
1/16

Threat Intelligence Team October 6, 2020

Release the Kraken: Fileless injection into Windows Error
Reporting service

blog.malwarebytes.com/malwarebytes-news/2020/10/kraken-attack-abuses-wer-service

This blog post was authored by Hossein Jazi and Jérôme Segura.

On September 17th, we discovered a new attack called Kraken that injected its payload into
the Windows Error Reporting (WER) service as a defense evasion mechanism.

That reporting service, WerFault.exe, is usually invoked when an error related to the
operating system, Windows features, or applications happens. When victims see
WerFault.exe running on their machine, they probably assume that some error happened,
while in this case they have actually been targeted in an attack.

While this technique is not new, this campaign started with a phishing attack enticing victims
with a worker’s compensation claim. It is followed by the CactusTorch framework to perform
a fileless attack followed by several anti-analysis techniques.

Malicious lure: ‘your right to compensation’

On September 17, we found a new attack starting from a zip file containing a malicious
document most likely distributed through spear phishing attacks.

The document “Compensation manual.doc” pretends to include information about
compensation rights for workers:

https://blog.malwarebytes.com/malwarebytes-news/2020/10/kraken-attack-abuses-wer-service
https://www.malwarebytes.com/phishing/#Types-of-phishing-attacks

2/16

Figure 1: Malicious Document
The file contains an image tag (“INCLDEPICTURE“) that connects to
“yourrighttocompensation[.]com” and downloads an image that will be the document
template.

Figure 2: Imagetag embedded within the document

https://blog.malwarebytes.com/wp-content/uploads/2020/09/maldoc_.png
https://blog.malwarebytes.com/wp-content/uploads/2020/09/imagetag_.png

3/16

Figure 3: yourrighttocompensation website
This domain was registered on 2020-06-05 while the document creation time is 2020-06-12,
which likely indicates that they are part of the same attack.

Inside, we see a malicious macro that uses a modified version of CactusTorch VBA module
to execute its shellcode. CactusTorch is leveraging the DotNetToJscript technique to load a
.Net compiled binary into memory and execute it from vbscript.

The following figure shows the macro content used by this threat actor. It has both AutoOpen
and AutoClose functions. AutoOpen just shows an error message while AutoClose is the
function that performs the main activity.

https://blog.malwarebytes.com/wp-content/uploads/2020/09/site-1_.png
https://github.com/mdsecactivebreach/CACTUSTORCH
https://github.com/tyranid/DotNetToJScript

4/16

Figure 4: Macro
As you can see in Figure 4, a serialized object in hex format has been defined which
contains a .Net payload that is being loaded into memory. Then, the macro defined an entry
class with “Kraken.Kraken” as value. This value has two parts that have been separated with
a dot: the name of the .Net Loader and its target class name.

In the next step, it creates a serialization BinaryFormatter object and uses the deseralize
function of BinaryFormatter to deserialize the object. Finally, by calling DynamicInvoke the
.Net payload will be loaded and executed from memory.

Unlike CactusTorch VBA that specifies the target process to inject the payload into it within
the macro, this actor changed the macro and specified the target process within the .Net
payload.

Kraken Loader

https://blog.malwarebytes.com/wp-content/uploads/2020/09/macro_.png

5/16

The loaded payload is a .Net DLL with “Kraken.dll” as its internal name, compiled on 2020-
06-12.

This DLL is a loader that injects an embedded shellcode into WerFault.exe. To be clear, this
is not the first case of such a technique. It was observed before with the NetWire RAT and
even the Cerber ransomware.

The loader has two main classes: “Kraken” and “Loader“.

Figure 5: Kraken.dll
The Kraken class contains the shellcode that will be injected into the target process defined
in this class as “WerFault.exe“. It only has one function that calls the Load function of Loader
class with shellcode and target process as parameters. This shellcode is a variant of Cobalt
Strike.

https://twitter.com/VK_Intel/status/1172985121076649985?s=20
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/cerber-ransomware-evades-detection-with-many-components/
https://blog.malwarebytes.com/wp-content/uploads/2020/09/kraken_.png

6/16

Figure 6: Kraken class
The Loader class is responsible for injecting shellcode into the target process by making
Windows API calls.

https://blog.malwarebytes.com/wp-content/uploads/2020/09/sink_.png

7/16

Figure 7: Load function
These are the steps it uses to perform its process injection:

StartProcess function calls CreateProcess Windows API with 800000C as
dwCreateFlags.
FindEntry calls ZwQueryInformationProcess to locate the base address of the target
process.
CreateSection invokes the ZwCreateSection API to create a section within the target
process.
ZwMapViewOfSection is called to bind the section to the target process in order to copy
the shellcode in by invoking CopyShellcode.
MapAndStart finishes the process injection by calling WriteProcessMemory and
ResumeThread.

ShellCode Analysis

Using HollowHunter we dumped the shell code injected into WerFault.exe for further
analysis. This DLL performs its malicious activities in multiple threads to make its analysis
harder.

This DLL is executed by calling the “DllEntryPoint” that invokes the “Main” function.

https://blog.malwarebytes.com/wp-content/uploads/2020/09/load_.png
https://github.com/hasherezade/hollows_hunter

8/16

Figure

8: Main Process
The main function calls DllMain which creates a thread to perform its functions in a new
thread within the context of the same process.

Figrue 9: Dll main
The created thread at first performs some anti-analysis checks to make sure it’s not running
in an analysis/sandbox environment or in a debugger.

It does this through the following actions:

https://blog.malwarebytes.com/wp-content/uploads/2020/09/main_.png
https://blog.malwarebytes.com/wp-content/uploads/2020/09/dllmain_.png

9/16

1) Checks existence of a debugger by calling GetTickCount:

GetTickCount is a timing function that is used to measure the time needed to execute some
instruction sets. In this thread, it is being called two times before and after a Sleep instruction
and then the difference is being calculated. If it is not equal to 2 the program exits, as it
identifies it is being debugged.

Figure 10: Created thread

2) VM detection:

In this function, it checks if it is running in VmWare or VirtualBox by extracting the provider
name of the display driver registry key (`SYSTEM\\ControlSet001\\Control\\Class\\
{4D36E968-E325-11CE-BFC1-08002BE10318}\\0000′) and then checking if it contains the
strings VMware or Oracle.

https://blog.malwarebytes.com/wp-content/uploads/2020/09/anti-analysis_.png

10/16

Figure 11: VM detection

3) IsProcessorFeaturePresent:

This API call has been used to determine whether the specified processor feature is
supported or not. As you see from the below picture, “0x17” has been passed to this API as
a parameter which means it checks __fastfail support before proceeding with immediate
termination.

https://blog.malwarebytes.com/wp-content/uploads/2020/09/evasion_.png

11/16

Figure 12: InProcessorFeaturePresent

4) NtGlobalFlag:

The shell code checks NtGlobalFlag in PEB structure to identify whether it is being debugged
or not. To identify the debugger it compares the NtGlobalFlag value with 0x70.

5) IsDebuggerPresent:

https://blog.malwarebytes.com/wp-content/uploads/2020/09/processorfeature_.png

12/16

This checks for the presence of a debugger by calling “IsDebuggerPresent“.

Figure 13: NtGlobalFlag and

IsDebuggerPresent check
After performing all these anti-analysis checks, it goes into a function to create its final
shellcode in a new thread. The import calls used in this part are obfuscated and resolved
dynamically by invoking the “Resolve_Imports” function.

This function gets the address of “kernel32.dll” using LoadLibraryEx and then in a loop
retrieves 12 imports.

Figure 14: Resolve_Imports

https://blog.malwarebytes.com/wp-content/uploads/2020/09/antiglobal_.png
https://blog.malwarebytes.com/wp-content/uploads/2020/09/resolveApis_.png

13/16

Using the libpeconv library we are able to get the list of resolved API calls. Here is the list of
imports, and we can expect it is going to perform some process injection.

VirtualAlloc
VirtualProtect
CreateThread
VirtualAllocEx
VirtualProtectEx
WriteProcessMemory
GetEnvironmentVariableW
CreateProcessW
CreateRemoteThread
GetThreadContext
SetThreadContext
ResumeThread

After resolving the required API calls it creates a memory region using VirtualAlloc and then
calls “DecryptContent_And_WriteToAllocatedMemory” to decrypt the content of the final shell
code and write them into created memory.

In the next step, VirtualProtect is called to change the protection to the allocated memory to
make it executable. Finally, CreateThread has been called to execute the final shellcode in a
new thread.

Figure

15: Resolve Imports and Create new thread

Final Shell code

The final shellcode is a set of instructions that make an HTTP request to a hard-coded
domain to download a malicious payload and inject it into a process.

As first step it loads the Wininet API by calling LoadLibraryA:

https://github.com/hasherezade/libpeconv
https://blog.malwarebytes.com/wp-content/uploads/2020/09/finalshellcall_.png

14/16

Figure 16: Loads Wininet
Then it builds the list of function calls that are required to make the HTTP request which
includes: InternetOpenA, InternetConnectA, InternetOpenRequestA and
InternetSetOptionsExA.

Figure 17: HttpOpenRequestA
After preparing the requirements for building HTTP request, it creates a HTTP request and
sends it by calling HttpSendrequestExA. The requested URL is: http://www.asia-
kotoba[.]net/favicon32.ico

Figure 18: HttpSendRequestExA
In the next step, it checks if the HTTP request is successful or not. If the HTTP request is not
successful it calls ExitProcess to stop its process.

https://blog.malwarebytes.com/wp-content/uploads/2020/09/winineti_.png
https://blog.malwarebytes.com/wp-content/uploads/2020/09/httpsendreq_.png

15/16

Figure 19: Checking the http request success
If the return value of HTTPSendRequestExA is true, it means the request is successful and
the code proceeds to the next step. In this step it calls VirtualAllocExA to allocate a memory
region and then calls InternetReadFile to read the data and write it to the allocated memory.

Figure 20: InternetReadFile call
At the end it jumps to the start of the allocated memory to execute it. This is highly likely to
be another shellcode that is hosted on the compromised “asia-kotoba.net” site and planted
as a fake favicon in there.

Since at the time of the report the target URL was down, we were not able to retrieve this
shellcode for further analysis.

[Update:2020-10-09]

After further investigations we realized that this activity has no relation to any APT group and
is part of red teaming activity.

Malwarebytes blocks access to the compromised site hosting the payload:

https://blog.malwarebytes.com/wp-content/uploads/2020/10/http-2048x1118_.png
https://blog.malwarebytes.com/wp-content/uploads/2020/10/internetreadfile_.png

16/16

Figure 21: Lure document attempting to contact remote site

IOCs

Lure document:
31368f805417eb7c7c905d0ed729eb1bb0fea33f6e358f7a11988a0d2366e942

Archive file containing lure document:
 d68f21564567926288b49812f1a89b8cd9ed0a3dbf9f670dbe65713d890ad1f4

Document template image:
 yourrighttocompensation[.]com/ping

Archive file download URLs:
 yourrighttocompensation[.]com/?rid=UNfxeHM

 yourrighttocompensation[.]com/download/?
key=15a50bfe99cfe29da475bac45fd16c50c60c85bff6b06e530cc91db5c710ac30&id=0

 yourrighttocompensation[.]com/?rid=n6XThxD
 yourrighttocompensation[.]com/?rid=AuCllLU

Download URL for final payload:
 asia-kotoba[.]net/favicon32.ico

https://blog.malwarebytes.com/wp-content/uploads/2020/09/block.png

