

Zscaler Blog

Get the latest Zscaler blog updates in your inbox

Subscribe

THREATLABZ RESEARCH

 \searrow

f

X

in

2

Copy URL

This is Part 2 of our two-part technical deep dive into APT41's new tooling, DodgeBox and MoonWalk. For details of DodgeBox, go to Part 1.

In Part 2 of this blog series, we examine the MoonWalk backdoor, a new addition to APT41's toolkit. Continuing from our previous analysis of the DodgeBox loader in Part 1, we have discovered that MoonWalk shares several evasion techniques. It makes use of Google Drive for command-and-control (C2) communication and abuses Windows Fibers, a lesser-known Windows feature, to evade anti-virus (AV) and Endpoint Detection and Response (EDR) solutions.

Key Takeaways

- APT41, a China-based nation-state threat actor known for campaigns in Southeast Asia, has been observed using a new backdoor called MoonWalk.
- MoonWalk shares a common development toolkit with DodgeBox, reusing code that
 implements evasive techniques such as DLL hollowing, import resolution, DLL
 unhooking, and call stack spoofing. Additionally, MoonWalk employs further evasion
 tactics, including the use of Google Drive as its C2 channel to blend in with legitimate
 network traffic and the utilization of Windows Fibers to evade AV/EDR security
 solutions.
- MoonWalk's modular design allows attackers to easily update its capabilities, modify its behavior, and customize functionality for different scenarios.

Technical Analysis

Attack chain

The focus of this blog post is the second half of the attack chain that begins with the in-memory execution of MoonWalk backdoor. Once the MoonWalk backdoor is successfully loaded by DodgeBox, the malware decrypts and reflectively loads two embedded plugins (C2 and Utility). The C2 plugin uses a custom encrypted C2 protocol to communicate with the attacker-controlled Google Drive account.

A figure depicting the attack chain used to deploy MoonWalk with the DodgeBox loader is shown below.

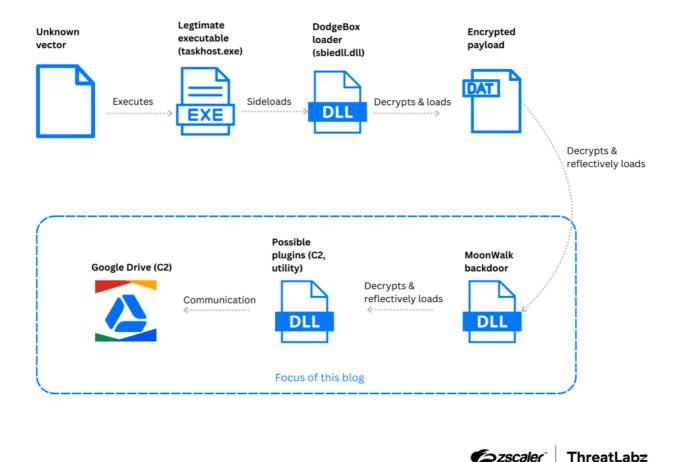


Figure 1: Attack chain used to deploy the DodgeBox loader and MoonWalk backdoor.

MoonWalk analysis

MoonWalk is a malware backdoor written in C that shares many code similarities with DodgeBox, suggesting a common development toolkit. It incorporates many evasion related functions from DodgeBox, including those related to the following:

- DLL hollowing
- Import resolution
- DLL unhooking
- Call stack spoofing

Additionally, MoonWalk utilizes the same DLL blocklist as DodgeBox.

ThreatLabz analysis reveals MoonWalk's modular design, allowing it to load different plugin components as needed. The sample examined by ThreatLabz contains two embedded plugins, a C2 plugin for C2 communication, and a utility plugin that provides functionality related to compression and public–key cryptography. This modular architecture makes MoonWalk highly adaptable, enabling attackers to customize its functionality for different scenarios.

In the section below, we will highlight several notable capabilities of MoonWalk.

Unloading the DodgeBox loader

When MoonWalk first initializes, it resolves its imports using the same algorithms as DodgeBox. Then, depending on the DodgeBox configuration parameter Config.fShouldUnloadStealthVector, MoonWalk unloads the DodgeBox DLL from memory and unlinks it from the Process Environment Block (PEB). This reduces MoonWalk's in-memory footprint, and obfuscates its origins, hindering memory forensic analysis.

Using Windows Fibers

Next, MoonWalk initializes global structures used to manage Windows Fibers. Windows Fibers are a lightweight threading mechanism, available in the Windows operating system since Windows NT SP5. Unlike traditional threads, which are scheduled by the operating system, fibers are cooperatively scheduled by the application itself. This allows developers to tune an application's performance for a specific workload. However, due to the complexity of utilizing Windows Fibers, and performance improvements of computer hardware, Windows Fibers were not widely adopted, and remains an obscure feature.

However, with the increased focus on cybersecurity in recent years, there has been an uptick in interest in Windows Fibers from the research and red-teaming community. Multiple research papers (1, 2, 3) and open-sourced proof of concepts (POCs) have been published, abusing Windows Fibers to evade AVs/EDR solutions.

APT41 may have been following these developments, as they have incorporated Windows Fibers into the MoonWalk backdoor. At a high level, MoonWalk maintains a global array of fibers. When a function needs to be executed as a fiber, a fiber is created using the CreateFiber API. This fiber is then packaged together with the address of the function and its arguments and other metadata, and inserted into the global array. The main fiber then schedules these fibers for execution. This use of Windows Fibers helps MoonWalk evade AVs and EDRs which do not support the scanning of Windows Fibers, and also makes analysis challenging by breaking up the control flow.

Configuration

MoonWalk decrypts its configuration, which is hard-coded within its .lrsrc section. Like DodgeBox, MoonWalk uses MD5 for configuration validation and AES Cipher Feedback (AES-CFB) for decryption.

However, MoonWalk's configuration is more complex, featuring nested structures and arrays. This configuration contains various execution parameters including the following:

Mutex namesA fiber configuration

- Heartbeat intervals
- Encryption keys
- C2-related data

In the sample we analyzed, MoonWalk's configuration (referred to as Config) included OAuth secrets used to authenticate with the attacker-controlled Google Drive account, and other notable fields as shown below:

Config.szClientID:

XXXXXXXX3108-

Opm3bsjc0mto2e1k4kp2u8817lgk3e3v.apps.googleusercontent.com

Config.szClientSecret:

XXXXXXXBiuo8VPZUH1dBHkv86mC1xFU_Z3

Config.szRefreshToken: XXXXXXXXYIYDPmH9cCgYIARAAGAkSNwF-L9IrcM7YiuxWrNuyIfKINyNc_pEVytGNNK750ZyyIm32qH6Wh3dGIBTvdPJ2v92xAohHwWw

Config.rgbXorKey:

a8e6bd132daf0360b1af1f5eea15e42f8c6f1dcd7d34376ae4e83a1a4f5907c0

Config.szMutexName:

Global\ctXjvsAxpzyqElmk

Config.szName:

default

After loading the default configuration, MoonWalk searches for a new configuration file at C:\ProgramData\[MD5(Config.rgbIDBytes)]. If found, the malware decrypts and loads this file. A sample of MoonWalk's decrypted configuration is available in the Appendix of this blog for reference.

Unpacking and loading plugins

MoonWalk then extracts embedded plugins from the .lrsrc section. In the MoonWalk sample we analyzed, there were two plugins embedded within this section: one plugin for C2, and another plugin which provides utility functions such as public key cryptography and compression.

Each plugin in the .lrsrc section is prefixed with 72 bytes of metadata, which includes AES-CFB secrets, an MD5 checksum, and plugin type information. The plugin type information fields provide information about the features of a plugin. These fields help identify whether a plugin serves as a command handler, C2, or utility. More details about the structure of plugin metadata can be found in the Appendix section.

MoonWalk organizes these plugins by registering them in a global linked list. MoonWalk then goes through this list to load the C2 plugin and its dependencies, such as the utility plugin, using DLL hollowing. This process is similar to what we previously described in Part 1 for DodgeBox. Like DodgeBox, this MoonWalk sample stores a copy of the host DLL in C:\Windows\Microsoft.NET\assembly\GAC_MSIL\System.Data.Trace.

Network Communication

After loading the C2 plugin, MoonWalk is prepared to establish communication with the C2 server. MoonWalk utilizes Google Drive for C2 communications. This helps MoonWalk evade detection, as traffic to and from reputable cloud services are less likely to raise suspicion, especially if a target is already using this service. Strangely, MoonWalk uses the string curl/7.54.O as its User–Agent when making HTTP requests, even though it does not utilize libcurl in its C2 plugin, and uses the WinHTTP family of APIs instead.

At a high level, MoonWalk communicates over Google Drive in the following manner:

Step	Description
1 – Initialization	MoonWalk obtains an access token from the Google Authorization Server, by utilizing the OAuth secrets in its configuration (Config.szClientID, Config.szClientSecret and Config.szRefreshToken). MoonWalk generates 16 random bytes, and hex-encodes them, resulting in a string such as: f137da1a9019849fbc2aac49a4b6 f2c3. We will reference this string as SessionID. MoonWalk uses the Google Drive APIs to retrieve the ID for the /data directory. MoonWalk retrieves the ID for the /data/temp directory.
2 – Cryptographic Handshake (Client Hello and Server Hello)	MoonWalk searches /data/temp for a file named after the generated SessionID (i.e. f137da1a90 19849fbc2aac49a4b6f2c3). If the file is not found, MoonWalk generates and uploads a

Step	Description
	file /data/temp/[SessionID] to initiate a cryptographic handshake and exchange AES keys with the server. MoonWalk then looks for the /data/[SessionID] directory, and its subdirectory /data/[SessionID]/s1. The directory titled s[number] seems to serve as the designated location where MoonWalk will retrieve and download forthcoming C2 instructions. Lastly, MoonWalk searches for the /data/[SessionID]/s1/1 file. As it becomes available, MoonWalk downloads and processes it, and completes the cryptographic handshake.
3 – Information Gathering	MoonWalk then checks for the existence of the directory /data/[SessionID]/c1, and creates it if it does not exist. Then, MoonWalk gathers information such as the computer name, user name, and OS version, and uploads this to the file /data/[SessionID]/c1/1.
4 - Heartbeat	MoonWalk then proceeds to send heartbeats regularly to the C2 server by updating a file named "temp.txt" with the current Unix timestamp as a string. MoonWalk also regularly polls the /data/[SessionID]/s1 directory for new files. If a new file is found, MoonWalk processes it and uploads its response in the /data/[SessionID]/c1 directory. During our analysis of MoonWalk, only ping commands were observed, where MoonWalk responded by uploading encoded files to

Step	Description
	the /data/[SessionID]/c1 directory, containing the current Unix timestamp.

Table 1: High-level view of the MoonWalk C2 communication protocol using Google Drive.

Cryptographic Handshake (Client Hello)

During the cryptographic handshake phase, MoonWalk exchanges AES keys with the server using a custom protocol. Because of this, it becomes very difficult or impossible to decode encrypted C2 messages without access to these AES keys, which exist only in MoonWalk's process memory.

The process begins with MoonWalk generating a 32-byte AES key (rgbClientAESKey) and a 16-byte initialization vector (IV) (rgbClientAESIV) using a custom random number generator. The AES key is then treated as an Elliptic-curve Diffie-Hellman (ECDH) private key, to generate the corresponding ECDH public key (rgbECDHPublicKey) using the curve25519_donna function.

MoonWalk then encodes the ECDH public key and AES IV by XORing them with the XOR key from MoonWalk's configuration (Config.rgbXorKey). A checksum is created by performing an MD5 hash on the concatenation of Config.rgbXorKey, ECDH public key, and AES IV, and then taking the hash's first four bytes. Finally, MoonWalk uploads this data to Google Drive at the path /data/temp/[SessionID].

The figure below shows content of an uploaded file:

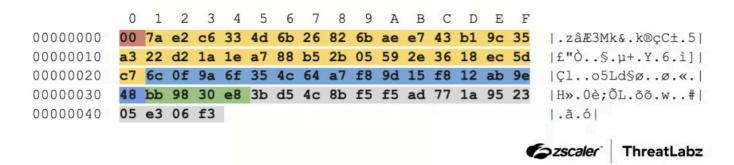


Figure 2: Contents of a MoonWalk Client Hello key exchange message.

The table below provides a description of the various fields contained within the uploaded file:

Offset	Size in bytes	Description
Ox00	1	Unknown field, possibly a

Offset	Size in bytes	Description
		message type enum.
		rgbECDHPublicKey XORed with Config.rgbXorKe y
OxO1	32	rgbECDHPublicKey before the XOR operation is: d2 04 7b 20 60 c4 25 e2 da 01 f8 1d 5b 89 d1 8c ae bd 07 d3 da bc 82 41 e1 b1 14 2c 57 b5 5a 07
		rgbClientAESIV XORed with Config.rgbXorKe y
Ox21	16	rgbClientAESIV before the XOR operation is: c4 e9 27 7c 18 e3 67 c7 49 32 0a a6 f8 be 7a 67
Ox31	4	First four bytes of MD5 (Config.rgbXorKey rgbECDHPublicKey rgbClientAESIV)
Ox35	15	Unknown bytes.

Table 2: Description of MoonWalk Client Hello key exchange message.

Cryptographic Handshake (Server Hello)

MoonWalk then downloads the file located at /data/[SessionID]/s1/1. This file contains the server's response to MoonWalk's handshake above.

This file, and all subsequent uploaded or downloaded files, are encoded using a custom scheme. Here, we walk through the decoding process of this scheme, using the Server Hello file as an example.

The figure below is an example of the overall layout of the encoded Server Hello file:

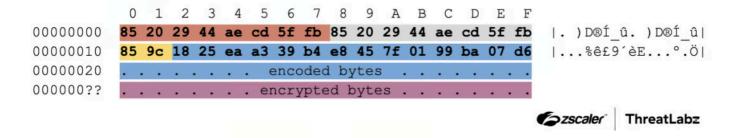


Figure 3: MoonWalk Server Hello message format.

A description of these fields is shown in the following table.

Offset	Size in bytes	Description
		rgbFileXorKey
0x00	8	The XOR key used to decode rgbEncodedByt es.
OxO8	8	Unknown, potentially a message type field.
Ox10	2	dwNumEncodedBytes The number of encoded bytes that follows. This field is encoded with rgbFileXorKey. Decoding this field shows that there are Oxbc encoded bytes within this file. 85 20 XOR 85 9c = 00 bc
Ox12	dwNumEncodedBytes	rgbEncodedBytes

Offset	Size in bytes	Description
		The encoded bytes within this file. These bytes appear to contain message metadata, such as Google Drive file IDs, message headers, or junk bytes. To decode these
		bytes, rgbFileXorKey is used, starting with the third byte of the XOR key.
		18 25 ea a3 39 b4 e8 45 7f 01 99 ba 07 d6 XOR 29 44 ae cd 5f fb 85 20 29 44 ae cd 5f fb = 31 61 44 6e 66 4f 6d 65 56 45 37 77 58 2d
Ox??	variable	rgbEncryptedBytes The rest of the file is not encoded, because this section is typically encrypted with AES-CFB, using the AES keys exchanged during the cryptographic handshake phase.

Table 3: Description of the MoonWalk Server Hello message format.

The figure below shows the Server Hello file after decoding:


```
2 3 4 5
                                                                         6 7 8 9 A B C D E
00000000
                        85 20 29 44 ae cd 5f fb 00 00 00 00 00 00 00 00
                                                                                                                                                       1......
00000010
                         00 bc 31 61 44 6e 66 4f 6d 65 56 45 37 77 58 2d
                                                                                                                                                       |.¼1aDnfOmeVE7wX-|
00000020
                        42 63 77 7a 2d 6e 70 68 47 34 47 58 79 2d 69 64
                                                                                                                                                       |Bcwz-nphG4GXy-id|
                                                                                                                                                       |Whi.~«.'ÿ.ªÏSÒgë|
                         57 68 69 00 7e ab 88 27 ff 95 aa cf 53 d2 67 eb
00000030
                         eb 91 1e 33 c3 56 a6 4d 66 17 b8 23 a7 b0 d4 54
                                                                                                                                                       |ë..3ÃV¦Mf.,#§°ÔT|
00000040
00000050
                         cf 2e 9f 00 61 36 b0 61 f5 ca 62 1b ba f0 d4 ab
                                                                                                                                                       |Ï...a6°aõÊb.°ðÔ«|
                        87 Of 82 15 b8 1d 5f 31 ac 21 25 a5 2f 77 fa b4
00000060
                                                                                                                                                       |...., 1¬!%¥/wú′|
                         d2 c9 86 20 60 9f 32 bc 92 c4 a3 19 4f 17 5d 6f
                                                                                                                                                       |ÒÉ. `.2¼.Ä£.O.]o|
00000070
                        77 c3 66 37 8c a0 16 9f 8c e6 7c 51 bb 1e 9d 1f
                                                                                                                                                       |wÃf7. ...æ|Q»...|
0800000
                         05 00 9c b1 67 5a 0a ef ff 60 3e 61 24 d1 a0 9d
00000090
                                                                                                                                                       |...±gZ.ïÿ`>a$Ñ .|
                         c9 32 02 29 b7 8c f8 d3 67 7a a2 69 af a1 2d c8
                                                                                                                                                       |É2.) ·.øÓqz¢i ;-È|
000000a0
                         af eb 88 eb 2a d1 db 5d 3e 60 53 7b 83 5e 03 18
0d0000b0
                                                                                                                                                       | ë.ë*ÑÛ]>`S{.^..|
000000c0
                        91 fc e7 6f 3b 74 ee 54 f9 b2 c3 a6 3a b6 df 64
                                                                                                                                                       |.üço;tîTù²Ã|:¶ßd|
                        d9 00 29 b9 97 ba 84 7d 01 e6 cd c2 d1 d0 8e e5
                                                                                                                                                       | \u00fc. \u00e4. \u00
00000d0
                         5a 48 2b 75 1e 31 2f d3 12 38 bd 30 3a fa ad 9b
                                                                                                                                                       |ZH+u.1/Ó.8½0:ú..|
000000e0
                         6f 1e 08 27 98 17 5e 67 fb c1 33 44 d1 82 05 f5
                                                                                                                                                       |o..'..^gûÁ3DÑ..õ|
000000f0
00000100
                         65 bc 83 3b a5 6f ab 58 3b b7 49 7b ed cf 0a
                                                                                                                                                       |e¼.;¥o«X; ·I{íÏ.|
```


Figure 4: Example contents of a decoded MoonWalk Server Hello message.

The decoded Server Hello fields are described in the table below.

Offset	Size in bytes	Description
Oliset	Size III bytes	Description
		rgbFileXorKey
0x00	8	The XOR key, used to
		decode rgbEncodedByt
		es.
OxO8	8	Unknown
0x10	2	dwNumEncodedBytes
		szHeartBeatFileID
Ox12	variable	The Google Drive ID of
		the heartbeat
		file, temp.txt.
Ox34	variable	Unknown
Oxce	48	Encoded buffer, XOR
		encoded
\cup		

Offset	Size in bytes	Description
		with Config.rgbXorKe
		After decoding, the following fields are revealed:
		rgbServerECDHBasePo int - Used as the ECDH base point, which MoonWalk later uses to generate the shared AES key used by the server.
		77 82 64 13 04 16 94 da 35 d2 1e b8 27 d7 35 ff 02 8a 47 85 56 41 29 5b cb 3b 28 22 f2 69 3d 3a
		The remaining bytes after decoding contain a checksum, and additional unknown bytes.
Oxfe	4	Checksum generated by MD5 (rgbServerECDHBaseP oint Config.rgbXorKey.)
Ox1O2	variable	Unknown

Table 4: Description of fields within a MoonWalk Server Hello message.

With this information, MoonWalk generates a public key (rgbECDHServerPublicKey) using the curve25519_donna function. Then, rgbECDHServerPublicKey is XORed against Config.rgbXorKey to generate the server AES key.

```
// Public Key (out):
// 000001e6`246391ec b5 8f a7 ee 0b da d6 79-79 60 85 79 bf 32 ad 91
// 000001e6`246391fc 24 a3 39 66 4c 4b 49 97-6c 71 92 d3 55 45 4b 3e
a1->rgbClientAESKey,
// Private Key:
// 000001e6`2463920c 54 be fd a7 f4 0f 62 15-fb 22 9a 48 04 e3 6e 90
// 000001e6`2463921c 85 4b b9 c7 f2 5f de 57-65 59 9c 90 18 04 d9 d1
a1->rgbECDHServerBasepoint);
// Basepoint:
// 000001e6`24639251 77 82 64 13 04 16 94 da-35 d2 1e b8 27 d7 35 ff
// 000001e6`24639261 02 8a 47 85 56 41 29 5b-cb 3b 28 22 f2 69 3d 3a

rgbServerAESKey = rgbECDHServerPublicKey ^ Config.rgbXorKey
// 1d 69 1a fd 26 75 d5 19-c8 cf 9a 27 55 27 49 be
// a8 cc 24 ab 31 7f 7e fd-88 99 a8 c9 1a 1c 4c fe
```

In this manner, MoonWalk exchanges AES keys with its C2, and thus concludes the cryptographic handshake.

Information gathering

During this phase, MoonWalk collects information about the environment and uploads it to Google Drive. The gathered data includes details such as the processor architecture, Windows product type, version and build numbers, computer and usernames, as well as IP addresses. This information is then compressed using LZ4. A checksum is then added, using the 32-bit MurmurHash2 algorithm, with a customized mixing constant where \mathbf{r} is set to 15, and with the initial seed set to 0x12345678. These bytes are then encrypted using AES-CFB with the server's AES key, and packaged using the custom scheme detailed above, before being uploaded to Google Drive.

More details of the environment information collected are provided in the Appendix of this blog.

Heartbeat

MoonWalk also regularly sends heartbeats to the server. It uploads the current Unix timestamp in plain text to a temp.txt file on Google Drive, using the file ID szHeartBeatFileID retrieved as part of the cryptographic handshake.

Backdoor capabilities

In our analysis of MoonWalk, we did not observe the C2 sending any other commands or plugins. If a command handler plugin (dwPluginTypePart2 == 1 described in the Appendix) is not found, MoonWalk defaults to a built-in list of handlers. These handlers contain functionality, which include the following:

- Collect environment information (similar to the information gathering step above)
- Steal token (token impersonation)
- Create token (log on to the Windows machine using given credentials)
- Download new configuration
- Execute command line commands

Note: This list is not complete as further analysis is required.

Conclusion

MoonWalk is a sophisticated and modular backdoor that incorporates evasion techniques seen in DodgeBox. It also introduces innovative techniques, including the utilization of Windows Fibers, which are not commonly observed. These evasion techniques combined with the usage of a custom complex C2 communication protocol abusing Google Drive to blend in with legitimate traffic highlights the highly skilled nature of the APT41 threat adversary.

We continue to closely monitor the latest tactics, techniques, and procedures (TTPs) of this threat actor to protect our customers and share research with the security community.

Zscaler Coverage

Zscaler's multilayered cloud security platform detects indicators related to DodgeBox at various levels with the following threat name.

• Win64.Backdoor.Moonwalk

Indicators Of Compromise (IOCs)

MD5 Hash	Description
5b1e8455291d99a1724327b9a7fc2616	MoonWalk backdoor (related to DodgeBox loader with MD5: d72f2O2c1d684c9a19fO7529Oa6O92Of).
b69984cbf52b418673bdO8279ca845d6	Utility plugin
5217b8552321556ea434474377cfcdO2	C2 plugin
bfd6286bb39aOe24a2af28c63bd8e194	MoonWalk backdoor (related to DodgeBox loader with MD5: 393O65ef9754e3f39b24b2d1O51eab61).
75bfb7d5199bfOc4e62525O99b33e14f	C2 plugin

MD5 Hash	Description
f68ef9e4O462c976Obf9c829edd9f4a9	Utility plugin

Entity	Description
GDrive OAuth Client ID #1	XXXXXXXX5917- dudeis843uv3v1lrm1n12jbq9l9a86lq.apps. googleusercontent.com
GDrive Client Secret #1	XXXXXXXX8OPdXrMnPlblvODh4bnYT VtdKJY
GDrive Refresh Token #1	XXXXXXXEqC4HrQVCgYIARAAGAkSN wF- L9IrS7n6zr6G_vE7_huP5uJuMT6aMtOnu 3WgmTMRiEc5QJaQgVX4gbUV7ItUbF XVmd5KOZM
GDrive OAuth Client ID #2	XXXXXXXX3108- Opm3bsjcOmto2e1k4kp2u8817lgk3e3v.a pps.googleusercontent.com
GDrive Client Secret #2	XXXXXXXBiuo8VPZUH1dBHkv86mC1x FU_Z3
GDrive Refresh Token #2	XXXXXXXXIYDPmH9cCgYIARAAGAkSN wF- L9IrcM7YiuxWrNuyIfKINyNc_pEVytGNN K750ZyyIm32qH6Wh3dGIBTvdPJ2v92xA ohHwWw
Threat actor's email address (linked to GDrive)	jsonmakesam@gmail.com

Heartbeat related network requests	Description
Verb: PATCH	MoonWalk updating temp.txt with Unix timestamp.

Heartbeat related network requests	Description
URL: https://www.googleapis.com/uplo ad/drive/v3/files/[redacted_id]	
<pre>URL Params: uploadType=media&fields=id, name ,size, mimeType, modifiedTime</pre>	
User-Agent: curl/7.54.0	
Verb: GET	
URL: https://www.googleapis.com/driv e/v3/files	
URL Params: fields=files(id,name,size,mimeT ype,modifiedTime)&q= [redacted_id]%20in%20parents%20 and%20trashed%20%3D%20false%20& pageSize=300	MoonWalk querying for new commands.
User-Agent: curl/7.54.0	

MITRE ATT&CK Framework

Tactic	ID	Technique	Description
Defense Evasion	T1O27	Obfuscated Files or Information	MoonWalk uses AES-CFB to encrypt strings, configurations, and bundled payloads.

Tactic	ID	Technique	Description
Defense Evasion	T1027.007	Obfuscated Files or Information: Dynamic API Resolution	MoonWalk uses salted FNV1a hashes to dynamically resolve APIs.
Defense Evasion	T162O	Reflective Code Loading	MoonWalk reflectively loads plugin DLLs, utilizing DLL hollowing.
Defense Evasion	T11O6	Native API	MoonWalk uses Windows Native APIs like NtCreateFi le, LdrLoadDll , and NtAllocate VirtualMemory, as opposed to their Win32 counterparts.
Defense Evasion	T1562.OO1	Impair Defenses: Disable or Modify Tools	MoonWalk utilizes stack spoofing when calling APIs to monitor for security software. MoonWalk performs a scan within its own address space to detect any alterations, such as hooks or debugger breakpoints. If it identifies any signs of modification,

Tactic	ID	Technique	Description
			DodgeBox takes action to restore the original code from disk, effectively undoing any unauthorized changes made to its code.
Command and Control	T1102.002	Web Service: Bidirectional Communication	MoonWalk has a C2 plugin that utilizes an attacker— controlled Google Drive account to implement a C2 communication channel.
Command and Control	T1573	Encrypted Channel	MoonWalk leverages a custom network protocol to exchange encrypted C2 messages.
Reconnaissance	T1592	Gather Victim Host Information	MoonWalk collects information about the hardware and software configuration of the victim's host.
Reconnaissance	T159O	Gather Victim Network Information	MoonWalk collects the IP address of the victim's host.

Appendix

.lrsrc section

An example of the .lrsrc section from MoonWalk is shown in the figure below.

Figure 5: An example of the .lrsrc section from MoonWalk.

The table below provides a description of the various fields.

Offset	Size in bytes	Description
OxOO	4	dwOffsetToEncrypted Config
OXOO	4	Offset from the start of .lrsrc section
OxO4	4	dwSizeOfEncryptedCo nfig
OxO8	4	dwNumEmbeddedPlugin s
		rgsEmbeddedPlugin[0].dwPluginOffset
OxOc	4	Offset to embedded plugin, containing a plugin's metadata, followed by the plugin.
0x10	4	rgsEmbeddedPlugin[0].dwPluginSize
OXIO	4	Size of the plugin including its metadata.

Offset	Size in bytes	Description
Ox14	4	rgsEmbeddedPlugin[1].dwPluginOffset
Ox18	4	rgsEmbeddedPlugin[1].dwPluginSize

Plugin metadata

An example of a MoonWalk C2 plugin's metadata is shown in the figure below.

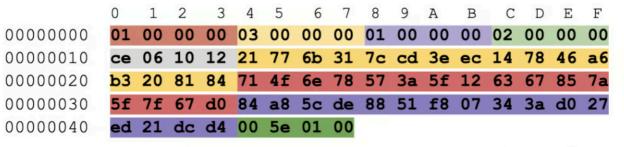


Figure 6: An example of a MoonWalk C2 plugin's metadata.

The table below provides a description of the various fields.

Offset	Size in bytes	Description
		dwPluginTypePart1
OxOO	4	A combination of dwPluginTypePart1 and dwPluginTypePart 2 determine a plugin's functionality
OxO4	4	dwPluginTypePart2 A combination of dwPluginTypePart1 and dwPluginTypePart 2 determine a plugin's functionality

Offset	Size in bytes	Description
OxO8	4	Flag to load plugin only if OS and processor information have been successfully collected by MoonWalk.
OxOc	4	Dictates how MoonWalk should retrieve a plugin's exports.
Ox10	4	Unknown
Ox14	16	MD5 of plugin metadata and plugin data.
Ox24	16	Hashed with MD5 to produce the AES key for decrypting the plugin.
Ox34	16	AES IV
Ox44	4	Size of plugin data that follows.

Decrypted configuration

MoonWalk's configuration is complex, containing arrays and nested structures of various types, as shown in the figure below. This analysis will focus only on the relevant fields, with non-essential bytes omitted from the analysis. These omitted bytes will either have unknown functionality or contain metadata for parsing the configuration.

An example of MoonWalk's decrypted configuration is shown in the figure below.

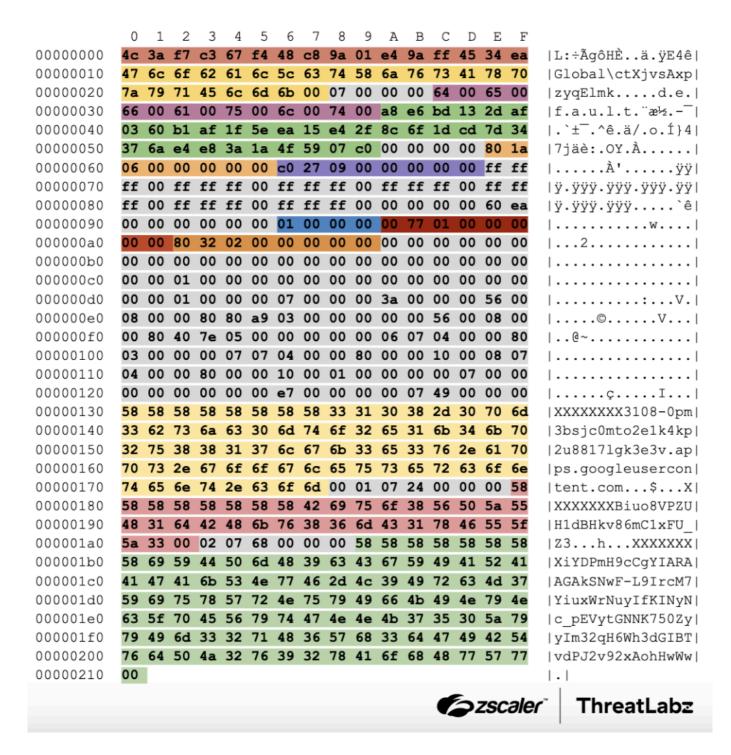


Figure 7: MoonWalk's configuration which contains arrays and nested structures of various types.

The table below provides a description of the various fields.

Offset	Size in bytes	Description
0x00	16	rgbIDBytes
		The MD5 hash of this value is also used to generate the path to

Offset	Size in bytes	Description
		override a configuration file on disk.
Ox10	24	The name of the mutex that MoonWalk uses to ensure only one instance of the backdoor is running.
Ox2c	variable	Postulated to be the name of the configuration. Since this is the configuration extracted from the binary, it is the "default". During our analysis, we did not receive additional configurations.
Ox3a	32	This is the XOR key used to encrypt C2 communications. In this sample, the value is: a8e6bd132daf0360b1a f1f5eea15e42f8c6f1d cd7d34376ae4e83a1a4 f5907c0.
Ox5e	8	Appears to be used as a heartbeat related interval lower bound.
Ox66	8	Appears to be used as a heartbeat related interval upper bound.

Offset	Size in bytes	Description
Ox96	4	fEnableHeartBeat
Ox9a	8	Appears to be used as another heartbeat related interval lower bound.
Oxa2	8	Appears to be used as another heartbeat related interval upper bound.
		szClientID
OxO13O	variable	OAuth client ID used to authenticate with Google Drive.
		szClientSecret
Ox17f	variable	OAuth client secret used to authenticate with Google Drive.
		szRefreshToken
Ox1a9	variable	OAuth refresh token used to authenticate with Google Drive.

Gathered environment information

This is the list of environment information gathered by MoonWalk and uploaded to GoogleDrive as part of its initialization process.

- Victim hash (FNV1a hash of the concatenation of the computer name Config.rgbIDBytes and the machine's GUID).
- Windows major and minor version numbers
- Windows build number
- Computer name
- User name
- Executable path (full path to the current process's executable file).
- Impersonation status
 - PU start time

- IPv4 addresses
- IPv6 addresses
- Config.rgbIDBytes
- Config.wszConfigName
- Various heartbeat related interval fields from MoonWalk's configuration.

Was this post useful?

Explore more Zscaler blogs

DodgeBox: A deep dive into the updated arsenal of APT41 | Part 1

OA16C2OData Bread OA16C2OData Bread O2E6F616368657320 O1Cyber Attack696E O6564207368 106E O6564207368 106E

Kimsuky deploys
TRANSLATEXT to target
South Korean academia

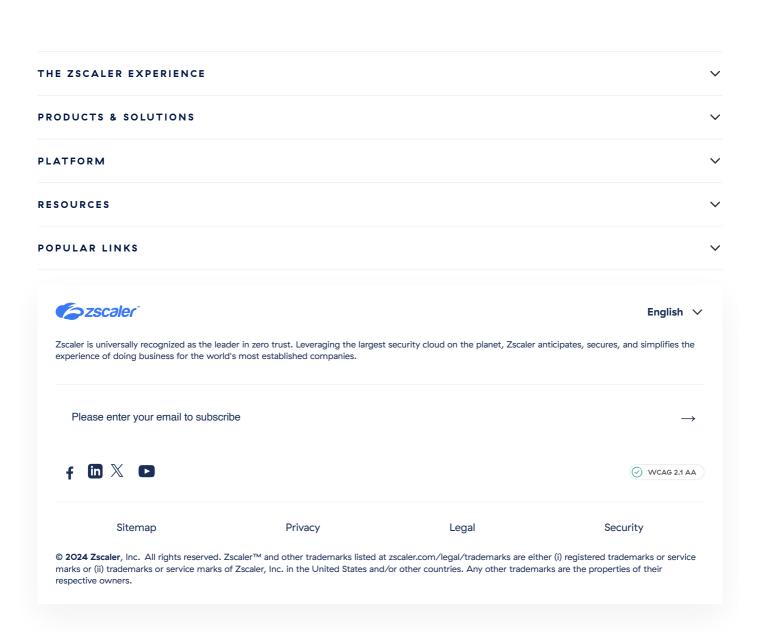
The Re

READ POST

 \rightarrow

READ POST

 (\rightarrow)


READ POS

Get the latest Zscaler blog updates in your inbox

Ema	il A	ddr	ess

Subscribe

By submitting the form, you are agreeing to our privacy policy.

