
Zscaler Blog

Get the latest Zscaler blog updates in your inbox
Subscribe

Introduction

THREATLABZ RESEARCH

Copy URL

Security Research

MoonWalk: A deep dive into the updated
arsenal of APT41 | Part 2

YIN HONG CHANG,

SUDEEP SINGH
JULY 11, 2024 - 18 MIN READ

https://www.zscaler.com/
https://www.zscaler.com/blogs?topic=threatlabz-research
mailto:?subject=MoonWalk%3A%20A%20deep%20dive%20into%20the%20updated%20arsenal%20of%20APT41%20%7C%20Part%202&body=https://tinyurl.com/2bp4q3s3
https://www.facebook.com/sharer/sharer.php?u=https://tinyurl.com/2bp4q3s3
https://twitter.com/intent/tweet?text=https://tinyurl.com/2bp4q3s3%20%E2%80%94%20MoonWalk%3A%20A%20deep%20dive%20into%20the%20updated%20arsenal%20of%20APT41%20%7C%20Part%202%22
https://www.linkedin.com/sharing/share-offsite/?url=https://tinyurl.com/2bp4q3s3
https://www.zscaler.com/blogs/feeds/security-research
https://www.zscaler.com/blogs?type=security-research
https://www.zscaler.com/author/yinhongchang
https://www.zscaler.com/author/sudeepsingh

This is Part 2 of our two-part technical deep dive into APT41’s new tooling, DodgeBox and
MoonWalk. For details of DodgeBox, go to Part 1.

In Part 2 of this blog series, we examine the MoonWalk backdoor, a new addition to APT41's

toolkit. Continuing from our previous analysis of the DodgeBox loader in Part 1, we have

discovered that MoonWalk shares several evasion techniques. It makes use of Google Drive

for command-and-control (C2) communication and abuses Windows Fibers, a lesser-

known Windows feature, to evade anti-virus (AV) and Endpoint Detection and Response

(EDR) solutions.

Key Takeaways

APT41, a China-based nation-state threat actor known for campaigns in Southeast

Asia, has been observed using a new backdoor called MoonWalk.

MoonWalk shares a common development toolkit with DodgeBox, reusing code that

implements evasive techniques such as DLL hollowing, import resolution, DLL

unhooking, and call stack spoofing. Additionally, MoonWalk employs further evasion

tactics, including the use of Google Drive as its C2 channel to blend in with legitimate

network traffic and the utilization of Windows Fibers to evade AV/EDR security

solutions.

MoonWalk's modular design allows attackers to easily update its capabilities, modify its

behavior, and customize functionality for different scenarios.

Technical Analysis

Attack chain

The focus of this blog post is the second half of the attack chain that begins with the in-

memory execution of MoonWalk backdoor. Once the MoonWalk backdoor is successfully

loaded by DodgeBox, the malware decrypts and reflectively loads two embedded plugins (C2

and Utility). The C2 plugin uses a custom encrypted C2 protocol to communicate with the

attacker-controlled Google Drive account.

A figure depicting the attack chain used to deploy MoonWalk with the DodgeBox loader is

shown below.

https://www.zscaler.com/blogs/security-research/dodgebox-deep-dive-updated-arsenal-apt41-part-1
https://www.zscaler.com/blogs/security-research/dodgebox-deep-dive-updated-arsenal-apt41-part-1

Figure 1: Attack chain used to deploy the DodgeBox loader and MoonWalk backdoor.

MoonWalk analysis

MoonWalk is a malware backdoor written in C that shares many code similarities with

DodgeBox, suggesting a common development toolkit. It incorporates many evasion related

functions from DodgeBox, including those related to the following:

DLL hollowing

Import resolution

DLL unhooking

Call stack spoofing

Additionally, MoonWalk utilizes the same DLL blocklist as DodgeBox.

ThreatLabz analysis reveals MoonWalk's modular design, allowing it to load different plugin

components as needed. The sample examined by ThreatLabz contains two embedded

plugins, a C2 plugin for C2 communication, and a utility plugin that provides functionality

related to compression and public-key cryptography. This modular architecture makes

MoonWalk highly adaptable, enabling attackers to customize its functionality for different

scenarios.

In the section below, we will highlight several notable capabilities of MoonWalk.

Unloading the DodgeBox loader

When MoonWalk first initializes, it resolves its imports using the same algorithms as

DodgeBox. Then, depending on the DodgeBox configuration

parameter Config.fShouldUnloadStealthVector , MoonWalk unloads the DodgeBox

DLL from memory and unlinks it from the Process Environment Block (PEB). This reduces

MoonWalk’s in-memory footprint, and obfuscates its origins, hindering memory forensic

analysis.

Using Windows Fibers

Next, MoonWalk initializes global structures used to manage Windows Fibers. Windows

Fibers are a lightweight threading mechanism, available in the Windows operating system

since Windows NT SP5. Unlike traditional threads, which are scheduled by the operating

system, fibers are cooperatively scheduled by the application itself. This allows developers to

tune an application’s performance for a specific workload. However, due to the complexity of

utilizing Windows Fibers, and performance improvements of computer hardware, Windows

Fibers were not widely adopted, and remains an obscure feature.

However, with the increased focus on cybersecurity in recent years, there has been an uptick

in interest in Windows Fibers from the research and red-teaming community. Multiple

research papers (1, 2, 3) and open-sourced proof of concepts (POCs) have been published,

abusing Windows Fibers to evade AVs/EDR solutions.

APT41 may have been following these developments, as they have incorporated Windows

Fibers into the MoonWalk backdoor. At a high level, MoonWalk maintains a global array of

fibers. When a function needs to be executed as a fiber, a fiber is created using

the CreateFiber API. This fiber is then packaged together with the address of the

function and its arguments and other metadata, and inserted into the global array. The main

fiber then schedules these fibers for execution. This use of Windows Fibers helps

MoonWalk evade AVs and EDRs which do not support the scanning of Windows Fibers, and

also makes analysis challenging by breaking up the control flow.

Configuration

MoonWalk decrypts its configuration, which is hard-coded within its .lrsrc section. Like

DodgeBox, MoonWalk uses MD5 for configuration validation and AES Cipher Feedback

(AES-CFB) for decryption.

However, MoonWalk's configuration is more complex, featuring nested structures and

arrays. This configuration contains various execution parameters including the following:

Mutex names

A fiber configuration

https://www.ired.team/offensive-security/code-injection-process-injection/executing-shellcode-with-createfiber
https://github.com/JanielDary/ImmoralFiber
https://www.hopinfosec.com/evasion/2022/05/11/evasion-pt3/
https://github.com/Kudaes/Fiber/tree/main

Heartbeat intervals

Encryption keys

C2-related data

In the sample we analyzed, MoonWalk's configuration (referred to as Config) included

OAuth secrets used to authenticate with the attacker-controlled Google Drive account, and

other notable fields as shown below:

Config.szClientID:
XXXXXXXX3108-

0pm3bsjc0mto2e1k4kp2u8817lgk3e3v.apps.googleusercontent.com

Config.szClientSecret:
XXXXXXXXBiuo8VPZUH1dBHkv86mC1xFU_Z3

Config.szRefreshToken: XXXXXXXXiYDPmH9cCgYIARAAGAkSNwF-

L9IrcM7YiuxWrNuyIfKINyNc_pEVytGNNK750ZyyIm32qH6Wh3dGIBTvdPJ2v92xAohHwW

w

Config.rgbXorKey:
a8e6bd132daf0360b1af1f5eea15e42f8c6f1dcd7d34376ae4e83a1a4f5907c0

Config.szMutexName:
Global\ctXjvsAxpzyqElmk

Config.szName:
default

After loading the default configuration, MoonWalk searches for a new configuration file at

C:\ProgramData\[MD5(Config.rgbIDBytes)] . If found, the malware decrypts and

loads this file. A sample of MoonWalk's decrypted configuration is available in the Appendix

of this blog for reference.

Unpacking and loading plugins

MoonWalk then extracts embedded plugins from the .lrsrc section. In the MoonWalk

sample we analyzed, there were two plugins embedded within this section: one plugin for

C2, and another plugin which provides utility functions such as public key cryptography and

compression.

Each plugin in the .lrsrc section is prefixed with 72 bytes of metadata, which includes

AES-CFB secrets, an MD5 checksum, and plugin type information. The plugin type

information fields provide information about the features of a plugin. These fields help

identify whether a plugin serves as a command handler, C2, or utility. More details about the

structure of plugin metadata can be found in the Appendix section.

MoonWalk organizes these plugins by registering them in a global linked list. MoonWalk

then goes through this list to load the C2 plugin and its dependencies, such as the utility

plugin, using DLL hollowing. This process is similar to what we previously described in Part 1

for DodgeBox. Like DodgeBox, this MoonWalk sample stores a copy of the host DLL

in C:\Windows\Microsoft.NET\assembly\GAC_MSIL\System.Data.Trace .

Network Communication

After loading the C2 plugin, MoonWalk is prepared to establish communication with the C2

server. MoonWalk utilizes Google Drive for C2 communications. This helps MoonWalk

evade detection, as traffic to and from reputable cloud services are less likely to raise

suspicion, especially if a target is already using this service. Strangely, MoonWalk uses the

string curl/7.54.0 as its User-Agent when making HTTP requests, even though it does not

utilize libcurl in its C2 plugin, and uses the WinHTTP family of APIs instead.

At a high level, MoonWalk communicates over Google Drive in the following manner:

Step Description

1 - Initialization

MoonWalk obtains an access token from

the Google Authorization Server, by

utilizing the OAuth secrets in its

configuration

(Config.szClientID , Config.szCli

entSecret

and Config.szRefreshToken).

MoonWalk generates 16 random bytes,

and hex-encodes them, resulting in a

string such

as: f137da1a9019849fbc2aac49a4b6

f2c3. We will reference this string

as SessionID .

MoonWalk uses the Google Drive APIs

to retrieve the ID for the /data

directory.

MoonWalk retrieves the ID for

the /data/temp directory.

2 - Cryptographic Handshake (Client

Hello and Server Hello)

MoonWalk searches /data/temp for a

file named after the

generated SessionID (i.e. f137da1a90

19849fbc2aac49a4b6f2c3). If the file

is not found, MoonWalk generates and

uploads a

https://www.zscaler.com/blogs/security-research/dodgebox-deep-dive-updated-arsenal-apt41-part-1

Step Description

file /data/temp/[SessionID] to

initiate a cryptographic handshake and

exchange AES keys with the server.

MoonWalk then looks for

the /data/[SessionID] directory, and

its

subdirectory /data/[SessionID]/s1 .

The directory titled s[number] seems

to serve as the designated location where

MoonWalk will retrieve and download

forthcoming C2 instructions.

Lastly, MoonWalk searches for

the /data/[SessionID]/s1/1 file. As

it becomes available, MoonWalk

downloads and processes it, and

completes the cryptographic handshake.

3 - Information Gathering

MoonWalk then checks for the existence

of the

directory /data/[SessionID]/c1 , and

creates it if it does not exist. Then,

MoonWalk gathers information such as

the computer name, user name, and OS

version, and uploads this to the

file /data/[SessionID]/c1/1 .

4 - Heartbeat MoonWalk then proceeds to send

heartbeats regularly to the C2 server by

updating a file named “temp.txt ” with

the current Unix timestamp as a string.

MoonWalk also regularly polls

the /data/[SessionID]/s1 directory

for new files. If a new file is found,

MoonWalk processes it and uploads its

response in

the /data/[SessionID]/c1 directory.

During our analysis of MoonWalk,

only ping commands were observed,

where MoonWalk responded by

uploading encoded files to

Step Description

the /data/[SessionID]/c1 directory,

containing the current Unix timestamp.

Table 1: High-level view of the MoonWalk C2 communication protocol using Google Drive.

Cryptographic Handshake (Client Hello)

During the cryptographic handshake phase, MoonWalk exchanges AES keys with the server

using a custom protocol. Because of this, it becomes very difficult or impossible to decode

encrypted C2 messages without access to these AES keys, which exist only in MoonWalk’s

process memory.

The process begins with MoonWalk generating a 32-byte AES key (rgbClientAESKey)

and a 16-byte initialization vector (IV) (rgbClientAESIV) using a custom random number

generator. The AES key is then treated as an Elliptic-curve Diffie-Hellman (ECDH) private key,

to generate the corresponding ECDH public key (rgbECDHPublicKey) using

the curve25519_donna function.

MoonWalk then encodes the ECDH public key and AES IV by XORing them with the XOR

key from MoonWalk's configuration (Config.rgbXorKey). A checksum is created by

performing an MD5 hash on the concatenation of Config.rgbXorKey , ECDH public key,

and AES IV, and then taking the hash’s first four bytes. Finally, MoonWalk uploads this data

to Google Drive at the path /data/temp/[SessionID] .

The figure below shows content of an uploaded file:

Figure 2: Contents of a MoonWalk Client Hello key exchange message.

 The table below provides a description of the various fields contained within the uploaded

file:

Offset Size in bytes Description

0x00 1 Unknown field, possibly a

Offset Size in bytes Description

message type enum.

0x01 32

rgbECDHPublicKey

XORed

with Config.rgbXorKe

y

rgbECDHPublicKey before

the XOR operation is:

d2 04 7b 20 60 c4

25 e2 da 01 f8 1d

5b 89 d1 8c

ae bd 07 d3 da bc

82 41 e1 b1 14 2c

57 b5 5a 07

0x21 16

rgbClientAESIV

XORed

with Config.rgbXorKe

y

rgbClientAESIV

before the XOR operation

is:

c4 e9 27 7c 18 e3

67 c7 49 32 0a a6

f8 be 7a 67

0x31 4

First four bytes of MD5

(Config.rgbXorKey |

rgbECDHPublicKey |

rgbClientAESIV)

0x35 15 Unknown bytes.

Table 2: Description of MoonWalk Client Hello key exchange message.

Cryptographic Handshake (Server Hello)

MoonWalk then downloads the file located at /data/[SessionID]/s1/1 . This file

contains the server’s response to MoonWalk’s handshake above.

This file, and all subsequent uploaded or downloaded files, are encoded using a custom

scheme. Here, we walk through the decoding process of this scheme, using the Server Hello

file as an example.

The figure below is an example of the overall layout of the encoded Server Hello file:

Figure 3: MoonWalk Server Hello message format.

A description of these fields is shown in the following table.

Offset Size in bytes Description

0x00 8

rgbFileXorKey

The XOR key used to

decode rgbEncodedByt

es .

0x08 8
Unknown, potentially a

message type field.

0x10 2

dwNumEncodedBytes

The number of encoded

bytes that follows. This

field is encoded

with rgbFileXorKey .

Decoding this field shows

that there are 0xbc

encoded bytes within this

file.

85 20 XOR 85
9c = 00 bc

0x12 dwNumEncodedBytes rgbEncodedBytes

Offset Size in bytes Description

The encoded bytes within

this file. These bytes

appear to contain

message metadata, such

as Google Drive file IDs,

message headers, or junk

bytes.

To decode these

bytes, rgbFileXorKey

is used, starting with the

third byte of the XOR key.

18 25 ea a3 39 b4
e8 45 7f 01 99 ba
07 d6
XOR

29 44 ae cd 5f fb
85 20 29 44 ae cd
5f fb
=
31 61 44 6e 66 4f
6d 65 56 45 37 77
58 2d

0x?? variable

rgbEncryptedBytes

The rest of the file is not

encoded, because this

section is typically

encrypted with AES-CFB,

using the AES keys

exchanged during the

cryptographic handshake

phase.

Table 3: Description of the MoonWalk Server Hello message format.

The figure below shows the Server Hello file after decoding:

Figure 4: Example contents of a decoded MoonWalk Server Hello message.

The decoded Server Hello fields are described in the table below.

Offset Size in bytes Description

0x00 8

rgbFileXorKey

The XOR key, used to

decode rgbEncodedByt

es .

0x08 8 Unknown

0x10 2 dwNumEncodedBytes

0x12 variable

szHeartBeatFileID

The Google Drive ID of

the heartbeat

file, temp.txt .

0x34 variable Unknown

0xce 48 Encoded buffer, XOR

encoded

Offset Size in bytes Description

with Config.rgbXorKe

y .

After decoding, the

following fields are

revealed:

rgbServerECDHBasePo

int - Used as the ECDH

base point, which

MoonWalk later uses to

generate the shared AES

key used by the server.

77 82 64 13 04 16

94 da 35 d2 1e b8

27 d7 35 ff

02 8a 47 85 56 41

29 5b cb 3b 28 22

f2 69 3d 3a

The remaining bytes after

decoding contain a

checksum, and additional

unknown bytes.

0xfe 4

Checksum generated

by MD5

(rgbServerECDHBaseP

oint |

Config.rgbXorKey.)

0x102 variable Unknown

Table 4: Description of fields within a MoonWalk Server Hello message.

With this information, MoonWalk generates a public key (rgbECDHServerPublicKey)

using the curve25519_donna function. Then, rgbECDHServerPublicKey is XORed

against Config.rgbXorKey to generate the server AES key.

Curve25519_Donna(
 a1->rgbECDHServerPublicKey,

 // Public Key (out):
 // 000001e6`246391ec b5 8f a7 ee 0b da d6 79-79 60 85 79 bf 32 ad 91
 // 000001e6`246391fc 24 a3 39 66 4c 4b 49 97-6c 71 92 d3 55 45 4b 3e
 a1->rgbClientAESKey,
 // Private Key:
 // 000001e6`2463920c 54 be fd a7 f4 0f 62 15-fb 22 9a 48 04 e3 6e 90
 // 000001e6`2463921c 85 4b b9 c7 f2 5f de 57-65 59 9c 90 18 04 d9 d1
 a1->rgbECDHServerBasepoint);
 // Basepoint:
 // 000001e6`24639251 77 82 64 13 04 16 94 da-35 d2 1e b8 27 d7 35 ff
 // 000001e6`24639261 02 8a 47 85 56 41 29 5b-cb 3b 28 22 f2 69 3d 3a

rgbServerAESKey = rgbECDHServerPublicKey ^ Config.rgbXorKey
// 1d 69 1a fd 26 75 d5 19-c8 cf 9a 27 55 27 49 be
// a8 cc 24 ab 31 7f 7e fd-88 99 a8 c9 1a 1c 4c fe

In this manner, MoonWalk exchanges AES keys with its C2, and thus concludes the

cryptographic handshake.

Information gathering

During this phase, MoonWalk collects information about the environment and uploads it to

Google Drive. The gathered data includes details such as the processor architecture,

Windows product type, version and build numbers, computer and usernames, as well as IP

addresses. This information is then compressed using LZ4. A checksum is then added, using

the 32-bit MurmurHash2 algorithm, with a customized mixing constant where r is set

to 15 , and with the initial seed set to 0x12345678 . These bytes are then encrypted using

AES-CFB with the server’s AES key, and packaged using the custom scheme detailed above,

before being uploaded to Google Drive.

More details of the environment information collected are provided in the Appendix of this

blog.

Heartbeat

MoonWalk also regularly sends heartbeats to the server. It uploads the current Unix

timestamp in plain text to a temp.txt file on Google Drive, using the file

ID szHeartBeatFileID retrieved as part of the cryptographic handshake.

Backdoor capabilities

In our analysis of MoonWalk, we did not observe the C2 sending any other commands or

plugins. If a command handler plugin (dwPluginTypePart2 == 1 described in the

Appendix) is not found, MoonWalk defaults to a built-in list of handlers. These handlers

contain functionality, which include the following:

Collect environment information (similar to the information gathering step above)

Steal token (token impersonation)

Create token (log on to the Windows machine using given credentials)

Download new configuration

Execute command line commands

Note: This list is not complete as further analysis is required.

Conclusion

MoonWalk is a sophisticated and modular backdoor that incorporates evasion techniques

seen in DodgeBox. It also introduces innovative techniques, including the utilization of

Windows Fibers, which are not commonly observed. These evasion techniques combined

with the usage of a custom complex C2 communication protocol abusing Google Drive to

blend in with legitimate traffic highlights the highly skilled nature of the APT41 threat

adversary.

We continue to closely monitor the latest tactics, techniques, and procedures (TTPs) of this

threat actor to protect our customers and share research with the security community.

Zscaler Coverage

Zscaler’s multilayered cloud security platform detects indicators related to DodgeBox at

various levels with the following threat name.

Win64.Backdoor.Moonwalk

Indicators Of Compromise (IOCs)

MD5 Hash Description

5b1e8455291d99a1724327b9a7fc2616

MoonWalk backdoor (related to

DodgeBox loader with MD5:

d72f202c1d684c9a19f075290a60920f).

b69984cbf52b418673bd08279ca845d6 Utility plugin

5217b8552321556ea434474377cfcd02 C2 plugin

bfd6286bb39a0e24a2af28c63bd8e194

MoonWalk backdoor (related to

DodgeBox loader with MD5:

393065ef9754e3f39b24b2d1051eab61).

75bfb7d5199bf0c4e62525099b33e14f C2 plugin

https://threatlibrary.zscaler.com/?keyword=Win64.Backdoor.Moonwalk

MD5 Hash Description

f68ef9e40462c9760bf9c829edd9f4a9 Utility plugin

Entity Description

GDrive OAuth Client ID #1

XXXXXXXX5917-

dudeis843uv3v1lrm1n12jbq9l9a86lq.apps.

googleusercontent.com

GDrive Client Secret #1
XXXXXXXX8OPdXrMnPIbIvODh4bnYT

VtdKJY

GDrive Refresh Token #1

XXXXXXXXEqC4HrQVCgYIARAAGAkSN

wF-

L9IrS7n6zr6G_vE7_huP5uJuMT6aMtOnu

3WgmTMRiEc5QJaQgVX4gbUV7ltUbF

XVmd5KOZM

GDrive OAuth Client ID #2

XXXXXXXX3108-

0pm3bsjc0mto2e1k4kp2u8817lgk3e3v.a

pps.googleusercontent.com

GDrive Client Secret #2
XXXXXXXXBiuo8VPZUH1dBHkv86mC1x

FU_Z3

GDrive Refresh Token #2

XXXXXXXXiYDPmH9cCgYIARAAGAkSN

wF-

L9IrcM7YiuxWrNuyIfKINyNc_pEVytGNN

K750ZyyIm32qH6Wh3dGIBTvdPJ2v92xA

ohHwWw

Threat actor’s email address (linked to

GDrive)
jsonmakesam@gmail.com

Heartbeat related network requests Description

Verb:

PATCH

MoonWalk updating temp.txt with

Unix timestamp.

Heartbeat related network requests Description

URL:

https://www.googleapis.com/uplo

ad/drive/v3/files/[redacted_id]

URL Params:

uploadType=media&fields=id,name

,size,mimeType,modifiedTime

User-Agent:

curl/7.54.0

Verb:

GET

URL:

https://www.googleapis.com/driv

e/v3/files

URL Params:

fields=files(id,name,size,mimeT

ype,modifiedTime)&q=

[redacted_id]%20in%20parents%20

and%20trashed%20%3D%20false%20&

pageSize=300

User-Agent:

curl/7.54.0

MoonWalk querying for new

commands.

MITRE ATT&CK Framework

Tactic ID Technique Description

Defense Evasion T1027
Obfuscated Files

or Information

MoonWalk uses

AES-CFB to

encrypt strings,

configurations,

and bundled

payloads.

Tactic ID Technique Description

Defense Evasion T1027.007

Obfuscated Files

or Information:

Dynamic API

Resolution

MoonWalk uses

salted FNV1a

hashes to

dynamically

resolve APIs.

Defense Evasion T1620
Reflective Code

Loading

MoonWalk

reflectively loads

plugin DLLs,

utilizing DLL

hollowing.

Defense Evasion T1106 Native API

MoonWalk uses

Windows Native

APIs

like NtCreateFi

le , LdrLoadDll

,

and NtAllocate

VirtualMemory ,

as opposed to

their Win32

counterparts.

Defense Evasion T1562.001 Impair Defenses:

Disable or Modify

Tools

MoonWalk

utilizes stack

spoofing when

calling APIs to

monitor for

security software.

MoonWalk

performs a scan

within its own

address space to

detect any

alterations, such

as hooks or

debugger

breakpoints. If it

identifies any

signs of

modification,

Tactic ID Technique Description

DodgeBox takes

action to restore

the original code

from disk,

effectively

undoing any

unauthorized

changes made to

its code.

Command and

Control
T1102.002

Web Service:

Bidirectional

Communication

MoonWalk has a

C2 plugin that

utilizes an

attacker-

controlled Google

Drive account to

implement a C2

communication

channel.

Command and

Control
T1573

Encrypted

Channel

MoonWalk

leverages a

custom network

protocol to

exchange

encrypted C2

messages.

Reconnaissance T1592
Gather Victim

Host Information

MoonWalk

collects

information about

the hardware and

software

configuration of

the victim's host.

Reconnaissance T1590

Gather Victim

Network

Information

MoonWalk

collects the IP

address of the

victim's host.

Appendix

.lrsrc section

An example of the .lrsrc section from MoonWalk is shown in the figure below.

Figure 5: An example of the .lrsrc section from MoonWalk.

The table below provides a description of the various fields.

Offset Size in bytes Description

0x00 4

dwOffsetToEncrypted

Config

Offset from the start

of .lrsrc section

0x04 4
dwSizeOfEncryptedCo

nfig

0x08 4
dwNumEmbeddedPlugin

s

0x0c 4

rgsEmbeddedPlugin[0

].dwPluginOffset

Offset to embedded

plugin, containing a

plugin’s metadata,

followed by the plugin.

0x10 4

rgsEmbeddedPlugin[0

].dwPluginSize

Size of the plugin

including its metadata.

Offset Size in bytes Description

0x14 4
rgsEmbeddedPlugin[1

].dwPluginOffset

0x18 4
rgsEmbeddedPlugin[1

].dwPluginSize

Plugin metadata

An example of a MoonWalk C2 plugin’s metadata is shown in the figure below.

Figure 6: An example of a MoonWalk C2 plugin’s metadata.

The table below provides a description of the various fields.

Offset Size in bytes Description

0x00 4

dwPluginTypePart1

A combination

of dwPluginTypePart1

and dwPluginTypePart

2 determine a plugin’s

functionality

0x04 4

dwPluginTypePart2

A combination

of dwPluginTypePart1

and dwPluginTypePart

2 determine a plugin’s

functionality

Offset Size in bytes Description

0x08 4

Flag to load plugin only if

OS and processor

information have been

successfully collected by

MoonWalk.

0x0c 4

Dictates how MoonWalk

should retrieve a plugin’s

exports.

0x10 4 Unknown

0x14 16
MD5 of plugin metadata

and plugin data.

0x24 16

Hashed with MD5 to

produce the AES key for

decrypting the plugin.

0x34 16 AES IV

0x44 4
Size of plugin data that

follows.

Decrypted configuration

MoonWalk's configuration is complex, containing arrays and nested structures of various

types, as shown in the figure below. This analysis will focus only on the relevant fields, with

non-essential bytes omitted from the analysis. These omitted bytes will either have

unknown functionality or contain metadata for parsing the configuration.

An example of MoonWalk’s decrypted configuration is shown in the figure below.

Figure 7: MoonWalk's configuration which contains arrays and nested structures of various

types.

The table below provides a description of the various fields.

Offset Size in bytes Description

0x00 16 rgbIDBytes

The MD5 hash of this

value is also used to

generate the path to

Offset Size in bytes Description

override a configuration

file on disk.

0x10 24

szMutexName

The name of the mutex

that MoonWalk uses to

ensure only one instance

of the backdoor is

running.

0x2c variable

wszConfigName

Postulated to be the

name of the

configuration. Since this is

the configuration

extracted from the binary,

it is the “default ”.

During our analysis, we

did not receive additional

configurations.

0x3a 32

rgbXorKey

This is the XOR key used

to encrypt C2

communications. In this

sample, the value is:

a8e6bd132daf0360b1a

f1f5eea15e42f8c6f1d

cd7d34376ae4e83a1a4

f5907c0 .

0x5e 8

Appears to be used as a

heartbeat related interval

lower bound.

0x66 8

Appears to be used as a

heartbeat related interval

upper bound.

Offset Size in bytes Description

0x96 4 fEnableHeartBeat

0x9a 8

Appears to be used as

another heartbeat related

interval lower bound.

0xa2 8

Appears to be used as

another heartbeat related

interval upper bound.

0x0130 variable

szClientID

OAuth client ID used to

authenticate with Google

Drive.

0x17f variable

szClientSecret

OAuth client secret used

to authenticate with

Google Drive.

0x1a9 variable

szRefreshToken

OAuth refresh token used

to authenticate with

Google Drive.

Gathered environment information

This is the list of environment information gathered by MoonWalk and uploaded to

GoogleDrive as part of its initialization process.

Victim hash (FNV1a hash of the concatenation of the computer

name Config.rgbIDBytes and the machine’s GUID).

Windows major and minor version numbers

Windows build number

Computer name

User name

Executable path (full path to the current process’s executable file).

Impersonation status

CPU start time

IPv4 addresses

IPv6 addresses

Config.rgbIDBytes

Config.wszConfigName

Various heartbeat related interval fields from MoonWalk’s configuration.

Explore more Zscaler blogs

DodgeBox: A deep dive
into the updated arsenal of
APT41 | Part 1

R E A D P O S T

Kimsuky deploys
TRANSLATEXT to target
South Korean academia

R E A D P O S T

The Ret
APT

R E A D P O S

Was this post useful?

Yes, very! Not really

https://www.zscaler.com/blogs/security-research/dodgebox-deep-dive-updated-arsenal-apt41-part-1
https://www.zscaler.com/blogs/security-research/kimsuky-deploys-translatext-target-south-korean-academia
https://www.zscaler.com/blogs/security-research/return-higaisa-apt

T H E Z S C A L E R E X P E R I E N C E

P R O D U C T S & S O L U T I O N S

P L AT F O R M

R E S O U R C E S

P O P U L A R L I N K S

Get the latest Zscaler blog updates in
your inbox

By submitting the form, you are agreeing to our privacy policy.

Email Address

Subscribe

© 2024 Zscaler, Inc.

Zscaler is universally recognized as the leader in zero trust. Leveraging the largest security cloud on the planet, Zscaler anticipates, secures, and simplifies the
experience of doing business for the world's most established companies.

Sitemap Privacy Legal Security

All rights reserved. Zscaler™ and other trademarks listed at zscaler.com/legal/trademarks are either (i) registered trademarks or service
marks or (ii) trademarks or service marks of Zscaler, Inc. in the United States and/or other countries. Any other trademarks are the properties of their
respective owners.

English

Please enter your email to subscribe →

https://www.zscaler.com/privacy/company-privacy-policy
https://www.zscaler.com/
https://facebook.com/zscaler
https://linkedin.com/company/zscaler
https://twitter.com/zscaler
https://youtube.com/user/ZscalerMarketing
https://www.zscaler.com/sitemap.xml
https://www.zscaler.com/privacy/overview
https://www.zscaler.com/legal/overview
https://www.zscaler.com/security/vulnerability-disclosure-program

