
HESPERBOT
A New, Advanced Banking Trojan
in the Wild

HESPERBOT
A New, Advanced Banking Trojan in the Wild

Hesperbot – A New, Advanced Banking
Trojan in the Wild
A new and effective banking trojan has been discovered targeting online

banking users in Turkey, the Czech Republic, Portugal and the United

Kingdom. It uses very credible-looking phishing-like campaigns, related to

trustworthy organizations, to lure victims into running the malware.

The Story
In the middle of August we discovered a malware-spreading

campaign in the Czech Republic. Our interest was first kindled by the

site that the malware was hosted on – a domain that passed itself

off as belonging to the Czech Postal Service – but more interesting

findings followed.

Analysis of the threat revealed that we were dealing with a banking

trojan, with similar functionality and identical goals to the infamous

Zeus and SpyEye, but significant implementation differences

indicated that this is a new malware family, not a variant of a

previously known trojan.

Despite being a “new kid on the block”, it appears that Win32/Spy.

Hesperbot is a very potent banking trojan which features common

functionalities, such as keystroke logging, creation of screenshots

and video capture, and setting up a remote proxy, but also includes

some more advanced tricks, such as creating a hidden VNC server

on the infected system. And of course the banking trojan feature list

wouldn’t be complete without network traffic interception and HTML

injection capabilities. Win32/Spy.Hesperbot does all this in quite a

sophisticated manner.

When comparing the Czech sample to known malware in our

collection, we discovered that we had already been detecting earlier

variants generically as Win32/Agent.UXO for some time and that

online banking users in the Czech Republic weren’t the only ones

targeted by this malware. Banking institutions in Turkey and Portugal

were also being targeted.

The aim of the attackers is to obtain login credentials giving access

to the victim’s bank account and to get them to install a mobile

component of the malware on their Symbian, Blackberry or Android

phone. Keep reading for details on the malware spreading campaigns,

their targets and for technical details on the trojan.

The Campaigns Timeline
The Czech malware-spreading campaign started on August 8, 2013.

The perpetrators have registered the domain www.ceskaposta.net,

which is very close to the real website of the Czech Postal Service,

www.ceskaposta.cz.

Figure 1 - Registration date of ceskaposta.net

http://www.ceskaposta.cz/

HESPERBOT
A New, Advanced Banking Trojan in the Wild

Figure 2 - Compilation timestamp of malware used in the Czech campaign

The domain was registered on August 7, 2013 and the first malware

Hesperbot binaries (detected as Win32/Agent.UXO at first) distributed

in the Czech Republic were compiled on the morning of August 8,

2013 and picked up by our LiveGrid® system moments later.

It’s probably not surprising that the attackers tried to lure potential

victims into opening the malware by sending emails which looked as

parcel tracking information from the Postal Service. This technique

has been used many times before (e.g. here and here). The filename

used was zasilka.pdf.exe: “zasilka” means mail in Czech. The link in

the email showed the legitimate www.ceskaposta.cz domain while

pointing to www.ceskaposta.net, which many victims hadn’t

noticed. Interestingly enough, the fake domain actually redirected to

the real website when opened directly.

It should be noted that the Czech Postal Service responded very

quickly by issuing a warning about the scam on their website.

Figure 3 - Warning about the fraudulent e-mails issued by the Czech Postal Service

While the Czech campaign was the one that caught our attention,
the country most affected by this banking trojan is Turkey and
Hesperbot detections in Turkey are dated even earlier than August 8.

Recent peaks in botnet activity were observed in Turkey in July 2013,
but we have also found older samples that go back at least as far back
as April 2013. During the analysis of the samples we found that they

http://www.welivesecurity.com/2013/03/08/sinkholing-trojan-downloader-zortob-b-reveals-fast-growing-malware-threat/
http://www.welivesecurity.com/2011/11/30/youve-got-malware-deceptive-package-delivery-email-for-the-holidays/
http://www.ceskaposta.cz/

HESPERBOT
A New, Advanced Banking Trojan in the Wild

were sending debugging information to the C&C – an indicator that

these variants were in the early stages of development. Additional

research revealed that Turkey has been facing Hesperbot infections

for some time now.

The campaigns used in Turkey are of a similar nature to the Czech

campaign. The phish-like e-mail that was sent to potential victims

purported to be an invoice (the filename is fatura in Turkish) from

TTNET (the largest ISP in Turkey). A double extension – .PDF.EXE –

was used here too. An analysis of this campaign has been published

on the website of the Turkish National Information Security Program.

Only later in our research did we find that the malware operators

have shifted their sights towards Portugal. Similarly to the Turkish

campaign, the malicious files were disguised as an invoice from

a local service provider with a very large market share, Portugal

Telecom.

A variant designated to target computer users in the United Kingdom

has also been found in the wild, but we cannot provide further details

about its spreading campaign at the time of writing.

In the course of our research, we also stumbled upon an additional

component used by Win32/Spy.Hesperbot. This malware, detected

by ESET as Win32/Spy.Agent.OEC, harvests e-mail addresses from

the infected system and sends them to a remote server. It is possible

that these collected addresses were also targeted by the malware-

spreading campaigns.

Targeted Banks and Victims
The configuration files used by the malware’s HTTP interception and

injection module specify which online banking websites are to be

targeted by each botnet.

Czech Republic

Figure 4 - Czech banks targeted by Hesperbot

Turkey

Figure 5 - Turkish banks targeted by Hesperbot

http://www.bilgiguvenligi.gov.tr/zararli-yazilimlar/fatura-zararli-yazilim-defref-analizi.html

HESPERBOT
A New, Advanced Banking Trojan in the Wild

Portugal

Figure 6 - Portuguese banks targeted by Hesperbot

In the case of the Turkish and Portuguese botnets, the configuration

files also included web-injects, i.e. pieces of HTML code that the

trojan would insert into the banks’ web-pages when viewed on the

infected PC. This was not present in the Czech configuration file

that we found, so most probably only simple form-grabbing and

keylogging functionality was used in that instance.

Figure 7 - Malicious scripts injected into Portuguese bank website. Notice that the
URL address is legitimate, including the HTTPS protocol.

According to our ESET LiveGrid® telemetry, as well as our hands-on

research into the malware operation, we estimate that the number

of people that may have fallen victim to the Hesperbot banking trojan

is in the scale of tens in the Czech Republic and Portugal (respectively)

and in the scale of several hundred in Turkey. Detection statistics

per country are shown in the figure below. It has also come to our

attention that victims in the Czech Republic have lost significant

amounts of money as a result of infection by this malware. It’s quite

possible that there are similarly unfortunate victims in Turkey and

Portugal as well.

Figure 8 - Detection statistics of Win32/Hesperbot according to ESET LiveGrid

HESPERBOT
A New, Advanced Banking Trojan in the Wild

The Malware
Like many other malware families, Win32/Spy.Hesperbot has a

modular architecture. As the first step in infection, the victim

downloads and runs a dropper component. The dropper is also

protected by a custom malware packer and distributed in a ZIP archive.

Figure 9 - Hesperbot initial modules overview

The dropper’s role is to inject the main component – ‘core’ – into

explorer.exe. The core then downloads and loads additional modules,

plug-ins used to carry out malicious actions.

Module Function

dropper Used for injecting core into explorer.exe

core
Main module, contacts C&C

and downloads plugin modules

nethk

httphk

httpi

Modules for network traffic interception,

web-injects, screenshots and video

capture. See below for details.

keylog Keylogger

hvnc Sets up a covert VNC server

sch Auxiliary module for setting hooks

socks Used to set up a SOCKS5 proxy server

Figure 10 - Description of Win32/Spy.Hesperbot modules

The various modules are available both as x86 and x64 variants

according to the host system platform.

Selected internal functions of individual modules are available for

other modules to use through a virtual method table (vtable).

We have reverse-engineered the malware components and will

highlight the most interesting features in the following paragraphs.

Most malware components were compiled using Visual Studio

2010 and written in the C programming language, but without

using the C Run-Time library. While this isn’t the most sophisticated

malware we’ve analysed, Win32/Spy.Hesperbot can’t be dismissed as

amateurish.

HESPERBOT
A New, Advanced Banking Trojan in the Wild

Main Modules
dropper

The dropper can use one of several methods for injecting the core

component into the address space of explorer.exe:

• Starting a new instance of explorer.exe and patching its entry-

point using NtGetContextThread to point to its own code

(written using WriteProcessMemory). This can be done either

directly or through an intermediate attrib.exe process.

• Injecting itself into the actual explorer.exe using the elaborate

Shell_TrayWnd/SetWindowLong/SendNotifyMessage trick

used in PowerLoader and other malware. (Aleks Matrosov has

published multiple blog posts about it recently, so I won’t go into

details here.)

• Injecting itself into explorer.exe using the common approach with

CreateRemoteThread

Interestingly, the injection method is also based on whether the

cmdguard.sys (Comodo) or klif.sys (Kaspersky) drivers are found on the

system.

core

The core module, now running in the context of explorer.exe, handles

communication with the C&C server and launching other plug-in

modules. Typical malware functionality, such as writing to the Run

Windows Registry key, is also handled by core.

In order to access the C&C server, Win32/Spy.Hesperbot.A uses either

a hard-coded URL (different ones were seen in the variants used by

the Czech, Turkish and Portuguese botnets) or generates new C&C

URLs using a domain generation algorithm in case the first server is

inaccessible.

The following information is sent to the command-and-control

server:

• Bot name based on the Computer Name

• Botnet name – so far, we have seen “cz-botnet”, “tr-botnet”,

“pt-botnet”, “uk-botnet” and “super-botnet” (used in early “beta”

versions)

• IP addresses of present network adapters

• Names of active smart-cards

• Information about installed Hesperbot plug-ins

Figure 11 - Botnet identifier in Hesperbot code

In return, the server can send:

• A configuration file

• Plugin modules

• An arbitrary executable to run

• A new version of itself

Several technical details regarding the abovementioned functionality

are worth mentioning. Firstly, the malware is able to enumerate

http://www.welivesecurity.com/2013/08/27/the-powerloader-64-bit-update-based-on-leaked-exploits/
http://www.welivesecurity.com/2013/03/19/gapz-and-redyms-droppers-based-on-power-loader-code/
http://www.welivesecurity.com/2012/12/27/win32gapz-steps-of-evolution/

HESPERBOT
A New, Advanced Banking Trojan in the Wild

smart cards present in the system using the SCardEstablishContext,

SCardListReaders and SCardConnect API functions. Unlike more

sophisticated attacks against smart cards (described by Aleks here

and here), Win32/Spy.Hesperbot only collects smart-card names and

doesn’t contain the ability to interact with them.

Secondly, the downloaded data (namely the configuration file and

plugin modules) is encrypted using the Twofish cipher. The 256-bit key

is a hash based on:

• Computer Name

• [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\

CurrentVersion] "InstallDate"

• Windows version

• Processor architecture (x86, x64 or IA64)

• [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography]

"MachineGuid"

• [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\

CurrentVersion] "DigitalProductId"

For storing the downloaded data as well as other auxiliary binaries

(e.g. the log created by the keylogger module), Hesperbot uses a

randomly named subdirectory under %APPDATA%.

The core module can inject itself into all running processes.

Furthermore, an undocumented trick of hooking

UserNotifyProcessCreate is used when running inside csrss.exe, to

ensure that the trojan’s code will be injected into every new process.

Importantly, the core module exposes internal functions through

its function vtable to other modules and “coordinates” them.

The interactions between plug-ins are clarified in the following

paragraph, which describes the network interception modules.

Network Interception and Web-injects
Probably the most intriguing part of this malware is the way it

handles network traffic interception. Other well-known banking

trojans such as Zeus and SpyEye are able to intercept and

modify HTTP and HTTPS traffic by hooking WinSock functions

(send, WSASend, etc.) and the higher-level WinInet functions

(HttpSendRequest, InternetReadFile, etc.). As the web-injects,

form-grabbing and other shenanigans performed by these banking

trojans take place inside the affected browser, the method has

collectively been labeled as the ‘Man-in-the-Browser’ attack. Win32/

Spy.Hesperbot, however, takes a different approach, which is not very

common, but has, in fact, already been used by the Gataka banking

trojan. A good technical analysis of Win32/Gataka by my colleague

Jean-Ian Boutin can be found here.

The network traffic interception and HTML injection functionality in

Win32/Spy.Hesperbot is accomplished by the plug-in modules nethk,

httphk and httpi working together.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa379479%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379793%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379473%28v=vs.85%29.aspx
http://www.welivesecurity.com/2012/06/05/smartcard-vulnerabilities-in-modern-banking-malware/
http://www.welivesecurity.com/2010/11/05/dr-zeus-the-bot-in-the-hat/
http://en.wikipedia.org/wiki/Twofish
http://www.welivesecurity.com/2012/06/28/win32gataka-a-banking-trojan-ready-to-take-off/
http://www.welivesecurity.com/2012/06/28/win32gataka-a-banking-trojan-ready-to-take-off/
http://www.welivesecurity.com/2012/08/13/win32gataka-banking-trojan-detailed-analysis/

HESPERBOT
A New, Advanced Banking Trojan in the Wild

Figure 12 - Relations between network interception modules

Here’s a brief description of each module’s purpose:

• nethk – used to set up a local proxy, hook socket functions to drive

connections through the proxy and hook browser SSL certificate

verification functions. Also handles decryption and encryption of

HTTPS traffic flowing through the proxy.

• httphk – used for parsing HTTP traffic intercepted by the proxy

• httpi – used for screenshots, video capturing, form-grabbing and

web-injects according to the configuration file

Now let’s take a closer look at how the modules work together and

accomplish their tasks. As mentioned above, the modules expose

their functions in a vtable for other modules to use. The program

flow in between the modules as each HTTP request or response is

intercepted is ensured through callback functions.

nethk

Nethk is the first plug-in module to be loaded by the core module.

Win32/Spy.Hesperbot performs a man-in-the-middle attack by

creating a local proxy through which it directs all connections from

the browser.

Figure 13 - Local proxy IP address in Hesperbot code

Figure 14 - Internet Explorer connected through Hesperbot proxy

HESPERBOT
A New, Advanced Banking Trojan in the Wild

To achieve this, the trojan’s nethk module creates a proxy on a

random port at the address 127.0.1.1 and hooks the following functions

in mswsock.dll, the lower-level Winsock SPI library:

• WSPSocket

• WSPIoctl

• WSPConnect

• WSPCloseSocket

The pointers to these functions are modified in the WSPPROC_TABLE.

To understand how the proxy redirection works, let’s look at the

hooked WSPConnect function.

Figure 15 - Hooked WSPConnect API

The browser socket – when trying to connect to a secured online

banking website, for example – is connected to the proxy created by

Hesperbot instead. In another thread, the legitimate connection to

the website is established.

HESPERBOT
A New, Advanced Banking Trojan in the Wild

Figure 16 - Overview of HTTPS traffic interception via Hesperbot's proxy

An httphk-callback is invoked each time the proxy intercepts a

request from the browser, before passing it on to the real server.

Likewise, an httphk-callback is invoked each time the proxy

intercepts a response from the real server, before passing it on to the

browser. The httphk module then works further with the traffic.

There’s also a difference between the handling of HTTP versus HTTPS

traffic. In the case of HTTP, the request- or response-data is simply

passed to httphk. In the case of HTTPS, nethk first “gets rid of the

encryption”. When an HTTPS request from the browser is intercepted

(encrypted using its own fake SSL certificate – explained below), it

is decrypted, and the decrypted data is passed to httphk through

the callback and then encrypted using the real certificate of the

server (e.g. bank website), and then sent to the real destination.

Reciprocally, when an HTTPS response is received from the server,

it’s decrypted using the real certificate, the decrypted data is

again passed to httphk and then encrypted using Hesperbot’s fake

certificate before being passed to the browser.

In effect, through the man-in-the-middle proxy, Win32/Spy.Hesperbot

can access the victim’s outgoing HTTPS communication before

it’s encrypted and their incoming HTTPS communication after it’s

decrypted. The same effect is essentially accomplished by Zeus’s and

SpyEye’s MitB hooks, but this new approach is slightly stealthier.

Now, of course, this malicious proxy redirection should be given away

by an invalid certificate for an HTTPS website. The Hesperbot authors

thought of this as well. The nethk module carries its own crafted,

self-signed SSL certificates and these are substituted for legitimate

certificates.

Figure 17 - SSL certificates inside nethk binary

HESPERBOT
A New, Advanced Banking Trojan in the Wild

Figure 18 - Example of Hesperbot's fake certificates in use. On a clean system, Google's certificate would displayed here, of course.

HESPERBOT
A New, Advanced Banking Trojan in the Wild

In order to trick the browser into believing that the certificate is valid

and avoid the display of a warning message, the malicious module

also hooks functions responsible for certificate verification. The

implementation differs depending on the browser. The following

table shows which browsers are supported by Win32/Spy.Hesperbot

and which functions are hooked:

Browser process Hooked functions

iexplore.exe

CertVerifyCertificateChainPolicy and
CertGetCertificateChain in crypt32.dll

maxthon.exe

avant.exe

sleipnir.exe

webkit2webprocess.exe

browser.exe

chrome.exe

deepnet.exe

firefox.exe CERT_VerifyCertificate, CERT_
VerifyCert, CERT_VerifyCertificateNow,
CERT_VerifyCertNow and CERT_
VerifyCertName in nss3.dll

seamonkey.exe

k-meleon.exe

opera.exe Function in opera.dll

Figure 19 - Certificate verification functions hooked by Hesperbot for various
browsers

An interesting feature of the malicious code is that the authors have

used hashes instead of using the browser process names directly,

so as to complicate analysis and, more importantly, to protect the

malware from signature based AV detection.

Figure 20 - Code obfuscation in Win32/Spy.Hesperbot - hashes are used instead of
process names

The figure below shows the code of the hooked

CertVerifyCertificateChainPolicy.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa377163%28v=vs.85%29.aspx

HESPERBOT
A New, Advanced Banking Trojan in the Wild

Figure 21 - Hooked CertVerifyCertificateChainPolicy API

In the case of an SSL client/server chain policy verification check

(other types are neglected and passed on to the original function)

the hooked function simply returns a result indicating that the policy

check was passed.

httphk

The httphk module is merely responsible for parsing the HTTP

protocol data. When the httphk-callback is invoked, it parses HTTP

headers and data and fills in an internal structure. This structure will

subsequently be accessed by the httpi module.

Again, httphk exposes two callback functions for invoking httpi:

httpi_request_callback and httpi_response_callback.

httpi

This is the main module that actually carries out the modification of

the HTTP data, according to the configuration file.

When httpi_request_callback is invoked, the following actions are

performed:

1. Video capture and screenshots – The module reads the

configuration file and checks the request URL. If specified in the

config, video capture and/or creating screenshots is started.

2. Form grabbing – The module checks whether it’s a POST request

via the HTTPS scheme and if content-type is either "application/

x-www-form-urlencoded" or "text/plain". If these conditions

are true, it’s likely that the user has submitted a login form. If

the configuration file specifies that the current URL should be

monitored, the data is written to a log.

When httpi_response_callback is invoked, the following happens:

3. HTML injects – First, the trojan checks whether the HTTP

response code is 200. Afterwards, the configuration file is read

and if there are web-inject entries for the responding web-page,

they are inserted into the HTML content.

HESPERBOT
A New, Advanced Banking Trojan in the Wild

The figure below shows a decrypted configuration file used in the

Portuguese botnet. You may notice the first group of domains – these

are ignored by httpi – domains which are of little interest to the bot

masters. While stolen Google or Facebook login credentials would

be considered valuable to other spying malware, this shows that the

perpetrators behind Hesperbot are only interested in online-banking-

related data. The targeted bank websites are listed after those that

are ignored. The rest of the configuration file contains the HTML code

that’s supposed to be injected into the online banking websites.

Figure 22 - Decrypted web-inject configuration file used in the Portuguese botnet

HESPERBOT
A New, Advanced Banking Trojan in the Wild

It appears that the people who wrote the web-injection scripts speak
Russian, as evidenced by source-code comments. Note, however,
that the scripts may or may not have been written by the same
perpetrators who created the Win32/Spy.Hesperbot malware and/
or operate the botnets. Web-inject scripts are often shared and
reused – this is made possible when a similar format is being used by
different malware families – and specialization among cybercriminals
is commonplace.

Mobile Component
It’s common nowadays that banking trojans also utilize mobile
components (like ZitMo and SpitMo, for instance) in order to bypass
banks’ out-of-band authentication through mTANs (Mobile Transaction
Authentication Number).

In the web-inject scripts that we have seen so far, the malware
injects code into the website, which prompts the user to install an
application on their mobile phone. The victim is offered a dropdown
list of phone models and after entering their phone number a link to
download the mobile component is sent to their phone. Three mobile
platforms are supported: Android, Symbian and Blackberry.

Figure 23 - Supported mobile platforms in web-inject JavaScript

We have analysed the Symbian and Android versions, but haven’t so

far been able to obtain the Blackberry malware. The Symbian version

supports a broad range of devices, including Symbian S60 3rd edition,

Symbian S60 5th edition and the latest Symbian^3.

Both of the analysed mobile trojans exhibit similar functionality.

First, there is an “activation procedure”. The web-inject JavaScript on

the Hesperbot-infected computer generates a random “activation

number”, which is displayed to the user. The user is supposed re-

type the number when prompted by the mobile application. The

mobile app then displays a “response code”, which is calculated from

the activation number. The user is then asked to enter it back into

the webpage on their computer for verification. (The injected script

contains the same algorithm for calculating the response code as

in the mobile component.) This functionality provides the attackers

confirmation that the victim has installed the mobile component

successfully and ties it with the bot infection.

Figure 24 - Screenshot of Android component - Android/Spy.Hesperbot.A

http://en.wikipedia.org/wiki/Transaction_authentication_number#Mobile_TAN_.28mTAN.29
http://en.wikipedia.org/wiki/Transaction_authentication_number#Mobile_TAN_.28mTAN.29

HESPERBOT
A New, Advanced Banking Trojan in the Wild

As expected, the code, both in the Symbian and Android versions (and

likely in the Blackberry version as well), registers a service that waits

for incoming SMS messages and forwards them to the attacker’s

phone number. This way the attacker will get the mTAN necessary for

logging into the hijacked bank account.

The mobile code also implements the attacker’s ability to control the

service remotely through SMS commands.

The Android component is detected by ESET as

Android/ Spy. Hesperbot.A and the Symbian version as

SymbOS9/Spy.Hesperbot.A.

Other Functionality
Keylogger

The keylogger module intercepts key strokes by hooking the

functions GetMessage and TranslateMessage in user32.dll. They are then

written to a log file, along with the originating process module name

and window title text. Afterwards, the log gets sent to the C&C server.

Screenshots and Video Capture

As mentioned above, screenshots and video capture is done by the

httpi module, if specified in the configuration file.

The video capture functionality has been used by the Zeus banking

trojan spin-off Citadel and provides the attackers with an even

better overview of what’s happening on the victim’s screen. It’s

implemented using Avifil32.dll functions AVIFileCreateStream,

AVIFileMakeCompressedStream, AVIStreamWrite, etc.

Figure 25 - Part of Hesperbot's video capturing code

The more common screenshot functionality is implemented using the

Gdi32.dll functions BitBlt, GetDIBits, etc.

Hidden VNC

The VNC functionality has previously been used in the infamous

Carberp malware. (In fact, Carberp may have also been an inspiration

to the Hesperbot creators after its source code leak.) It enables the

trojan to create a hidden VNC server, to which the attacker can

remotely connect. As VNC doesn’t log the user off like RDP, the

attacker can connect to the unsuspecting victim’s computer while

they’re working. The VNC session runs in a separate desktop (see

CreateDesktop on MSDN), invisible to the user. The module also

provides the attacker with the capability to launch a browser that’s

installed on the host system. In this way, the attacker will also have

access to all browser-associated data (cookies, sessions, etc.).

http://msdn.microsoft.com/en-us/library/windows/desktop/ms644936%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644955%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd756793%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd756811%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd756860%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd183370%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd144879%28v=vs.85%29.aspx
http://www.welivesecurity.com/2013/03/25/carberp-the-never-ending-story/
http://www.welivesecurity.com/2013/06/26/carberp-code-leak-could-lead-to-new-wave-of-attacks/
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682124%28v=vs.85%29.aspx

HESPERBOT
A New, Advanced Banking Trojan in the Wild

Conclusion
As reverse-engineers, Win32/Spy.Hesperbot has interested us

from a technical perspective. While inspiration from older banking

trojans are clearly suggested by certain functionalities, it appears

that Hesperbot is a new breed of malware that its author began

developing in the year 2013.

The combination of man-in-the-middle network traffic interception,

keylogging, creating screenshots and video capture sequences and

a hidden VNC session all make this banking trojan a very capable

malicious program.

And as we have witnessed, it has already been put to use in at least

four countries: Turkey, the Czech Republic, Portugal and the United

Kingdom. In order to protect their hard-earned money, users are

advised to stay safe through both technical measures (updating

and patching software and keeping anti-virus software up to date

with the latest detection signatures) and non-technical measures:

be cautious and sceptical – for example, by staying alert for classic

phishing messages.

Authors
Anton Cherepanov

Robert Lipovsky

List of MD5s
3d71bc74007a2c63dccd244ed8a16e26
ce7bcbfad4921ecd54de6336d9d5bf12
f8ef34342533da220f8e1791ced75cda
1abae69a166396d1553d312bb72daf65
83b74a6d103b8197efaae5965d099c1e
91c5a64e6b589ffcfe198c9c99c7d1f0
ae40a00aad152f9113bc6d6ff6f1c363
27d8098fe56410f1ac36008dbf4b323e
8a9cb1bb37354dfda3a89263457ece61
ff858b3c0ea14b3a168b4e4d585c4571
1243812d00f00cef8a379cb7bc6d67e7
1e1b70e5c9195b3363d8fb916fc3eb76
4cf7d77295d64488449d61e2e85ddc72
5410864a970403dae037254ea6c57464
64a59d4c821babb6e4c09334f89e7c2d
1f7b87d5a133b320a783b95049d83332
028a70de48cd33897affc8f91accb1cd
4cc533ef8105cbec6654a3a2bc38cb55
59427cfb5aa31b48150937e70403f0db
c8ee74ada32ea9040d826206a482149e
d3c7d6d10cd6f3809c4ca837ba9ae2e8

