboard — a common
place for copying passwords and cryptocurrency keys — and exfiltrates any new content.
This connection also functions as a remote shell, allowing attackers to execute arbitrary
commands on the infected system.

Figure 16: Multi-platform, periodic clipboard stealer

How North Korea-Backed Lazarus Group Is Weaponizing Open Source to Target Developers 11

2.	 BeaverTail / InvisibleFerret — Credential and crypto wallet stealer: This payload is a
highly targeted information stealer focused on high-value credentials. It meticulously
searches browser data from Chrome and Brave, hunting for Login Data, Web Data, and files
associated with a hardcoded list of cryptocurrency wallet extensions (like MetaMask and
Phantom). It is designed to be cross-platform, with specific file paths for Windows, macOS,
and Linux.

Figure 17: BeaverTail, a credential stealer, inspecting sensitive browser files and
crypto browser extensions

How North Korea-Backed Lazarus Group Is Weaponizing Open Source to Target Developers 12

3.	 Broad file stealer: A more general-purpose payload that recursively scans the user’s file
system. It uses a list of keywords (.env, secret, wallet, mnemonic) and file extensions (.pdf,
.docx, .csv) to identify and exfiltrate valuable documents and configuration files. To remain
efficient and stealthy, it uses a large exclusion list to ignore system and development
folders like node_modules.

Figure 18: Sensitive file names
and extensions to search

Figure 19: Uploads matched file name contents to Lazarus servers

How North Korea-Backed Lazarus Group Is Weaponizing Open Source to Target Developers 13

4.	 Keylogger and screenshotter (Windows): On Windows systems, a potent surveillance tool
is deployed. It installs dependencies like node-global-key-listener to log every keystroke
and screenshot-desktop to capture images of the user’s screen. This combination provides
attackers with a comprehensive, real-time view of the victim’s activity, which is then sent to
the C2 server on a periodic basis.

Figure 20: Reads keystrokes stored in ‘text’ variable and uploads them to Lazarus servers

Figure 21: Uploads screenshots periodically to Lazarus servers

How North Korea-Backed Lazarus Group Is Weaponizing Open Source to Target Developers 14

Targeting and Impact
These packages were most likely aimed at developers working in DevOps-heavy organizations or teams with automated
CI/CD pipelines. Targeted environments include:

By focusing on open source package delivery, Lazarus achieves:

•	 Stealth: Blending in with trusted developer tooling.

•	 Scale: Broad reach across thousands of downloads.

•	 Automation: Exploiting CI/CD systems where code is automatically pulled and executed.

The potential impact of a single compromised developer machine or build agent is severe. It can lead to intellectual
property theft, injection of backdoors into production software, lateral movement across the corporate network, and
significant reputational damage.

Developer
installs

package

Dropper fetches
C2 payload

Obfuscated
loader

deploys

Host
profiling

& evasion

Secrets
exfiltrated

to C2 Attacker uses
credentials to access
cloud/infrastructure

Parallel payload execution:

Clipboard Stealer

BeaverTail
(Credential Stealer)

File Stealer

Keylogger/
Screenshotter

Remote Shell

Build pipelines, where
environment variables like
secrets and tokens may

be exposed.

Developer machines, where
reconnaissance can yield
credentials, keys, or lateral
movement opportunities.

Cloud-based deployments,
with stolen credentials used to

access wider infrastructure.

How North Korea-Backed Lazarus Group Is Weaponizing Open Source to Target Developers 15

Attribution and Campaign Context
While attribution in cybersecurity is never conclusive, these packages share C2 infrastructure, payload behavior, and
campaign timing with previous Lazarus operations documented by agencies such as CISA, Kaspersky, and Microsoft
Threat Intelligence. This aligns with Lazarus’ historical focus on:

•	 Cyberespionage and data theft

•	 Initial access in financial and infrastructure sectors

•	 Weaponization of software supply chains

This is also consistent with Lazarus’ trend over the past few years of targeting blockchain developers, macOS
environments, and in 2025, CI/CD-focused infrastructure. The TTPs observed in this campaign — specifically the use of
typosquatted packages in PyPI and npm to deliver credential stealers — are a direct evolution of techniques previously
reported in their attacks on cryptocurrency engineers.

Mitigation and Best Practices
An in-depth defensive strategy is crucial to protect your software supply chain. Developers and security teams can
defend against these threats with layered defenses:

Use a repository firewall to block malicious or
suspicious packages before they reach build

systems, preventing the threat from ever entering
the development ecosystem.

1

Audit dependencies regularly by running scans
for indicators of compromise. Use software bill

of materials (SBOMs) to maintain a full inventory
of all open source components and their

transitive dependencies.

3

Enforce stricter governance policies to avoid
installing packages with unclear provenance or

low download histories unless vetted.

2

Maintain a centralized repository that
only includes audited, compliant packages for

developers across the organization to leverage.

4

https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-108a
https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-108a

How North Korea-Backed Lazarus Group Is Weaponizing Open Source to Target Developers 16

Sonatype is the leader in secure software development built on open source and AI. As the maintainers of Maven Central and creators of Nexus Repository, Sonatype has spent two decades
pioneering how the world manages and secures open source software — making Sonatype the trusted authority for modern software supply chains. With unmatched open source visibility and a
unified product suite built for modern software development, Sonatype gives enterprises the intelligence and automated governance they need to harness the full potential of open source and
AI. Sonatype handles the complexity behind the scenes: guiding component and model selection, blocking harmful malicious code, automating dependency and vulnerability management, and
ensuring faster, more reliable builds — so developers spend more time on innovation and less time on remediation and rework. Trusted by more than 15 million developers, Sonatype helps power
secure, modern software development at nearly 2,000 global organizations including 70% of the Fortune 100. To learn more about Sonatype, please visit www.sonatype.com.

Lazarus is not mining cryptocurrency. They’re mining trust.
The Lazarus Group’s 2025 campaign so far highlights a stark reality: open source software is now a frontline in global
cyber conflict. Developers are no longer just builders — they are targets. As attackers evolve, so must our defenses.
Through secrets exfiltration and multi-stage droppers embedded in public packages, Lazarus is turning open source
ecosystems into sophisticated delivery mechanisms for cyberespionage.

This campaign is a clear signal that the trust inherent in the open source community is being actively exploited for
geopolitical gain. The stakes have never been higher, as a single malicious package can compromise an entire software
delivery pipeline, leading to catastrophic breaches.

With Sonatype’s automated threat detection, global threat telemetry, and in-depth malware analysis, organizations can
stay ahead of adversaries seeking to exploit the trust and openness of the software supply chain. Securing the SDLC is
not just about protecting code. It’s about protecting the very foundation of modern innovation.

Sonatype customers were proactively protected from this campaign. Sonatype Repository Firewall automatically
protected customers by blocking these malicious packages before they could enter development pipelines. Sonatype
Lifecycle alerted customers on any instances of these components already present in existing applications, ensuring
rapid response and containment. This multi-layered security is powered by a combination of automated behavioral
analysis, global threat intelligence, and machine learning to stop threats before they impact production.

