
1/6

The Defective Domain Generation Algorithm of
BazarLoader

johannesbader.ch/blog/the-buggy-dga-of-bazarbackdoor/

Edit 2020-07-19: Cybereason published an excellent article A Bazar of Tricks: Following
Team9’s Development Cycles. The article shows that the DGA is part of Bazar Loader, which
will try to download Bazar Backdoor. I therefore renamed most instances of BazarBackdoor
to BazarLoader.

When I analyzed the domain generation algorithm of BazarLoader, I noticed a sample that
generates bizarre “domains”:

https://johannesbader.ch/blog/the-buggy-dga-of-bazarbackdoor/
https://www.cybereason.com/blog/a-bazar-of-tricks-following-team9s-development-cycles
https://johannesbader.ch/blog/the-dga-of-bazarbackdoor/

2/6

^efggkzjhggm.bazaar
]`egkjzeggkl.bazaar
_`eigkzegigm.bazaar
^`ggilzeigin.bazaar
bceeijbhgeil.bazaar
_acgkjzfegkl.bazaar
a`gggkaeiggm.bazaar
`cehimzhghio.bazaar
``ceikzeeeim.bazaar
`edgjlzjfgjn.bazaar
_ccghjzheghl.bazaar
a`eijjaegijl.bazaar
^aegjkzfggjm.bazaar
a`geikaeieim.bazaar
_dghhkziihhm.bazaar

Two things are obviously wrong:

1. There is no top level domain .bazaar . There is a Persian tld .بازار which translates to
bazaar, but that won’t work of course.

2. Some second level domains contain special characters which makes them invalid too.

The first error is easy to explain: the authors meant to use .bazar , which is a valid
EmerDNS domain. The second mistake is more interesting. The authors must have noticed
the occasional special characters too. But they probably couldn’t find the root cause and
instead programmed a workaround that fixes some, but not all, characters.

Here is the sample with the broken DGA that I looked at:

MD5
18d635a8ca7caefb4f4513650a31efc9

SHA1
d555233122a277fb89797ab2293efbe2a0c75f7f

SHA256
2e99ed535a9f73bafab151ec409de04c953a0187cb8e4063317617befa09068d

Size
377 KB (386224 Bytes)

Compile Timestamp
2020-06-17 09:20:56 UTC

Links
VirusTotal

Filenames
DD45.exe, Preview_Report.exe (VirusTotal)

Detections

https://www.virustotal.com/gui/file/2e99ed535a9f73bafab151ec409de04c953a0187cb8e4063317617befa09068d

3/6

Virustotal: 41/76 as of 2020-07-09 13:47:45 - Trojan.Trickster.Gen (ALYac),
Trojan.Win32.Mansabo.4!c (AegisLab), Trojan:Win32/Mansabo.e7acfbbd (Alibaba),
Trojan/Win32.Mansabo (Antiy-AVL), Trojan.Mansabo (CAT-QuickHeal),
Trojan.Win32.Mansabo.fef (Kaspersky), Trojan:Win32/Trickbot.A!Cert (Microsoft),
TrojanSpy.Win64.TRICKBOT.ENJ (TrendMicro), TrojanSpy.Win64.TRICKBOT.ENJ
(TrendMicro-HouseCall), Trojan.Mansabo (VBA32), Trojan.Win32.Mansabo.fef (ZoneAlarm)

The domain generation algorithm in this faulty version is the same as the one documented
here. The only place that is different is shown in the following screenshot comparison. The
faulty DGA is on the left, the fixed on the right. Can you spot the problem?

The divisions by invariant multiplication are hard to read, but notice the right site being much
shorter even tough the calculation is basically the same. This is because compiler
optimization was able to strip some minor corrections that are only necessary for large
numbers. Here the decompiled code after some renaming and cleaning up:

https://johannesbader.ch/blog/the-dga-of-bazarbackdoor/

4/6

 j_1 = 0;
 i_1 = 0;
 do
 {
 r = 0;
 [...]
 bcrypt_BCryptGenRandom(0i64, &r, 4i64);
 offset_letter = i_1 + 'a';
 i_1 += 2;
 character = r % 25 / (j_1 + 6) + offset_letter;
 r = r % 25 / (j_1 + 6);
 j_2 = j_1++;
 *(szDomain + 2 * j_2) = character;
 } while (i_1 < 12u);

This is the same code as for the fixed DGA, except for how the random numbers are
generated:

1. The faulty DGA generates 4 random bytes using a call to BCryptGenRandom .
2. The fixed DGA generates a random value with a call to GetTickCount , and extracting

the lowest 15 bits.

The problem with the first approach is, that the number will be 0x80000000 or larger in 50%
of the cases. Since it is a signed number, it becomes negative. And the remainder of a
negative number for a positive divisor is negative. The fixed version doesn’t have this
problem, because the integer overflow does not happen. When extending the random
number ranges to the negative, we get these character sets:

index random number range potential characters

0 -4–4]^_`abcde

1 -3–3 `abcdef

2 -3–3 bcdefgh

3 -2–2 efghi

4 -2–2 ghijk

5 -2–2 ijklm

The malware authors used the following patch instead of fixing the integer overflow.

5/6

l = 6i64;
do {
 c = *(&szSeedStr[-6] + wDomain - a2) + *(wDomain - 6) - '0';
 *wDomain = c;
 if (c < 'a')
 *wDomain = 'z';
 ++wDomain;
 --l;
} while (l);

The patch is an if condition that replaces characters below “a” — that includes all special
characters generated by the faulty DGA — with “z”. This resolves the problem for the last
half of the second level domain (in particular, the 7th and 8th letter, the rest are not affected
by the bug). However, the first half of the second level domain remains unmodified.

The following Python reimplementation generates all possible domains for a given date. Note
that due to the extended random ranges, there are about 55000 domains per month instead
of 2160 for the fixed version. So even if the correct tld would have been used, then the
number of domains would have been a problem for the attackers — as they have no way of
predicting which ones are used in what order.

6/6

import argparse
from datetime import datetime
from itertools import product

def dga(date):
 month = date.month
 year = date.year
 date_str = "{0:02d}{1:04d}".format(12-month, year-18)

 valid_chars = [
 "]^_`abcde",
 "`abcdef",
 "bcdefgh",
 "efghi",
 "ghijk",
 "ijklm"
]
 valid_chars = [list(_) for _ in valid_chars]
 for part1 in product(*valid_chars):
 domain = "".join(part1)
 for i, c in enumerate(part1):
 r = ord(c) + int(date_str[i])
 if r < ord('a'):
 domain += 'z'
 else:
 domain += chr(r)
 domain += ".bazaar"
 yield domain

if __name__=="__main__":
 parser = argparse.ArgumentParser()
 parser.add_argument("-d", "--date", help="date when domains are generated, e.g.,
2020-06-28")
 args = parser.parse_args()
 if args.date:
 d = datetime.strptime(args.date, "%Y-%m-%d")
 else:
 d = datetime.now()
 for domain in dga(d):
 print(domain)

