
1/47

fumko December 25, 2019

Let’s play (again) with Predator the thief
fumik0.com/2019/12/25/lets-play-again-with-predator-the-thief/

Whenever I reverse a sample, I am mostly interested in how it was developed, even if in the
end the techniques employed are generally the same, I am always curious about what was
the way to achieve a task, or just simply understand the code philosophy of a piece of code.
It is a very nice way to spot different trending and discovering (sometimes) new tricks that
you never know it was possible to do. This is one of the main reasons, I love digging mostly
into stealers/clippers for their accessibility for being reversed, and enjoying malware analysis
as a kind of game (unless some exceptions like Nymaim that is literally hell).

It’s been 1 year and a half now that I start looking into “Predator The Thief”, and this malware
has evolved over time in terms of content added and code structure. This impression could
be totally different from others in terms of stealing tasks performed, but based on my first in-
depth analysis,, the code has changed too much and it was necessary to make another post
on it.

This one will focus on some major aspects of the 3.3.2 version, but will not explain
everything (because some details have already been mentioned in other papers, some
subjects are known). Also, times to times I will add some extra commentary about malware
analysis in general.

Anti-Disassembly

https://fumik0.com/2019/12/25/lets-play-again-with-predator-the-thief/

2/47

When you open an unpacked binary in IDA or other disassembler software like GHIDRA,
there is an amount of code that is not interpreted correctly which leads to rubbish code, the
incapacity to construct instructions or showing some graph. Behind this, it’s obvious that an
anti-disassembly trick is used.

The technique exploited here is known and used in the wild by other malware, it requires just
a few opcodes to process and leads at the end at the creation of a false branch. In this case,
it begins with a simple xor instruction that focuses on configuring the zero flag and forcing
the JZ jump condition to work no matter what, so, at this stage, it’s understandable that
something suspicious is in progress. Then the MOV opcode (0xB8) next to the jump is a 5
bytes instruction and disturbing the disassembler to consider that this instruction is the right
one to interpret beside that the correct opcode is inside this one, and in the end, by choosing
this wrong path malicious tasks are hidden.

Of course, fixing this issue is simple, and required just a few seconds. For example with IDA,
you need to undefine the MOV instruction by pressing the keyboard shortcut “U”, to produce
this pattern.

3/47

Then skip the 0xB8 opcode, and pushing on “C” at the 0xE8 position, to configure the
disassembler to interpret instruction at this point.

Replacing the 0xB8 opcode by 0x90. with a hexadecimal editor, will fix the issue. Opening
again the patched PE, you will see that IDA is now able to even show the graph mode.

After patching it, there are still some parts that can’t be correctly parsed by the disassembler,
but after reading some of the code locations, some of them are correct, so if you want to
create a function, you can select the “loc” section then pushed on “P” to create a sub-
function, of course, this action could lead to some irreversible thing if you are not sure about
your actions and end to restart again the whole process to remove a the ant-disassembly
tricks, so this action must be done only at last resort.

Code Obfuscation

Whenever you are analyzing Predator, you know that you will have to deal with some
obfuscation tricks almost everywhere just for slowing down your code analysis. Of course,
they are not complicated to assimilate, but as always, simple tricks used at their finest could
turn a simple fun afternoon to literally “welcome to Dark Souls”. The concept was already
there in the first in-depth analysis of this malware, and the idea remains over and over with
further updates on it. The only differences are easy to guess :

More layers of obfuscation have been added
Techniques already used are just adjusted.
More dose of randomness

As a reversing point of view, I am considering this part as one the main thing to recognized
this stealer, even if of course, you can add network communication and C&C pattern as other
ways for identifying it, inspecting the code is one way to clarify doubts (and I understand that
this statement is for sure not working for every malware), but the idea is that nowadays it’s
incredibly easy to make mistakes by being dupe by rules or tags on sandboxes, due to
similarities based on code-sharing, or just literally creating false flag.

GetModuleAddress

4/47

Already there in a previous analysis, recreating the GetProcAddress is a popular trick to hide
an API call behind a simple register call. Over the updates, the main idea is still there but the
main procedures have been modified, reworked or slightly optimized.

First of all, we recognized easily the PEB retrieved by spotting fs[0x30] behind some extra
instructions.

then from it, the loader data section is requested for two things:

Getting the InLoadOrderModuleList pointer
Getting the InMemoryOrderModuleList pointer

For those who are unfamiliar by this, basically, the PEB_LDR_DATA is a structure is where is
stored all the information related to the loaded modules of the process.

Then, a loop is performing a basic search on every entry of the module list but in “memory
order” on the loader data, by retrieving the module name, generating a hash of it and when
it’s done, it is compared with a hardcoded obfuscated hash of the kernel32 module and
obviously, if it matches, the module base address is saved, if it’s not, the process is repeated
again and again.

The XOR kernel32 hashes compared with the one created

Nowadays, using hashes for a function name or module name is something that you can see
in many other malware, purposes are multiple and this is one of the ways to hide some
actions. An example of this code behavior could be found easily on the internet and as I said
above, this one is popular and already used.

GetProcAddress / GetLoadLibrary

Always followed by GetModuleAddress, the code for recreating GetProcAddress is by far the
same architecture model than the v2, in term of the concept used. If the function is
forwarded, it will basically perform a recursive call of itself by getting the forward address,

5/47

checking if the library is loaded then call GetProcAddress again with new values.

Xor everything

It’s almost unnecessary to talk about it, but as in-depth analysis, if you have never read the
other article before, it’s always worth to say some words on the subject (as a reminder). The
XOR encryption is a common cipher that required a rudimentary implementation for being
effective :

Only one operator is used (XOR)
it’s not consuming resources.
It could be used as a component of other ciphers

This one is extremely popular in malware and the goal is not really to produce strong
encryption because it’s ridiculously easy to break most of the time, they are used for hiding
information or keywords that could be triggering alerts, rules…

Communication between host & server
Hiding strings
Or… simply used as an absurd step for obfuscating the code
etc…

A typical example in Predator could be seeing huge blocks with only two instructions (XOR &
MOV), where stacks strings are decrypted X bytes per X bytes by just moving content on a
temporary value (stored on EAX), XORed then pushed back to EBP, and the principle is
reproduced endlessly again and again. This is rudimentary, In this scenario, it’s just part of
the obfuscation process heavily abused by predator, for having an absurd amount of
instruction for simple things.

6/47

Also for some cases, When a hexadecimal/integer value is required for an API call, it could
be possible to spot another pattern of a hardcoded string moved to a register then only one
XOR instruction is performed for revealing the correct value, this trivial thing is used for some
specific cases like the correct position in the TEB for retrieving the PEB, an RVA of a specific
module, …

Finally, the most common one, there is also the classic one used by using a for loop for a
one key length XOR key, seen for decrypting modules, functions, and other things…

str = ... # encrypted string

for i, s in enumerate(str):
 s[i] = s[i] ^ s[len(str)-1]

Sub everything

Let’s consider this as a perfect example of “let’s do the same exact thing by just changing
one single instruction”, so in the end, a new encryption method is used with no effort for the
development. That’s how a SUB instruction is used for doing the substitution cipher. The only
difference that I could notice it’s how the key is retrieved.

7/47

Besides having something hardcoded directly, a signed 32-bit division is performed, easily
noticeable by the use of cdq & idiv instructions, then the dl register (the remainder) is used
for the substitution.

Stack Strings

8/47

What’s the result in the end?

Merging these obfuscation techniques leads to a nonsense amount of instructions for a basic
task, which will obviously burn you some hours of analysis if you don’t take some time for
cleaning a bit all that mess with the help of some scripts or plenty other ideas, that could
trigger in your mind. It could be nice to see these days some scripts released by the
community.

9/47

Simple tricks lead to nonsense code

Anti-Debug

There are plenty of techniques abused here that was not in the first analysis, this is not
anymore a simple PEB.BeingDebugged or checking if you are running a virtual machine, so
let’s dig into them. one per one except CheckRemoteDebugger! This one is enough to

10/47

understand by itself :’)

NtSetInformationThread

One of the oldest tricks in windows and still doing its work over the years. Basically in a very
simple way (because there is a lot thing happening during the process),
NtSetInformationThread is called with a value (0x11) obfuscated by a XOR operator. This
parameter is a ThreadInformationClass with a specific enum called
ThreadHideFromDebugger and when it’s executed, the debugger is not able to catch any
debug information. So the supposed pointer to the corresponding thread is, of course, the
malware and when you are analyzing it with a debugger, it will result to detach itself.

CloseHandle/NtClose

Inside WinMain, a huge function is called with a lot of consecutive anti-debug tricks, they
were almost all indirectly related to some techniques patched by TitanHide (or strongly looks
like), the first one performed is a really basic one, but pretty efficient to do the task.

Basically, when CloseHandle is called with an inexistent handle or an invalid one, it will raise
an exception and whenever you have a debugger attached to the process, it will not like that
at all. To guarantee that it’s not an issue for a normal interaction a simple __try / __except
method is used, so if this API call is requested, it will safely lead to the end without any issue.

The invalid handle used here is a static one and it’s L33T code with the value 0xBAADAA55
and makes me bored as much as this face.

11/47

That’s not a surprise to see stuff like this from the malware developer. Inside jokes, l33t
values, animes and probably other content that I missed are something usual to spot on
Predator.

ProcessDebugObjectHandle

When you are debugging a process, Microsoft Windows is creating a “Debug” object and a
handle corresponding to it. At this point, when you want to check if this object exists on the
process, NtQueryInformationProcess is used with the ProcessInfoClass initialized by 0x1e
(that is in fact, ProcessDebugObjectHandle).

In this case, the NTStatus value (returning result by the API call) is an error who as the ID
0xC0000353, aka STATUS_PORT_NOT_SET. This means, “An attempt to remove a
process’s DebugPort was made, but a port was not already associated with the process.”.
The anti-debug trick is to verify if this error is there, that’s all.

NtGetContextThread

12/47

This one is maybe considered as pretty wild if you are not familiar with some hardware
breakpoints. Basically, there are some registers that are called “Debug Register” and they
are using the DRX nomenclature (DR0 to DR7). When GetThreadContext is called, the
function will retrieve al the context information from a thread.

For those that are not familiar with a context structure, it contains all the register data from
the corresponding element. So, with this data in possession, it only needs to check if those
DRX registers are initiated with a value not equal to 0.

On the case here, it’s easily spottable to see that 4 registers are checked

if (ctx->Dr0 != 0 || ctx->Dr1 != 0 || ctx->Dr2 != 0 || ctx->Dr3 != 0)

Int 3 breakpoint

int 3 (or Interrupt 3) is a popular opcode to force the debugger to stop at a specific offset. As
said in the title, this is a breakpoint but if it’s executed without any debugging environment,
the exception handler is able to deal with this behavior and will continue to run without any
issue. Unless I missed something, here is the scenario.

By the way, as another scenario used for this one (the int 3), the number of this specific
opcode triggered could be also used as an incremented counter, if the counter is above a
specific value, a simplistic condition is sufficient to check if it’s executed into a debugger in
that way.

Debug Condition

With all the techniques explained above, in the end, they all lead to a final condition step if of
course, the debugger hasn’t crashed. The checking task is pretty easy to understand and it
remains to a simple operation: “setting up a value to EAX during the anti-debug function”, if

13/47

everything is correct this register will be set to zero, if not we could see all the different
values that could be possible.

bloc in red is the correct condition over all the anti-debug tests

…And when the Anti-Debug function is done, the register EAX is checked by the test
operator, so the ZF flag is determinant for entering into the most important loop that contains
the main function of the stealer.

Anti-VM

The Anti VM is presented as an option in Predator and is performed just after the first C&C
requests.

Tricks used are pretty olds and basically using Anti-VM Instructions

SIDT
SGDT
STR
CPUID (Hypervisor Trick)

By curiosity, this option is not by default performed if the C&C is not reachable.

Paranoid & Organized Predator

14/47

When entering into the “big main function”, the stealer is doing “again” extra validations if you
have a valid payload (and not a modded one), you are running it correctly and being sure
again that you are not analyzing it.

This kind of paranoid checking step is a result of the multiple cases of cracked builders
developed and released in the wild (mostly or exclusively at a time coming from XakFor.Net).
Pretty wild and fun to see when Anti-Piracy protocols are also seen in the malware scape.

Then the malware is doing a classic organized setup to perform all the requested actions and
could be represented in that way.

15/47

16/47

Of course as usual and already a bit explained in the first paper, the C&C domain is retrieved
in a table of function pointers before the execution of the WinMain function (where the
payload is starting to do tasks).

You can see easily all the functions that will be called based on the starting location (__xc_z)
and the ending location (__xc_z).

Then you can spot easily the XOR strings that hide the C&C domain like the usual old
predator malware.

17/47

Data Encryption & Encoding

Besides using XOR almost absolutely everywhere, this info stealer is using a mix of RC4
encryption and base64 encoding whenever it is receiving data from the C&C. Without using
specialized tools or paid versions of IDA (or whatever other software), it could be a bit
challenging to recognize it (when you are a junior analyst), due to some modification of some
part of the code.

Base64

For the Base64 functions, it’s extremely easy to spot them, with the symbol values on the
register before and after calls. The only thing to notice with them, it’s that they are using a
typical signature… A whole bloc of XOR stack strings, I believed that this trick is designed to
hide an eventual Base64 alphabet from some Yara rules.

18/47

By the way, the rest of the code remains identical to standard base64 algorithms.

RC4

For RC4, things could be a little bit messy if you are not familiar at all with encryption
algorithm on a disassembler/debugger, for some cases it could be hell, for some case not.
Here, it’s, in fact, this amount of code for performing the process.

Blocs are representing the Generation of the array S, then performing the Key-Scheduling
Algorithm (KSA) by using a specific secret key that is, in fact, the C&C domain! (if there is no
domain, but an IP hardcoded, this IP is the secret key), then the last one is the Pseudo-
random generation algorithm (PRGA).

For more info, some resources about this algorithm below:

Stack Overflow example
RC4 Algorithm (Wikipedia)

Mutex & Hardware ID

https://stackoverflow.com/questions/29607753/how-to-decrypt-a-file-that-encrypted-with-rc4-using-python
https://en.wikipedia.org/wiki/RC4#Key-scheduling_algorithm_(KSA)

19/47

The Hardware ID (HWID) and mutex are related, and the generation is quite funky, I would
say, even if most of the people will consider this as something not important to investigate, I
love small details in malware, even if their role is maybe meaningless, but for me, every
detail counts no matter what (even the stupidest one).

Here the hardware ID generation is split into 3 main parts. I had a lot of fun to understand
how this one was created.

First, it will grab all the available logical drives on the compromised machine, and for each of
them, the serial number is saved into a temporary variable. Then, whenever a new drive is
found, the hexadecimal value is added to it. so basically if the two drives have the serial
number “44C5-F04D” and “1130-DDFF”, so ESI will receive 0x44C5F04D then will add
0x1130DFF.

When it’s done, this value is put into a while loop that will divide the value on ESI by 0xA and
saved the remainder into another temporary variable, the loop condition breaks when ESI is
below 1. Then the results of this operation are saved, duplicated and added to itself the last 4
bytes (i.e 1122334455 will be 112233445522334455).

If this is not sufficient, the value is put into another loop for performing this operation.

for i, s in enumerate(str):
 if i & 1:
 a += chr(s) + 0x40
 else:
 a += chr(s)

It results in the creation of an alphanumeric string that will be the archive filename used
during the POST request to the C&C.

the generated hardware ID based on the serial number devices

But wait! there is more… This value is in part of the creation of the mutex name… with a
simple base64 operation on it and some bit operand operation for cutting part of the base64
encoding string for having finally the mutex name!

Anti-CIS

20/47

A classic thing in malware, this feature is used for avoiding infecting machines coming from
the Commonwealth of Independent States (CIS) by using a simple API call
GetUserDefaultLangID.

The value returned is the language identifier of the region format setting for the user and
checked by a lot of specific language identifier, of courses in every situation, all the values
that are tested, are encrypted.

Language ID SubLanguage Symbol Country

0x0419 SUBLANG_RUSSIAN_RUSSIA Russia

0x042b SUBLANG_ARMENIAN_ARMENIA Armenia

21/47

0x082c SUBLANG_AZERI_CYRILLIC Azerbaijan

0x042c SUBLANG_AZERI_LATIN Azerbaijan

0x0423 SUBLANG_BELARUSIAN_BELARUS Belarus

0x0437 SUBLANG_GEORGIAN_GEORGIA Georgia

0x043f SUBLANG_KAZAK_KAZAKHSTAN Kazakhstan

0x0428 SUBLANG_TAJIK_TAJIKISTAN Tajikistan

0x0442 SUBLANG_TURKMEN_TURKMENISTAN Turkmenistan

0x0843 SUBLANG_UZBEK_CYRILLIC Uzbekistan

0x0443 SUBLANG_UZBEK_LATIN Uzbekistan

0x0422 SUBLANG_UKRAINIAN_UKRAINE Ukraine

Files, files where are you?

When I reversed for the first time this stealer, files and malicious archive were stored on the
disk then deleted. But right now, this is not the case anymore. Predator is managing all the
stolen data into memory for avoiding as much as possible any extra traces during the
execution.

Predator is nowadays creating in memory a lot of allocated pages and temporary files that
will be used for interactions with real files that exist on the disk. Most of the time it’s basically
getting handles, size and doing some operation for opening, grabbing content and saving
them to a place in memory. This explanation is summarized in a “very” simplify way
because there are a lot of cases and scenarios to manage this.

Another point to notice is that the archive (using ZIP compression), is also created in
memory by selecting folder/files.

22/47

The generated archive in memory

It doesn’t mean that the whole architecture for the files is different, it’s the same format as
before.

an example of archive intercepted during the C&C Communication

Stealing

After explaining this many times about how this stuff, the fundamental idea is boringly the
same for every stealer:

Check
Analyzing (optional)
Parsing (optional)
Copy

23/47

Profit
Repeat

What could be different behind that, is how they are obfuscating the files or values to
check… and guess what… every malware has their specialties (whenever they are not
decided to copy the same piece of code on Github or some whatever generic .NET stealer)
and in the end, there is no black magic, just simple (or complex) enigma to solve. As a
malware analyst, when you are starting into analyzing stealers, you want literally to
understand everything, because everything is new, and with the time, you realized the
routine performed to fetch the data and how stupid it is working well (as reminder, it might be
not always that easy for some highly specific stuff).

In the end, you just want to know the targeted software, and only dig into those you haven’t
seen before, but every time the thing is the same:

Checking dumbly a path
Checking a register key to have the correct path of a software
Checking a shortcut path based on an icon
etc…

Beside that Predator the Thief is stealing a lot of different things:

1. Grabbing content from Browsers (Cookies, History, Credentials)
2. Harvesting/Fetching Credit Cards
3. Stealing sensible information & files from Crypto-Wallets
4. Credentials from FTP Software
5. Data coming from Instant communication software
6. Data coming from Messenger software
7. 2FA Authenticator software
8. Fetching Gaming accounts
9. Credentials coming from VPN software

10. Grabbing specific files (also dynamically)
11. Harvesting all the information from the computer (Specs, Software)
12. Stealing Clipboard (if during the execution of it, there is some content)
13. Making a picture of yourself (if your webcam is connected)
14. Making screenshot of your desktop
15. It could also include a Clipper (as a modular feature).
16. And… due to the module manager, other tasks that I still don’t have mentioned there

(that also I don’t know who they are).

Let’s explain just some of them that I found worth to dig into.

Browsers

24/47

Since my last analysis, things changed for the browser part and it’s now divided into three
major parts.

Internet Explorer is analyzed in a specific function developed due that the data is
contained into a “Vault”, so it requires a specific Windows API to read it.
Microsoft Edge is also split into another part of the stealing process due that this one is
using unique files and needs some tasks for the parsing.
Then, the other browsers are fetched by using a homemade static grabber

Grabber n°1 (The generic one)

It’s pretty fun to see that the stealing process is using at least one single function for catching
a lot of things. This generic grabber is pretty “cleaned” based on what I saw before even if
there is no magic at all, it’s sufficient to make enough damages by using a recursive loop at a
specific place that will search all the required files & folders.

By comparing older versions of predator, when it was attempting to steal content from
browsers and some wallets, it was checking step by step specific repositories or registry
keys then processing into some loops and tasks for fetching the credentials. Nowadays, this
step has been removed (for the browser part) and being part of this raw grabber that will
parse everything starting to %USERS% repository.

25/47

As usual, all the variables that contain required files are obfuscated and encrypted by a
simple XOR algorithm and in the end, this is the “static” list that the info stealer will be
focused

File grabbed Type Actions

Login Data Chrome / Chromium based Copy & Parse

Cookies Chrome / Chromium based Copy & Parse

Web Data Browsers Copy & Parse

History Browsers Copy & Parse

formhistory.sqlite Mozilla Firefox & Others Copy & Parse

cookies.sqlite Mozilla Firefox & Others Copy & Parse

26/47

wallet.dat Bitcoin Copy & Parse

.sln Visual Studio Projects Copy filename into Project.txt

main.db Skype Copy & Parse

logins.json Chrome Copy & Parse

signons.sqlite Mozilla Firefox & Others Copy & Parse

places.sqlite Mozilla Firefox & Others Copy & Parse

Last Version Mozilla Firefox & Others Copy & Parse

Grabber n°2 (The dynamic one)

There is a second grabber in Predator The Thief, and this not only used when there is
available config loaded in memory based on the first request done to the C&C. In fact, it’s
also used as part of the process of searching & copying critical files coming from wallets
software, communication software, and others…

The “main function” of this dynamic grabber only required three arguments:

The path where you want to search files
the requested file or mask
A path where the found files will be put in the final archive sent to the C&C

27/47

When the grabber is configured for a recursive search, it’s simply adding at the end of the
path the value “..” and checking if the next file is a folder to enter again into the same
function again and again.

In the end, in the fundamentals, this is almost the same pattern as the first grabber with the
only difference that in this case, there are no parsing/analyzing files in an in-depth way. It’s
simply this follow-up

1. Find a matched file based on the requested search
2. creating an entry on the stolen archive folder
3. setting a handle/pointer from the grabbed file
4. Save the whole content to memory
5. Repeat

Of course, there is a lot of particular cases that are to take in consideration here, but the
main idea is like this.

What Predator is stealing in the end?

If we removed the dynamic grabber, this is the current list (for 3.3.2) about what kind of
software that is impacted by this stealer, for sure, it’s hard to know precisely on the browser
all the one that is impacted due to the generic grabber, but in the end, the most important
one is listed here.

VPN

NordVPN

Communication

Jabber
Discord
Skype

FTP

WinSCP
WinFTP
FileZilla

Mails

Outlook

2FA Software

28/47

Authy (Inspired by Vidar)

Games

Steam
Battle.net (Inspired by Kpot)
Osu

Wallets

Electrum
MultiBit
Armory
Ethereum
Bytecoin
Bitcoin
Jaxx
Atomic
Exodus

Browser

Mozilla Firefox (also Gecko browsers using same files)
Chrome (also Chromium browsers using same files)
Internet Explorer
Edge
Unmentioned browsers using the same files detected by the grabber.

Also beside stealing other actions are performed like:

Performing a webcam picture capture
Performing a desktop screenshot

Loader

There is currently 4 kind of loader implemented into this info stealer

1. RunPE
2. CreateProcess
3. ShellExecuteA
4. LoadPE
5. LoadLibrary

29/47

For all the cases, I have explained below (on another part of this analysis) what are the
options of each of the techniques performed. There is no magic, there is nothing to explain
more about this feature these days. There are enough articles and tutorials that are talking
about this. The only thing to notice is that Predator is designed to load the payload in
different ways, just by a simple process creation or abusing some process injections (i
recommend on this part, to read the work from endgame).

Module Manager

Something really interesting about this stealer these days, it that it developed a feature for
being able to add the additional tasks as part of a module/plugin package. Maybe the name
of this thing is wrongly named (i will probably be fixed soon about this statement). But now
it’s definitely sure that we can consider this malware as a modular one.

https://www.endgame.com/blog/technical-blog/ten-process-injection-techniques-technical-survey-common-and-trending-process

30/47

31/47

When decrypting the config from check.get, you can understand fast that a module will be
launched, by looking at the last entry…

[PREDATOR_CONFIG]#[GRABBER]#[NETWORK_INFO]#[LOADER]#[example]

This will be the name of the module that will be requested to the C&C. (this is also the
easiest way to spot a new module).

example.get
example.post

The first request is giving you the config of the module (on my case it was like this), it’s saved
but NOT decrypted (looks like it will be dealt by the module on this part). The other request is
focused on downloading the payload, decrypting it and saving it to the disk in a random
folder in %PROGRAMDATA% (also the filename is generated also randomly), when it’s
done, it’s simply executed by ShellExecuteA.

Also, another thing to notice, you know that it’s designed to launch multiple modules/plugins.

Clipper (Optional module)

The clipper is one example of the Module that could be loaded by the module manager. As
far as I saw, I only see this one (maybe they are other things, maybe not, I don’t have the
visibility for that).

32/47

Disclaimer: Before people will maybe mistaken, the clipper is proper to Predator the Thief
and this is NOT something coming from another actor (if it’s the case, the loader part would
be used).

Clipper WinMain function

This malware module is developed in C++, and like Predator itself, you recognized pretty
well the obfuscation proper to it (Stack strings, XOR, SUB, Code spaghetti, GetProcAddress
recreated…). Well, everything that you love for slowing down again your analysis.

As detailed already a little above, the module is designed to grab the config from the main
program, decrypting it and starting to do the process routine indefinitely:

1. Open Clipboard
2. Checking content based on the config loaded
3. If something matches put the malicious wallet
4. Sleep
5. Repeat

The clipper config is rudimentary using “|” as a delimiter. Mask/Regex on the left, malicious
wallet on the right.

33/47

1*:1Eh8gHDVCS8xuKQNhCtZKiE1dVuRQiQ58H|
3*:1Eh8gHDVCS8xuKQNhCtZKiE1dVuRQiQ58H|
0x*:0x7996ad65556859C0F795Fe590018b08699092B9C|
q*:qztrpt42h78ks7h6jlgtqtvhp3q6utm7sqrsupgwv0|
G*:GaJvoTcC4Bw3kitxHWU4nrdDK3izXCTmFQ|
X*:XruZmSaEYPX2mH48nGkPSGTzFiPfKXDLWn|
L*:LdPvBrWvimse3WuVNg6pjH15GgBUtSUaWy|
t*:t1dLgBbvV6sXNCMUSS5JeLjF4XhhbJYSDAe|
4*:44tLjmXrQNrWJ5NBsEj2R77ZBEgDa3fEe9GLpSf2FRmhexPvfYDUAB7EXX1Hdb3aMQ9FLqdJ56yaAhiXoRs

D*:DUMKwVVAaMcbtdWipMkXoGfRistK1cC26C|
A*:AaUgfMh5iVkGKLVpMUZW8tGuyjZQNViwDt|

There is no communication with the C&C when the clipper is switching wallet, it’s an offline
one.

Self Removal

When the parameters are set to 1 in the Predator config got by check.get, the malware is
performing a really simple task to erase itself from the machine when all the tasks are done.

By looking at the bottom of the main big function where all the task is performed, you can
see two main blocs that could be skipped. these two are huge stack strings that will generate
two things.

the API request “ShellExecuteA”
The command “ping 127.0.0.1 & del %PATH%”

When all is prepared the thing is simply executed behind the classic register call. By the way,
doing a ping request is one of the dozen way to do a sleep call and waiting for a little before
performing the deletion.

34/47

This option is not performed by default when the malware is not able to get data from the
C&C.

Telemetry files

There is a bunch of files that are proper to this stealer, which are generated during the whole
infection process. Each of them has a specific meaning.

Information.txt

1. Signature of the stealer
2. Stealing statistics
3. Computer specs
4. Number of users in the machine
5. List of logical drives
6. Current usage resources
7. Clipboard content
8. Network info
9. Compile-time of the payload

Also, this generated file is literally “hell” when you want to dig into it by the amount of
obfuscated code.

35/47

36/47

I can quote these following important telemetry files:

Software.txt

Windows Build Version
Generated User-Agent
List of software installed in the machine (checking for x32 and x64 architecture folders)

Actions.txt

List of actions & telemetry performed by the stealer itself during the stealing process

Projects.txt

List of SLN filename found during the grabber research (the static one)

CookeList.txt

List of cookies content fetched/parsed

Network

User-Agent “Builder”

Sometimes features are fun to dig in when I heard about that predator is now generating
dynamic user-agent, I was thinking about some things but in fact, it’s way simpler than I
thought.

The User-Agent is generated in 5 steps

1. Decrypting a static string that contains the first part of the User-Agent
2. Using GetTickCount and grabbing the last bytes of it for generating a fake builder

version of Chrome
3. Decrypting another static string that contains the end of the User-Agent
4. Concat Everything
5. Profit

Tihs User-Agent is shown into the software.txt logfile.

C&C Requests

37/47

There is currently 4 kind of request seen in Predator 3.3.2 (it’s always a POST request)

Request Meaning

api/check.get Get dynamic config, tasks and network info

api/gate.get ?…… Send stolen data

api/.get Get modular dynamic config

api/.post Get modular dynamic payload (was like this with the clipper)

The first step – Get the config & extra Infos

For the first request, the response from the server is always in a specific form :

String obviously base64 encoded
Encrypted using RC4 encryption by using the domain name as the key

When decrypted, the config is pretty easy to guess and also a bit complex (due to the
number of options & parameters that the threat actor is able to do).

[0;1;0;1;1;0;1;1;0;512;]#
[[%userprofile%\Desktop|%userprofile%\Downloads|%userprofile%\Documents;*.xls,*.xlsx,*
[Trakai;Republic of Lithuania;54.6378;24.9343;85.206.166.82;Europe/Vilnius;21001]#[]#
[Clipper]

It’s easily understandable that the config is split by the “#” and each data and could be
summarized like this

1. The stealer config
2. The grabber config
3. The network config
4. The loader config
5. The dynamic modular config (i.e Clipper)

I have represented each of them into an array with the meaning of each of the parameters
(when it was possible).

Predator config

Args Meaning

Field 1 Webcam screenshot

Field 2 Anti VM

Field 3 Skype

38/47

Field 4 Steam

Field 5 Desktop screenshot

Field 6 Anti-CIS

Field 7 Self Destroy

Field 8 Telegram

Field 9 Windows Cookie

Field 10 Max size for files grabbed

Field 11 Powershell script (in base64)

Grabber config

[]#[GRABBER]#[]#[]#[]

Args Meaning

Field 1 %PATH% using “|” as a delimiter

Field 2 Files to grab

Field 3 Max sized for each file grabbed

Field 4 Whitelist

Field 5 Recursive search (0 – off | 1 – on)

Network info

[]#[]#[NETWORK]#[]#[]

Args Meaning

Field 1 City

Field 2 Country

Field 3 GPS Coordinate

Field 4 Time Zone

Field 5 Postal Code

Loader config

39/47

[]#[]#[]#[LOADER]#[]

Format

[[URL;3;2;;;;1;amazon.com;0;0;1;0;0;5]]

Meaning

1. Loader URL
2. Loader Type
3. Architecture
4. Targeted Countries (“,” as a delimiter)
5. Blacklisted Countries (“,” as a delimiter)
6. Arguments on startup
7. Injected process OR Where it’s saved and executed
8. Pushing loader if the specific domain(s) is(are) seen in the stolen data
9. Pushing loader if wallets are presents

10. Persistence
11. Executing in admin mode
12. Random file generated
13. Repeating execution
14. ???

Loader type (argument 2)

Value Meaning

1 RunPE

2 CreateProcess

3 ShellExecute

4 LoadPE

5 LoadLibrary

Architecture (argument 3)

Value Meaning

1 x32 / x64

2 x32 only

3 x64 only

40/47

If it’s RunPE (argument 7)

Value Meaning

1 Attrib.exe

2 Cmd.exe

3 Audiodg.exe

If it’s CreateProcess / ShellExecuteA / LoadLibrary (argument 7)

Value Meaning

1 %PROGRAMDATA%

2 %TEMP%

3 %APPDATA%

The second step – Sending stolen data

Format

/api/gate.get?p1=X&p2=X&p3=X&p4=X&p5=X&p6=X&p7=X&p8=X&p9=X&p10=X

Goal

1. Sending stolen data
2. Also victim telemetry

Meaning

Args Field

p1 Passwords

p2 Cookies

p3 Credit Cards

p4 Forms

p5 Steam

p6 Wallets

p7 Telegram

41/47

p8 ???

p9 ???

p10 OS Version (encrypted + encoded)*

This is an example of crafted request performed by Predator the thief

Third step – Modular tasks (optional)

/api/Clipper.get

Give the dynamic clipper config

/api/Clipper.post

Give the predator clipper payload

Server side

The C&C is nowadays way different than the beginning, it has been reworked with some
fancy designed and being able to do some stuff:

1. Modulable C&C
2. Classic fancy index with statistics
3. Possibility to configure your panel itself
4. Dynamic grabber configuration
5. Telegram notifications
6. Backups
7. Tags for specific domains

Index

42/47

The predator panel changed a lot between the v2 and v3. This is currently a fancy theme
one, and you can easily spot the whole statistics at first glance. the thing to notice is that the
panel is fully in Russian (and I don’t know at that time if there is an English one).

Menu on the left is divide like this (but I’m not really sure about the correct translation)

Меню (Menu)
 Статистика (Stats)

Логов (Logs)
По странам (Country stats)
Лоадера (Loader Stats)

Логи (Logs)

Обычная

Модули (Modules)

Загрузить модуль (Download/Upload Module)

Настройки (Settings)

Настройки сайта (Site settings)
Телеграм бот (Telegram Bot)
Конфиг (Config)

Граббер (Grabber)
 Лоадер (Loader)

Domain Detect

43/47

Backup
Поиск (Search)
Конвертация (Converter => Netscape Json converter)

Statistics / Landscape

Predator Config

In term of configuring predator, the choices are pretty wild:

The actor is able to tweak its panel, by modifying some details, like the title and detail
that made me laugh is you can choose a dark theme.

There is also another form, the payload config is configured by just ticking options.
When done, this will update the request coming from check.get

44/47

As usual, there is also a telegram bot feature

Creating Tags for domains seen

Small details which were also mentioned in Vidar, but if the actor wants specific attention for
bots that have data coming from specific domains, it will create a tag that will help him to
filter easily which of them is probably worth to dig into.

Loader config

The loader configuration is by far really interesting in my point of view and even it has been
explained totally for its functionalities, I considered it pretty complete and user-friendly for the
Threat Actor that is using it.

45/47

IoCs

Hashes for this analysis

46/47

p_pckd.exe – 21ebdc3a58f3d346247b2893d41c80126edabb060759af846273f9c9d0c92a9a
p_upkd.exe – 6e27a2b223ef076d952aaa7c69725c831997898bebcd2d99654f4a1aa3358619
p_clipper.exe – 01ef26b464faf08081fceeeb2cdff7a66ffdbd31072fe47b4eb43c219da287e8

C&C

cadvexmail19mn.world

Other predator hashes

9110e59b6c7ced21e194d37bb4fc14b2
51e1924ac4c3f87553e9e9c712348ac8
fe6125adb3cc69aa8c97ab31a0e7f5f8
02484e00e248da80c897e2261e65d275
a86f18fa2d67415ac2d576e1cd5ccad8
3861a092245655330f0f1ffec75aca67
ed3893c96decc3aa798be93192413d28

Conclusion

Infostealer is not considered as harmful as recent highly mediatize ransomware attacks, but
they are enough effective to perform severe damage and they should not be underrated,
furthermore, with the use of cryptocurrencies that are more and more common, or something
totally normal nowadays, the lack of security hygiene on this subject is awfully insane. that I
am not surprised at all to see so much money stolen, so they will be still really active, it’s
always interesting to keep an eye on this malware family (and also on clippers), whenever
there is a new wallet software or trading cryptocurrency software on the list, you know easily
what are the possible trends (if you have a lack of knowledge in that area).

Nowadays, it’s easy to see fresh activities in the wild for this info stealer, it could be dropped
by important malware campaigns where notorious malware like ISFB Gozi is also used. It’s
unnecessary (on my side) to speculate about what will be next move with Predator, I have
clearly no idea and not interested in that kind of stuff. The thing is the malware scene
nowadays is evolving really fast, threat actor teams are moving/switching easily and it could
take only hours for new updates and rework of malware by just modifying a piece of code
with something already developed on some GitHub repository, or copying code from another
malware. Also, the price of the malware has been adjusted, or the support communication is
moved to something else.

Due to this, I am pretty sure at that time, this current in-depth analysis could be already
outdated by some modifications. it’s always a risk to take and on my side, I am only
interested in the malware itself, the main ideas/facts of the major version are explained and
it’s plenty sufficient. There is, of course, some topics that I haven’t talk like nowadays
predator is now being to work as a classic executable file or a DLL, but it was developed

47/47

some times ago and this subject is now a bit popular. Also, another point that I didn’t find any
explanation, is that seeing some decrypting process for strings that leads to some encryption
algorithm related to Tor.

This in-depth analysis is also focused on showing that even simple tricks are an efficient way
to slow down analysis and it is a good exercise to practice your skills if you want to improve
yourself into malware analysis. Also, reverse engineering is not as hard as people could
think when the fundamental concepts are assimilated, It’s just time, practice and motivation.

On my side, I am, as usual, typically irregular into releasing stuff due to some stuff (again…).
By the way, updating projects are still one of my main focus, I still have some things that I
would love to finish which are not necessarily into malware analysis, it’s cool to change
topics sometimes.

#HappyHunting

