
1/6

View all posts by R3MRUM May 7, 2017

Loki-Bot: Come out, come out, wherever you are!
r3mrum.wordpress.com/2017/05/07/loki-bot-atrifacts/

Intro

I’m going to make my first post an easy one. I’m currently in the middle of writing up my
GREM Gold paper, which focuses on the reverse engineering of a Loki-Bot v1.8 sample.
This post is going to focus on how Loki-Bot creates its mutex and the folders, files, and
registry keys that are created as a result.

Per PhishMe:

Loki Bot is a commodity malware sold on underground sites which is designed to steal
private data from infected machines, and then submit that info to a command and
control host via HTTP POST. This private data includes stored passwords, login
credential information from Web browsers, and a variety of cryptocurrency wallets.

What is a Mutex?

Understanding what a Mutex is can be a bit difficult to understand for those with little-to-no
programming background. I found it best described on the SANS DFIR Blog:

https://r3mrum.wordpress.com/2017/05/07/loki-bot-atrifacts/
https://phishme.com/loki-bot-malware/
https://digital-forensics.sans.org/blog/2012/07/24/mutex-for-malware-discovery-and-iocs


2/6

“Programs use mutex (“mutual exclusion”) objects as a locking mechanism to serialize
access to a resource on the system.” … “Furthermore, malware might use a mutex to
avoid reinfecting the host. For instance, the specimen might attempt to open a handle
to a mutex with a specific name. The specimen might exit if the mutex exists, because
the host is already infected.”

Creating the Mutex

So, based on the mutex description, Loki-Bot uses a mutex to ensure that multiple versions
of Loki-Bot cant be running at the same time. In order for this to happen, both versions of
Loki-Bot need to have the same logic for naming the mutex. What we are going to talk about
next is said logic.

Obtaining the Machine GUID

First and foremost, know that Loki-Bot employs function hashing to thwart analysis. This is
what you are seeing from 0x404A63 to 0x404A6C. Two important arguments passed to the
function labeled getDLLFunctionFromIDXAndHash are Arg1 (DLL Index) and Arg2 (Function
Hash). In this instance, these values are set to 9 and ‘F4B4ACDC’. Without diving too deep
into this, know that the DLL Index of 9 equates to ADVAPI32 and the hash ‘F4B4ACDC’
decodes to RegOpenKeyEx. At 0x404A81, we see the decoded function
ADVAPI32.RegOpenKeyEx being called.

This will open the registry path:

“HKEY_LOCAL_MACHINE\SORTWARE\Microsoft\Cryptograpy\”

But it doesn’t actually read the value contained within the key it needs. For this to happen,
ADVAPI32’s RegQueryValueEx function needs to be called.

http://en.wikipedia.org/wiki/Mutual_exclusion
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724911(v=vs.85).aspx


3/6

After successful execution, the value stored in the memory address referenced in the pData
argument (0x292388) now contains the value that was in the
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\MachineGuid registry key.

We can validate this by simply loading up RegEdit on the Windows host that is about to be
compromised and navigating to the referenced registry key.

The Machine GUID is supposed to be a value that is unique for each system. This means
that your Machine GUID will be different from the Machine GUId depicted here; thus,
your mutex will be different from mine.

MD5 Hash Machine GUID

Once the Machine GUID is obtained from the registry, Loki-Bot obtains the MD5 hash of the
Machine GUID by making calls to ADVAPI’s CryptAcquireContext, CryptCreateHash,
CryptHashData, and CryptGetHashParam.

https://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/tools_regeditors.mspx?mfr=true
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379886(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379908(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa380202(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379947(v=vs.85).aspx


4/6

After CryptGetHashParam executes, the MD5 hash of the Machine GUID is returned.

The MD5 hash of our Machine GUID appears to be
“9BD0BA527DFA20AB1F4A05B8D0D4E04B“. There are a number of different ways that we
could validate this result but I find that it’s easiest using the linux command line.

Trim Hash & Create Mutex

https://msdn.microsoft.com/en-us/library/windows/desktop/aa379947(v=vs.85).aspx


5/6

Finally, Loki-Bot trims the MD5 hash of the Machine GUID to 24-characters:
“9BD0BA527DFA20AB1F4A05B8“.

It then passes this trimmed value to Kernel32’s CreateMutexW function as the
lpName attribute. If the function succeeds, it means that no other version of Loki-Bot is
running on the system at that time and execution continues on. If it fails, it means another
version of Loki-Bot is running, so Loki-Bot quietly exits.

Identify Folder/Files

Now that we know the mutex, we can identify the folders and files that are related to Loki-
Bot. As part of setting up persistence, Loki-Bot will create a hidden folder within your
%APPDATA% path whose name set by the 8th thru 13th characters of the mutex.

Once the hidden folder “%APPDATA%\27DFA2\” has been created, Loki-Bot will store
several different types of files within it; all with the same filename but with different
extensions. The filename used for the different files is also extracted from the mutex.

With the filename known, we can then identify the following files:

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682411(v=vs.85).aspx


6/6

%APPDATA%\27DFA2\20AB1F.exe – A copy of the malware that will execute every
time the user account is logged into.
%APPDATA%\27DFA2\20AB1F.hdb – A database of hashes for data that has already
been exfiltrated to the C2 server.
%APPDATA%\27DFA2\20AB1F.lck – A lock file created when either decrypting
Windows Credentials or Keylogging to prevent resource conflicts.
%APPDATA%\27DFA2\20AB1F.kdb – A database of keylogger data that has yet to be
sent to the C2 server.

Identify Registry Key

The path for the specific persistence registry key used is encrypted within the binary using
Triple DES encryption, which is why static analysis wont yield much. Once decrypted, my
sample returned the following registry path used for persistence:

“HKEY_LOCAL_MACHINE\ Software\Microsoft\Windows\CurrentVersion\Run\”

The registry key within this path is then derived from the Mutex exactly how our
%APPDATA% subfolder was:

“HKEY_LOCAL_MACHINE\ Software\Microsoft\Windows\CurrentVersion\Run\27DFA2“

The value assigned to this key is the executable that is stored within the %APPDATA%
subfolder:

“%APPDATA%\27DFA2\20AB1F.exe”

Conclusion

That pretty much covers all artifacts related to Loki-Bot that could be present on a
compromised system. First step is to identify your system’s Machine GUID. Once you do
that, MD5 hash and then trim that value. The result will help you identify all the different
folders, files, and registry keys associated with the malware.

https://en.wikipedia.org/wiki/Triple_DES

