
1/11

The Domain Generation Algorithm of BazarLoader
johannesbader.ch/blog/the-dga-of-bazarbackdoor/

A DGA based on the Emercoin TLD .bazar

Edit 2020-07-19: Cybereason published an excellent article A Bazar of Tricks: Following
Team9’s Development Cycles. They only show the seeding part of the domain generation
algorithm, however, the listing of generated bazar domains matches the algorithm in this blog
post (apart from the first two domains alztwfdicu.bazar and ocgjqlaspr.bazar which
are hardcoded). The article shows that the DGA is part of Bazar Loader, which will try to
download Bazar Backdoor. I therefore renamed most instances of BazarBackdoor to
BazarLoader.

Edit 2020-07-14: I have documented some additions to the DGA of BazarLoader:

There exists a version of BazarLoader with a faulty DGA. I documented it in a separate
blog post.
The attackers registered four of the DGA domains, which @Securityinbits long before I
published this post. I listed them here.
The malware transforms the A RR of registered DGA domains, see the paragraph on
sinkholing

https://johannesbader.ch/blog/the-dga-of-bazarbackdoor/
https://www.cybereason.com/blog/a-bazar-of-tricks-following-team9s-development-cycles
https://johannesbader.ch/blog/the-buggy-dga-of-bazarbackdoor
https://twitter.com/Securityinbits

2/11

BazarLoader (also known as Bazar Loader, Bazar Backdoor or Team9 Backdoor) is a
module of the dreaded TrickBot Trojan. It is mostly used to gain a foothold in compromised
enterprise networks . The malware is named after the C&C domains with top level
domain .bazar. This TLD is provided by EmerDNS, a peer-to-peer decentralized domain
name system in OpenNIC. This makes it very difficult, if not impossible, for law enforcement
to take over these domains.

BazarLoader has been using a handful of hard-coded domains such as bestgame.bazar ,
forgame.bazar or newgame.bazar in the past, but today a sample was uploaded to

Virustotal that tries a plethora of domains such as:

ecfgjkehhgjm.bazar
afhhjkakjhjm.bazar
beggklbjigkn.bazar
cfhhjkckjhjm.bazar
bdehklbighkn.bazar
dcegjldhggjn.bazar
adggjkaiigjm.bazar
dcghkldhihkn.bazar
dehhikdjjhim.bazar
ceegkkcjggkm.bazar
eeegjkejggjm.bazar
cfehjkckghjm.bazar
cehhimcjjhio.bazar
ddfgjldihgjn.bazar
afhijlakjijn.bazar
ccfgimchhgio.bazar
eefhklejhhkn.bazar
acgiimahiiio.bazar
ecghjkehihjm.bazar
cehiklcjjikn.bazar

These look like algorithmically generated — and it turns out they are. This blog post shows
how the underlying domain generation algorithm works.

Sample

I analysed the aforementioned sample from Virustotal:

MD5
fdffbfa1380ab1a0ee2e26ff1be432b1

SHA1
5a004286c5b97afd97beec4b1332777c494d6ff1

SHA256
e77e27630277a31276539c379671f54095d6b735f0568a3c457ac6a189c4c5b4

Size
288 KB (295424 Bytes)

1 2 3 4

https://www.virustotal.com/gui/file/e77e27630277a31276539c379671f54095d6b735f0568a3c457ac6a189c4c5b4/

3/11

Compile Timestamp
2020-06-12 09:35:14 UTC

Links
MalwareBazaar, Cape, VirusTotal

Filenames
BthCxn.exe, v86.exe_ (VirusTotal)

Detections
MalwareBazaar: BazaLoader, Virustotal: 23/76 as of 2020-07-10 04:00:39 -
Trojan:Win32/Trickbot.KB (Microsoft), Trojan.Trickbot!8.E313 (CLOUD) (Rising)

Many AV classify the sample as malicious, but only Microsoft and Rising also name the
sample, both as Trickbot — which is at correct in the broader sense. The binary unpacks to
this:

MD5
599b72d329b4b876390ae0567991da01

SHA1
a8128b487bf6efd80b78c453e24a3447208008dd

SHA256
6b24ebfb84665cb844410ec9f948cfcf7f6d08f4ede16d52930c53236390848f

Size
141 KB (144896 Bytes)

Compile Timestamp
2020-06-12 09:34:11 UTC

Links
MalwareBazaar, VirusTotal

Filenames
none

Detections
Virustotal: 10/75 as of 2020-07-10 13:52:07

The detection for this sample is worse and none of the AV products assigns a non-generic
name. The sample will finally inject the following executable, which only 3 out of 76 products
even classify as malicious.

MD5
d1c4d25673be94db051dcd5271c64ae1

SHA1
cc4d30072bbd16fbdc387eb546aeb4dc38a5ea4a

https://bazaar.abuse.ch/sample/e77e27630277a31276539c379671f54095d6b735f0568a3c457ac6a189c4c5b4/
https://www.capesandbox.com/analysis/24419/
https://www.virustotal.com/gui/file/e77e27630277a31276539c379671f54095d6b735f0568a3c457ac6a189c4c5b4
https://bazaar.abuse.ch/sample/6b24ebfb84665cb844410ec9f948cfcf7f6d08f4ede16d52930c53236390848f/
https://www.virustotal.com/gui/file/6b24ebfb84665cb844410ec9f948cfcf7f6d08f4ede16d52930c53236390848f

4/11

SHA256
b4b7f0fd63cda1269ee937fa398fb80b6655d205066e6593fefceda7e3b09f6b

Size
132 KB (135168 Bytes)

Compile Timestamp
2020-06-11 11:16:31 UTC

Links
MalwareBazaar,VirusTotal

Filenames
none

Detections
Virustotal: 3/76 as of 2020-07-10 13:52:05

DGA Disassembly

The domain generation algorithm of BazarLoader is in a single function, including seeding
(click to enlarge):

https://bazaar.abuse.ch/sample/b4b7f0fd63cda1269ee937fa398fb80b6655d205066e6593fefceda7e3b09f6b/
https://www.virustotal.com/gui/file/b4b7f0fd63cda1269ee937fa398fb80b6655d205066e6593fefceda7e3b09f6b
https://johannesbader.ch/blog/the-dga-of-bazarbackdoor/assets/dga-full.png

5/11

The algorithm roughly consists of these three steps:

1. Determine the first six letters of the second level domain at random.
2. Generate a seed based on the current date
3. Calculate the last six letters of the second level domain based on the first six and the

seed.

Step 1: First Six Letters

The (simplified) decompilation of the first step is as follows:

https://johannesbader.ch/blog/the-dga-of-bazarbackdoor/assets/dga-full.png

6/11

i = 0;
do
{
 r = (GetTickCount() % 25) / (i + 6);
 i_1 = i++;
 *domain++ = 2 * i_1 + r + 'a';
}
while (i < 6);

The function GetTickCount usually doesn’t bode well for DGAs: since this functions is
largely unpredictable, it almost always means that the generated domains will be
unpredictable as well. However, this algorithm is different. The tick count is mapped to a
value between 0 and 24, which is then divided by 6+i. The division shrinks down the range of
numbers, and ultimately the range of potential letters. The character set is also offset by
double the loop index, leading to these choices of letters:

index random number range potential letters

0 0–4 abcde

1 0–3 cdef

2 0–3 efgh

3 0–2 ghi

4 0–2 ijk

5 0–2 klm

So even though the exact letters can’t be predicted, there are only 2160 combinations. Since
the malware continuously tries to contact newly generated domains, registering a few of the
2160 domains is probably enough to get lucky with GetTickCount within a couple of
minutes of malware runtime.

Step 2: Seeding

Seeding is based on on the current date, which is determined by GetDateFormatA .

7/11

if (!seeding_done)
{
 GetDateFormatA(LOCALE_INVARIANT, 0, 0i64, 0i64, lpCurrentDate, 24);
 szMonth = lpCurrentDate[0];
 szYear = *&lpCurrentDate[3];
 v15 = 0;
 v17 = 0;
 str_to_int = resolve_api(0i64, 19i64, 2865918183i64, 534i64);
 if (str_to_int)
 nYear = str_to_int(&szYear);
 else
 nYear = 0;
 str_to_int_0 = resolve_api(0i64, 19i64, 2865918183i64, 534i64);
 if (str_to_int_0)
 nMonth = str_to_int_0(&szMonth);
 else
 nMonth = 0;
 LODWORD(nYearMinus18) = nYear - 18;
 wnsprintfA(szSeedStr, 7, "%.2d%d", (12 - nMonth), nYearMinus18);
 seeding_done = 1;
}

The function GetDateFormatA with LOCALE_INVARIANT locale returns the current date
formatted as <month>/<day>/<year> , so for example 07/10/2020 for July 10, 2020. The
month and year are taken from this string and converted into integers. The month is then
turned into a two-digit number by calculating a = 12 - month and padding it with zero if
necessary. The year is transformed into a four-digit number according to b = year - 18 .
The two values are then concatenated into a string. For example, July 2020 turns into
052002 .

Step 3: Last Six Letters

The last six characters of the second level domain are based on the seed and the first six
letters:

j = 6;
[...]

szDomainPlusSix = szDomain + 6;
do
{
 ascii_code = *(szDomainPlusSix - 6) + szDomainPlusSix[szSeedStr - szDomain - 6] -
'0';
 if (ascii_code < 'a')
 ascii_code = 'z';
 *szDomainPlusSix++ = ascii_code;
 --j;
}
while (j);
szDomain[12] = 0;

8/11

This simply treats each character of the seed string as an integer, and uses that to offset the
characters of the first six letters to form the last six letters. For instance, let’s look at the seed
string 052002 applied to the randomly picked first six letters cfhiilc :

1. Add 0 to c to get c .
2. Add 5 to f to get k .
3. Add 2 to h to get j .
4. Add 0 to i to get i .
5. Add 0 to i to get i .
6. Add 2 to l to get n .

The malware’s check if the letter falls before a is actualy not necessary, as the offset is
always positive between 0 and 9. A check to see if the letter falls beyond z would be more
reasonable, but is also unnecessary: the “largest” letter in the first half is “m”, which offset by
9 leads to “v”. The following image illustrates the procedure:

Python Reimplementation

When implemented in Python, the DGA looks something like this:

9/11

import argparse
from datetime import datetime
from itertools import product

def dga(date):
 month = date.month
 year = date.year
 date_str = "{0:02d}{1:04d}".format(12-month, year-18)

 valid_chars = [
 "abcde",
 "cdef",
 "efgh",
 "ghi",
 "ijk",
 "klm"
]
 valid_chars = [list(_) for _ in valid_chars]
 for part1 in product(*valid_chars):
 domain = "".join(part1)
 for i, c in enumerate(part1):
 domain += chr(ord(c) + int(date_str[i]))
 domain += ".bazar"
 yield domain

if __name__=="__main__":
 parser = argparse.ArgumentParser()
 parser.add_argument("-d", "--date", help="date when domains are generated")
 args = parser.parse_args()
 if args.date:
 d = datetime.strptime(args.date, "%Y-%m-%d")
 else:
 d = datetime.now()
 for domain in dga(d):
 print(domain)

Regex

The possible letters per position is very limited. Assuming that the year is between 2020 and
2029, the domains match the following regular expression (Edit 2020-11-10: Fixed the
regular expression, thanks to Luca Corbatto for providing the correct regex):

[a-e][c-f][e-h][g-i][i-k][k-m][a-f][c-o][g-j][g-i][i-l][k-v]\.bazar

Characteristics

The following table summarizes the properties of BazarLoader’s DGA.

property value

10/11

property value

type TDD (time-dependent-deterministic), to some extend TDN (time-
dependent non-deterministic)

generation scheme arithmetic

seed current date

domain change
frequency

every month

domains per day 2160

sequence random selection, might pick domains multiple times

wait time between
domains

None

top level domain .bazar

second level
characters

a-v

regex [a-e][c-f][e-h][g-i][i-k][k-m][a-f][c-o][g-j][i-k][k-m]
[k-v]\.bazar

second level
domain length

12

Domain to Seed

Since the function to determine the second half of the domain is reversible, the month and
year can be calculated from the domains. I wrote a small Javascript form that does just that.
For those of you who block Javascript, here’s a screenshot. The same code in Python can
also be found on my GitHub page

https://johannesbader.ch/projects/bazarbackdoor/
https://github.com/baderj/domain_generation_algorithms/bazarbackdoor/

11/11

Registered Domains

As far as I can tell, the attackers registered five domains using the Emercoin address
ETQERUknhW2A5cBmfHN4VBqL7VGiFnKQRh. Also see tweets by Brad @malware_traffic
and Security-in-bits @Securityinbits:

date domain valid for

2020-05-18 10:24:32 UTC cdghilckihin.bazar May 2020

2020-05-18 10:24:32 UTC cefgilclhgin.bazar May 2020

2020-07-03 11:08:26 UTC defikldjhikn.bazar July 2020

2020-07-03 11:14:24 UTC aeehjkajghjm.bazar July 2020

2020-07-14 14:13:16 UTC cdfhimcihhio.bazar July 2020

Sinkholing

The IP resource record of the DGA domains are XOR decrypted with key 0xFE to get the
real IP of the C2 servers. You can use this Javascript form to calculate the transformation.

1. In-depth analysis of the new Team9 malware family ↩

2. BazarBackdoor: TrickBot gang’s new stealthy network-hacking malware ↩

3. TrickBot BazarLoader In-Depth ↩

4. Group Behind TrickBot Spreads Fileless BazarBackdoor ↩

https://twitter.com/malware_traffic/status/1253092725869760512
https://twitter.com/Securityinbits/status/1282630604798914565
https://johannesbader.ch/projects/bazarbackdoor/
https://blog.fox-it.com/2020/06/02/in-depth-analysis-of-the-new-team9-malware-family/
https://www.bleepingcomputer.com/news/security/bazarbackdoor-trickbot-gang-s-new-stealthy-network-hacking-malware/
https://cybersecurity.att.com/blogs/labs-research/trickbot-bazarloader-in-depth
https://www.trendmicro.com/vinfo/hk-en/security/news/cybercrime-and-digital-threats/group-behind-trickbot-spreads-fileless-bazarbackdoor

