
1/16

September 3, 2019

Recent Posts
bromium.com/deobfuscating-ostap-trickbots-javascript-downloader/

HP Threat Research Blog • Deobfuscating Ostap: TrickBot’s 34,000 Line JavaScript
Downloader

Deobfuscating Ostap: TrickBot’s 34,000 Line JavaScript Downloader

Introduction

For a malicious actor to compromise a system, they need to avoid being detected at the
point of entry into the target’s network. Commonly, phishing emails delivering malicious
attachments (T1193) serve as the initial access vector.[1]

Adversaries also need a way to execute code on target computers without tipping off
automated tools and the monitoring efforts of security teams. One of the most common code
execution techniques is to use interpreted scripting languages (T1064) that can run on an
operating system without additional dependencies.[2] On Windows, popular interpreted
languages that are abused by attackers include PowerShell, VBScript, JScript, VBA (Visual
Basic for Applications), and commands interpreted by Command shell (cmd.exe).

Network attackers and defenders are in a constant state of competition to out-do the other to
gain an advantage that could determine the outcome of an intrusion attempt. Against this
background, we regularly see malicious actors change their tooling to increase the chances
of a successful intrusion, particularly the downloaders used to initially compromise systems.

https://www.bromium.com/deobfuscating-ostap-trickbots-javascript-downloader/
https://www.bromium.com/blog/

2/16

In early August 2019, we noticed that high-volume malicious spam campaigns delivering
TrickBot started using Ostap, a commodity JavaScript (or more specifically, JScript)
downloader. Previously, TrickBot campaigns relied on downloaders that used obfuscated
Command shell and later PowerShell commands that were triggered by VBA AutoOpen
macros to download their payloads.

In this post, I explain how to deobfuscate Ostap and describe a Python script I wrote
(deobfuscate_ostap.py) that automates the deobfuscation of this JScript malware. The tool is
available to download on GitHub.[3]

TrickBot, also known as The Trick, is a modular banking Trojan and dropper thought to be
operated by at least three threat actors, tracked in the security community as TA505, Grim
Spider and Wizard Spider.[4][5][6][7] While JavaScript-based downloaders aren’t new,
TrickBot’s latest downloader is notable for its size, virtual machine detection and anti-
analysis measures. For example, the Ostap samples analysed in this post generated
incomplete traces in two different public sandboxes and neither downloaded their respective
TrickBot payloads.[8][9] Moreover, a sample that was uploaded to VirusTotal had a low
detection rate of 6/55 (11%) when it was first uploaded, suggesting that Ostap is effective at
evading most anti-virus engines.

Figure 1 – VirusTotal detection summary for one of the Ostap samples.

Ostap, TrickBot’s JScript Downloader

Downloaders are a type of malware designed to retrieve and run secondary payloads from
one or more remote servers. Their simple function means that downloaders are rarely more
than several hundred lines of code, even when obfuscated. Ostap counters this trend in that
it is very large, containing nearly 35,000 lines of obfuscated code once beautified. Historical
TrickBot campaigns suggest that their operators prefer code obfuscation that is lengthier
than most other e-crime actors to bypass detection, as seen, for example in campaigns in
August 2018.[10]

https://www.bromium.com/wp-content/uploads/2019/09/ostap_figure_01.png

3/16

Figure 2 – Line, word and byte count of a sample of Ostap used to deliver TrickBot after
being beautified. The downloader is 34,757 lines long.

Macro Analysis

The downloader is delivered as a Microsoft Word 2007 macro-enabled document (.DOCM)
that contains the two components of the downloader: a VBA macro and the JScript (figure 3).
The emails and samples analysed were themed as purchase orders, suggesting that the
campaigns were likely intended to target businesses rather than individuals.

https://www.bromium.com/wp-content/uploads/2019/09/ostap_figure_02.png
https://www.bromium.com/wp-content/uploads/2019/09/ostap_figure_03.png

4/16

Figure 3 – Lure document of the downloader.

The JScript component of the downloader is stored in the body of the document as white
text, resulting in a high word and page count.

Figure 4 – JScript in lure document.

The VBA macro is saved in a project called “Sorry”. When the document is opened, it first
copies the JScript to files named 2angola.dot and 2angola.dotu in the user’s default Word
template directory (%AppData%\Microsoft\Templates). The procedure is triggered by a
Document.Open event.[11]

https://www.bromium.com/wp-content/uploads/2019/09/ostap_figure_04.png

5/16

Figure 5 – Annotated VBA code that runs when the document is opened.

The rest of the macro only runs if the document is closed, which is achieved by monitoring
for a Document.Close event (figure 6).[12] This is an anti-sandbox measure used to defeat
behavioural analysis by sandboxes that don’t imitate user activity such as closing
documents.

Figure 6 – Annotated VBA code that runs when the document is closed.

If the document is closed, the macro renames 2angola.dot to 2angola.Jse and then runs it:

1. The macro calls the Create method from the Win32_Process WMI class to run a new
Explorer.exe process with 2angola.Jse as its command line argument (figure 7).[13]

2. When a new Explorer.exe process is created where one is already running, the new
process is created with the /factory,{75DFF2B7-6936-4C06-A8BB-676A7B00B24B} -
Embedding command-line arguments (figure 8). The CLSID corresponds to the ProgID
called “CLSID_SeparateMultipleProcessExplorerHost”.[14]

https://www.bromium.com/wp-content/uploads/2019/09/ostap_figure_05.png
https://www.bromium.com/wp-content/uploads/2019/09/ostap_figure_06.png

6/16

3. Explorer runs 2angola.Jse using Windows Script Host (WScript.exe), the default file
handler for JScript Encoded Files (.JSE), as shown in figure 9. The file extension of
2angola.dot is renamed to .Jse ensure that the JScript is opened using WScript.exe.
Relying on default file associations means that the macro can evade detection by
indirectly referencing WScript, a program commonly used for malicious purposes in the
context of macros.

Figure 7 – Sysmon event showing an Explorer.exe process running the JScript file after
being launched by WMI Provider Host (WmiPrvSE.exe).

https://www.bromium.com/wp-content/uploads/2019/09/ostap_figure_07.png
https://www.bromium.com/wp-content/uploads/2019/09/ostap_figure_08.png

7/16

Figure 8 – Sysmon event showing the new Explorer.exe process being created with the
arguments /factory,CLSID {75DFF2B7-6936-4C06-A8BB-676A7B00B24B} -Embedding.

Figure 9 – Sysmon event showing WScript.exe running the JScript file.

Anti-Analysis Measures

Interestingly, the Ostap includes a fake Windows Script Host runtime error that occurs shortly
after the script is run. It’s likely that the fake error was included to discourage manual
examination of the downloader.

Figure 10 – Fake error message displayed early during the runtime of the downloader.

https://www.bromium.com/wp-content/uploads/2019/09/ostap_figure_09.png
https://www.bromium.com/wp-content/uploads/2019/09/ostap_figure_10.png
https://www.bromium.com/wp-content/uploads/2019/09/ostap_figure_11.png

8/16

Figure 11 – Variable storing the fake error message in TrickBot’s downloader.

Some samples of the downloader contain the characters **/ at the beginning on the JSE file.
This is another anti-analysis measure that is used to trip up automated JavaScript analysis
tools which may interpret the rest of the script as being part of a comment block, rather than
executable code.

Once deobfuscated, several other anti-analysis measures are revealed. For example, Ostap
queries WMI to check if it is running in a virtual machine by looking for a blacklist of running
processes:

AgentSimulator.exe
anti-virus.EXE
BehaviorDumper
BennyDB.exe
ctfmon.exe
fakepos_bin
FrzState2k
gemu-ga.exe (Possible misspelling of Qemu hypervisor’s guest agent, qemu-ga.exe)
ImmunityDebugger.exe
KMS Server Service.exe
ProcessHacker
procexp
Proxifier.exe
python
tcpdump
VBoxService
VBoxTray.exe
VmRemoteGuest
vmtoolsd
VMware2B.exe
VzService.exe
winace
Wireshark

Many sandboxes run these processes in their guest images, such as Cuckoo Sandbox and
its derivatives which use a Python agent. The script also checks for a blacklist of host and
user names.

Emily
HANSPETER-PC
HAPUBWS
Hong Lee
IT-ADMIN

9/16

JOHN-PC
Johnson
Miller
MUELLER-PC
Peter Wilson
SystemIT | admin
Timmy
WIN7-TRAPS

Beautifying the JScript

The JScript that is written to disk is one line, making it difficult to analyse manually. To make
it more readable, you can reformat and add indentations to the code using Einar Lielmanis’s
JS Beautifier tool, which also works for JScript because they share a similar syntax.[15]

js-beautify 2angola.Jse > 2angola.Jse.beautified

Identifying Code Structure, Key Variables and Functions

Now that the code is readable, we can begin analysing the script’s structure, variables and
functions. Our aim here is to identify the functions responsible for deobfuscating the
downloader.

The script includes many junk variables that aren’t used anywhere else in the script. We can
simply remove these variables. It is often possible to distinguish the variables that have been
automatically generated by an obfuscator from meaningful ones because their naming
convention will differ.

For example, in figure 12 you can see some of the variable assignments in the script. All of
them are junk code, except the variable called gunsder, which looks interesting because it
contains the string “from”. It’s also referenced 2,515 times, which is promising.

10/16

Figure 12 – Some of the variables in the script.

In figure 13, you can see at line 15 a function called xxqneol. The variable that we identified
as interesting, gunsder, is concatenated with other strings. After concatenation, you can see
that the returned string is a reference to the fromCharCode() method which converts a
Unicode character code into a character.[16] This function is supplied a parameter called
etsfhis. Before calling fromCharCode, the function checks that the second parameter, vqjpvi,
is the character h. This function is also referenced 7,540 times, so it’s likely that this function
is used in the deobfuscation of the script.

Now that we understand what the function does, we can give it, its variables and parameters
meaningful names (figure 14).

Figure 13 – Function xxqneol before deobfuscation.

https://www.bromium.com/wp-content/uploads/2019/09/ostap_figure_12.png
https://www.bromium.com/wp-content/uploads/2019/09/ostap_figure_13.png

11/16

Figure 14 – Renamed xxqneol function.

Analysis of Character Code Calculation Functions

Next, we can look at the functions where fromCharCode is referenced to understand how it is
used. After cleaning up the code in figure 15, you can see that the function uses arithmetic
operators to calculate a Unicode character code from the values stored in an array called
pkkwrit4. The Unicode character code and the character h are then supplied to the
fromCharCode function, which returns a Unicode character. In this case, the character
returned is f. Each character in the downloader has its own function to calculate its character
code. This particular sample has 7,540 functions that are used to calculate all the characters
codes.

Figure 15 – One of the many functions used to calculate Unicode character codes.

Figure 16 – Cleaned up function.

Writing a Python Script (deobfuscate_ostap.py) to Automate Deobfuscation

https://www.bromium.com/wp-content/uploads/2019/09/ostap_figure_14.png
https://www.bromium.com/wp-content/uploads/2019/09/ostap_figure_15.png
https://www.bromium.com/wp-content/uploads/2019/09/ostap_figure_16.png

12/16

Since we don’t want to have to manually calculate and decode 7,540 Unicode character
codes, let’s write a Python script to do this for us.

By looking for code similarities we can work out what actions we need the script to perform.
In the functions that calculate the Unicode character codes, the final character code value is
always calculated using the elements at index 0 and 1 of an array. Some arithmetic is
performed on these elements before they are supplied to the fromCharCode function. So far
we’ve seen addition and subtraction used in Ostap samples in the wild.

We can use Python’s re module to write regular expressions that match the elements in each
array at index 0 and 1 and store them in lists.[17] Next, we’ll clean up the matches using the
re.sub() function and then convert them into integers. We can then use Python’s zip()
function to perform the arithmetic on the values in the index 0 and 1 lists.[18] The script tries
subtraction and addition operations to deobfuscate the downloader. Finally, the script
converts the character codes into Unicode characters, removes line breaks and prints the
result.

The script is available on GitHub to download and can be modified to support automated
analysis pipelines.[3] To test the script, a YARA rule was written to detect Ostap and then run
against 100 samples from August 2019. The extracted and deduplicated URLs are at the end
of the report.

Analysis of the Deobfuscated Downloader

After running the script, we can examine the deobfuscated strings from the downloader,
including the URL where the TrickBot payload is hosted:

hxxps://185.180.199[.]102/angola/mabutu.php?min=14b

13/16

Figure 17 – Deobfuscated strings of Ostap sample using deobfuscate_ostap.py.

The strings are very similar to older Ostap samples from 2018 onwards, enabling us to make
a high confidence assessment that the downloaders used to deliver TrickBot in August 2019
belong to this family of malware. Public reporting shows that this malware has been used in
campaigns unrelated to TrickBot since 2016, delivering various financial malware families.
[19][20] The variety of malware delivered by Ostap suggests that it is commodity malware
that is popular among different threat actors, including now TrickBot’s operators.

Ostap’s aggressive anti-analysis features and low detection rate compared to downloaders
that use other interpreted scripting languages make it an attractive choice for malware
operators seeking a downloader.

YARA Rule

https://www.bromium.com/wp-content/uploads/2019/09/ostap_figure_17.png

14/16

rule win_ostap_jse {
meta:
 author = "Alex Holland @cryptogramfan (Bromium Labs)"
 date = "2019-08-29"
 sample_1 =

"F3E03E40F00EA10592F20D83E3C5E922A1CE6EA36FC326511C38F45B9C9B6586"
 sample_2 =

"38E2B6F06C2375A955BEA0337F087625B4E6E49F6E4246B50ECB567158B3717B"

strings:
 $comment = { 2A 2A 2F 3B } // Matches on **/;
 $array_0 = /\w{5,8}\[\d+\]=\d{1,3};/
 $array_1 = /\w{5,8}\[\d+\]=\d{1,3};/

condition:
 ((($comment at 0) and (#array_0 > 100) and (#array_1 > 100)) or
 ((#array_0 > 100) and (#array_1 > 100))) and
 (filesize > 500KB and filesize < 1500KB)

}

Hashes (SHA-256)

F3E03E40F00EA10592F20D83E3C5E922A1CE6EA36FC326511C38F45B9C9B6586
– Last_order_specification_1217492.docm
38E2B6F06C2375A955BEA0337F087625B4E6E49F6E4246B50ECB567158B3717B –
Heiress_Documents_id18598.docm

Extracted URLs

hxxps://185.130.104[.]149/odr/updateme.php?oxx=p
hxxps://185.130.104[.]149/odr/updateme.php?oxx=up
hxxps://185.130.104[.]149/odr/updateme.php?oxx=z
hxxps://185.130.104[.]236/deerhunter/inputok.php?min=29h
hxxps://185.130.104[.]236/deerhunter/inputok.php?min=up3
hxxps://185.130.104[.]236/deerhunter2/inputok.php?min=6h
hxxps://185.130.104[.]236/deerhunter2/inputok.php?min=8h
hxxps://185.130.104[.]236/deerhunter2/inputok.php?min=9a
hxxps://185.130.104[.]236/deerhunter2/inputok.php?min=9h
hxxps://185.130.104[.]236/targ/inputok.php?min=13s
hxxps://185.130.107[.]236/deerhunter3/inputok.php?min=12a
hxxps://185.159.82[.]15/hollyhole/c644.php?min=up
hxxps://185.159.82[.]15/hollyhole/c644.php?min=17ha
hxxps://185.159.82[.]15/hollyhole/c644.php?min=18h
hxxps://185.159.82[.]15/hollyhole/c644.php?min=19a
hxxps://185.159.82[.]15/hollyhole/c644.php?min=19h
hxxps://185.159.82[.]15/hollyhole/c644.php?min=a
hxxps://185.159.82[.]15/hollyhole/c644.php?min=m
hxxps://185.159.82[.]15/hollyhole/c644.php?min=m2

15/16

hxxps://185.159.82[.]15/hollyhole/c644.php?min=t2
hxxps://185.159.82[.]15/hollyhole/c644.php?min=tu
hxxps://185.159.82[.]15/hollyhole/c644.php?min=w
hxxps://185.159.82[.]15/hollyhole2/c644.php?min=19h
hxxps://185.159.82[.]15/hollyhole2/c644.php?min=79
hxxps://185.159.82[.]20/t-30/x644.php?min=m
hxxps://185.159.82[.]20/t-34/x644.php?min=24
hxxps://185.159.82[.]20/t-34/x644.php?min=f
hxxps://185.159.82[.]20/t-34/x66744.php?min=u2
hxxps://185.180.199[.]102/angola/mabutu.php?min=14b
hxxps://189.130.104[.]236/deerhunter3/inputok.php?min=13h

References

[1] MITRE ATT&CK technique T1193 “Spearphishing Attachment”,
https://attack.mitre.org/techniques/T1193/

[2] MITRE ATT&CK technique T1064 “Scripting”, https://attack.mitre.org/techniques/T1064/

[3] https://github.com/cryptogramfan/Malware-Analysis-
Scripts/blob/master/deobfuscate_ostap.py

[4] “Security Primer: TrickBot”, Multi-State Information Sharing and Analysis Center, March
2019, https://www.cisecurity.org/wp-content/uploads/2019/03/MS-ISAC-Security-Primer-
Trickbot-11March2019-mtw.pdf

[5] “Threat Group Cards: A Threat Actor Encyclopedia”, ThaiCERT, p. 226,
https://www.thaicert.or.th/downloads/files/A_Threat_Actor_Encyclopedia.pdf

[6] “Threat Group Cards: A Threat Actor Encyclopedia”, ThaiCERT, p. 259

[7] “Threat Group Cards: A Threat Actor Encyclopedia”, ThaiCERT, p. 272

[8] https://app.any.run/tasks/dc86fb23-b8ac-49db-8c22-a53b88236676/

[9] https://www.hybrid-
analysis.com/sample/38e2b6f06c2375a955bea0337f087625b4e6e49f6e4246b50ecb567158
b3717b?environmentId=120

[10]
https://www.virustotal.com/gui/file/1512b7e34006ff7b69c76601fcf554668a3378d31c77b4450
7960d46e3a7c02c/details

[11] https://docs.microsoft.com/en-us/office/vba/api/word.document.open

[12] https://docs.microsoft.com/en-us/office/vba/api/word.document.close(even)

https://attack.mitre.org/techniques/T1193/
https://attack.mitre.org/techniques/T1064/
https://github.com/cryptogramfan/Malware-Analysis-Scripts/blob/master/deobfuscate_ostap.py
https://www.cisecurity.org/wp-content/uploads/2019/03/MS-ISAC-Security-Primer-Trickbot-11March2019-mtw.pdf
https://www.thaicert.or.th/downloads/files/A_Threat_Actor_Encyclopedia.pdf
https://app.any.run/tasks/dc86fb23-b8ac-49db-8c22-a53b88236676/
https://www.hybrid-analysis.com/sample/38e2b6f06c2375a955bea0337f087625b4e6e49f6e4246b50ecb567158b3717b?environmentId=120
https://www.virustotal.com/gui/file/1512b7e34006ff7b69c76601fcf554668a3378d31c77b44507960d46e3a7c02c/details
https://docs.microsoft.com/en-us/office/vba/api/word.document.open
https://docs.microsoft.com/en-us/office/vba/api/word.document.close(even)

16/16

[13] https://docs.microsoft.com/en-us/windows/win32/cimwin32prov/create-method-in-class-
win32-process

[14] https://en.wikipedia.org/wiki/ProgID

[15] https://github.com/beautify-web/js-beautify

[16] https://www.w3schools.com/jsref/jsref_fromcharcode.asp

[17] https://docs.python.org/3/library/re.html

[18] https://docs.python.org/3.3/library/functions.html#zip

[19] https://www.cert.pl/en/news/single/ostap-malware-analysis-backswap-dropper/

[20] https://www.carbonblack.com/2017/06/12/carbon-black-threat-research-dissects-
emerging-mouseover-malware/

Tags

https://docs.microsoft.com/en-us/windows/win32/cimwin32prov/create-method-in-class-win32-process
https://en.wikipedia.org/wiki/ProgID
https://github.com/beautify-web/js-beautify
https://www.w3schools.com/jsref/jsref_fromcharcode.asp
https://docs.python.org/3/library/re.html
https://docs.python.org/3.3/library/functions.html#zip
https://www.cert.pl/en/news/single/ostap-malware-analysis-backswap-dropper/
https://www.carbonblack.com/2017/06/12/carbon-black-threat-research-dissects-emerging-mouseover-malware/

