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Abstract: The designed fractional order Stuxnet, the virus model, is analyzed to investigate the
spread of the virus in the regime of isolated industrial networks environment by bridging the air-gap
between the traditional and the critical control network infrastructures. Removable storage devices
are commonly used to exploit the vulnerability of individual nodes, as well as the associated networks,
by transferring data and viruses in the isolated industrial control system. A mathematical model of
an arbitrary order system is constructed and analyzed numerically to depict the control mechanism.
A local and global stability analysis of the system is performed on the equilibrium points derived
for the value of α = 1. To understand the depth of fractional model behavior, numerical simulations
are carried out for the distinct order of the fractional derivative system, and the results show that
fractional order models provide rich dynamics by means of fast transient and super-slow evolution
of the model’s steady-state behavior, which are seldom perceived in integer-order counterparts.

Keywords: fractional-order virus models; stuxnet virus; numerical computing; supervisory control
and data acquisition systems; computer networks; lyapunov analysis

1. Introduction

A small piece of software code or program in a computer system that works on
a system without the consent of the user may cause damage or steal information for
the exploitation of the desired targets. In strategic conflicting environments, as well
as in the financial market, computer viruses can be used in a network operation as a
digital weapon against the desired targets, e.g., a computer spyware program used as an
information collection platform in the Syrian war [1], or Shamoon and Stuxnet viruses
for cyber incidents [2]. The tools used for cyberwar vary from a tiny code that exhibits
annoying messages on the console to a complicated routine that physically damages the
system, such as Stuxnet [3]. Stuxnet was discovered at Natanz, Iran, a nuclear enrichment
facility, in June 2010 [4]. The name of the Stuxnet virus was derived from two keywords
in its source code, .stub and mrxnet.sys. The Stuxnet virus is a sophisticated piece of
code that mainly targets the supervisory control and data acquisition systems (SCADA),
exploits zero-day vulnerabilities/bugs to attack the targeted hosts, and uses advanced
technology to hide from guard programs. The Stuxnet virus exploits different services,
such as a print spooler (MS 10-061), the zero-day vulnerability of the windows system,
network shares, file-sharing and server message block (SMB), etc. Stuxnet virus monitors
the frequency of motors operating centrifuge machines before modification, which must be
in the range of from 807 Hertz to 1210 Hertz. Stuxnet virus controls the running frequency
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of centrifuge machines for a short interval of time to 1410 Hertz and then decreases to 2 Hz
and increases to 1064 Hertz. A change in the output frequency of the motors essentially
sabotages the working of machines [5]. Due to the attack of the Stuxnet virus, approximately
1000 centrifuge machines were out of order, of a total of 5000 machines operating in the Iran
nuclear facility at Natanz [6]. The purpose of the virus was not just to infect the computers,
but to cause real-world physical damage.

A theoretical study of the Stuxnet’s malicious code behavior was conducted through
the strength of epidemic modeling of virus spread [7–9]. The control scheme of these
malicious codes is very challenging because they often hide, and may exploit zero-day
vulnerabilities, gain administrative rights and execute code as an authenticated program.
The development in technologies creates new issues regarding the safety and security of
the critical infrastructure of the countries in the presence of these vulnerabilities and smart
viruses. The desire to manufacture an automated process immensely increases software
dependencies, which ultimately require lengthy and complex routines.

These complex codes are challenging to screen out completely using software testing
mechanisms, and leftover vulnerabilities in these codes can compromise the whole sys-
tem [10]. Therefore, the comprehensive and dynamic study of these codes is a promising
domain for research communities to investigate.

The spread of the virus in a computer network is closely related to the spread of
biological viruses in the population. Mathematical and statistical models are often based
on concepts and methods borrowed from physics. Models play an important role in
infection control by quickly predicting and understanding disease outbreaks. In recent
decades, new infectious diseases have been observed, together with the development of
eliminated technologies.

The ability to quickly measure the unfolding of outbreaks, communications, and
movements is key to capturing the spread of a virus. The inherent complexity of such
methods limits the study of these processes. However, developments in technology are
helping to lift these limitations [11]. Classical approaches and linear thinking are unable
to effectively mitigate the problem due to the lack of equilibrium and non-linear nature
of the problems. A complex system, its counter-intuitive behavior, and other macro-
level changes can be addressed by applying complex sciences. The usual models did
not provide an in-depth picture of real system dynamics because these systems neglect
feedback scenarios, cascade effects, and instabilities. To predict the global-scale spread of
disease dynamics, several factors, such as demographic disparity, mobility scenarios which
include air-flow system, commuter movement in the area, disease-specific information,
and control mechanisms, should be acccounted for. There has long been work on the
development of mathematical models for use in the analysis of infectious disease behavior.
The mathematical model of Daniel Bernoulli against smallpox disease was published
in 1766. Mathematical models of these types were designed to elaborate the behavior
of an epidemic over the course of time, in which every single population of the virus
is assumed to interact with the individual of other populations. The ability to monitor
hidden outbreaks, as well as contact and communication, are key to the portrayal of
disease-spreading [12]. It is known that immunizing a large fraction of the population or
a computer network, the epidemic that spreads upon contact between infected nodes or
individuals can be stopped.

Some diseases require 80–90% immunization (measles requires 95%), and the same
is true for the computer, where 100% immunization from the Internet may stop viruses
in connected networks [13]. Mathematical modeling of infectious disease or viruses in
biology or in computer systems gives us a thorough understanding of the problem and
helps us to devise a reliable, viable, and robust control strategy [14]. It was observed that
the state of the various biological organisms at a certain time depends on its past states and
fractional derivatives that also contains those characteristics. Thus, a fractional derivative
is a natural approach to the solution of these biological systems. Mathematical modeling is
used in numerous disciplines of science and engineering problems [15,16]. Kermack and
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McKendrick founded mathematical modeling at the beginning of twentieth century with
a series of publications, and introduced a susceptible, infected and recovered epidemic
model [17]. In this field, several other scientists, biologists, computer engineers and
mathematicians have worked on epidemic modeling and published work in this area, such
as time delay virus models [18], a fractional epidemiological model [19], antivirus strategy
for computer virus model [20], modified susceptible, infected and susceptible models [21]
and epidemic models with two control mechanisms, quarantine and immunity [22], and
models that highlight the topological facets of the network [23]. Besides these, the role
of fundamental concepts and underlying theories of fractional calculus was effectively
applied in modeling complex systems in diversified fields with rich dynamics compared to
its integer counterparts [24–27]. Considering these facts, the current study aims to exploit
the rich heritage of fractional dynamics for the development of the fractional Stuxnet
virus model by using the features of the Stuxnet model to illustrate the virus spread in
SCADA systems [28]. In this study, a fractional-order mathematical model of the Stuxnet
virus is presented to study the ultra-fast transient and slow evolutions of the virus spread
dynamic and attack pattern on isolated critical infrastructures, managed by industrial
control computers. The contribution of the proposed fractional Stuxnet virus model is
briefly described as:

• A novel fractional-order Stuxnet virus model is proposed by exploiting the rich
heritage of fractional calculus in an isolated and air-gapped network environment.

• Stability analysis of Stuxnet virus model for both local and global equilibrium points
when disease-free, and endemic spread is performed.

• Correctness of the proposed Grunwald–Letnikov-based fractional numerical solver is
ascertained, with close results to the state-of-the-art Runge–Kutta numerical solver
for integer-order variants of the model.

• Numerical simulation with Grunwald–Letnikov-based fractional numerical solver for
a distinct order of the fractional derivative terms in the system shows that fractional-
order models offer rich characteristics by way of ultrafast transience and ultra-slow
advancements of steady-state.

2. Fractional Calculus Fundamentals
2.1. Preliminaries

Fractional calculus is a branch of mathematics and a generalization of the calculus
theory of integrals and derivatives of a real number or complex number power. The dis-
cussion of fractional calculus was started 300 years ago, and the idea of fractional calculus
was first listed in the literature with a letter from Leibniz to L’Hostital in 1696. In this letter,
a half-derivative term was introduced, i.e., the generalization of the derivative operator
Dα f (), where α, representing the order of a fractional derivative. The history of the frac-
tional derivative is as long as the classical differential operators in calculus, but the inherent
strength of the fractional operator is relatively less exploited in engineering domains until
the early 1980s. The physical interpretation of the fractional derivative outcomes is still
ambiguous, and remained an open debate for clarity in the research community. However,
the fractional derivative is an inspiring operator to describe the physics of many modeling
phenomena, which are difficult to realize through integer-order derivatives. Recently,
the kernel function of a fractional derivative is referred to as a memory function, and
fractional-order derivative is proposed as a memory index [29,30] with different types
of kernel [31–36]. The theory development of fractional calculus belonged to the efforts
of several scientists, such as Letnikov, Liouville, Euler, and Riemann [37,38]. Different
definitions of fractional order derivatives have existed; the most-used definitions are those
of Riemann–Liouville (RL), Caputo (CP), and Grunwald–Letnikov (GL) [39]. The GL
definition of fractional derivative is as follows:

GL
a Dα

t f (t) = lim
h→0

1
hα

(t−a)/h

∑
m=0

(−1)m(α
m) f (t−mh), t > a,a > 0. (1)



Mathematics 2021, 9, 2160 4 of 27

The definition of Caputos fractional derivatives can be written as:

CP
a Dα

t f (t) =
1

Γ(n− α)

t∫
a

f n(x)
(t− x)α−n+1 dx, (2)

for (n− 1 < α < n) and where Γ(·) is a gamma function.
The RL definition is given as:

RL
a Dα

t f (t) =
1

Γ(n− α)

dn

dt

t∫
a

f (x)
(t− x)α−n+1 dx. (3)

For (n− 1 < α < n), while a and t are the bounds of the operation for aDα
t , the Laplace

transform method is normally used with CP, GL and-RL fractional derivatives under zero
initial conditions, as: [40]

£{aD±α
t f (t); s} = s±αF(s), (4)

while the analytical expressions are represented by Mittag–Leffler (ML)-type functions [41]
introduced by Agarwal and Humbert [42] and are given mathematically as:

Eα,β(z) =
∞

∑
k=0

zk

Γ(β + αk)
, (5)

α, β, z ∈ C, <(α) > 0,<(β) > 0,

where C represents the set of complex numbers and Eα,β is a two-parameter-based ML function.

2.2. Grunwald–Letnikov-Based Numerical Solver for FDEs

Analytical solution to the fractional differential equations (FDEs) generally deter-
mined through the Laplace transform method (4), and these expressions are commonly
represented by the ML function (5), while, for the numerical solutions, the most commonly
used method is based on GL definition.

To introduce the numerical solver based on GL [43] for FDEs, let a general from of an
FDE, along with its initial conditions, is given as follows:

aDα
t f (t) = f (y(t), t),

y(k)(0) = y(k)0 , k = 0, 1, 2, . . . n− 1,
(6)

where (n− 1 < α < n) , using Equation (1), Ivo Petras [44] provided the final recursive
expression of a GL-based solver is as follows:

1
hα

[(t−a)/h]

∑
j=0

(−1)j(α
k )y(t− jh) ≈ f (y(t), t),

simplifying above relation, we have

y(t) +
[(t−a)/h]

∑
j=1

(−1)j(α
k )y(t− jh) ≈ h−α f (y(t), t).

In case of discrete input grids between interval t ∈ [0, T] = [0, h, 2h, . . . , Mh = T],
where h represents the step size parameter, so [0, T] = [t0 = 0, t1, . . . , tM = T] and any grid
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points in the interval are represented as tm = mh for m = 0, 1, 2, . . . , M. Thus, in a discrete
form, the above equation is written as:

y(tm) +
m

∑
j=1

(−1)j
(

α
j

)
y(tm − jh) = h−α f (y(tm), tm), m = 0, 1, 2, . . . , M.

In simple usage, the above term is written as:

y(tm) +
m

∑
j=1

cα
j y(tm − jh) = h−α f (y(tm), tm), m = 0, 1, 2, . . . , M,

where c(α)j is defined as:

cα
j = (−1)j

(
α
j

)
, (7)

or equivalently with cα
0 = 1,

cα
j =

(
1− 1 + α

j

)
cα

j−1, j = 0, 1, . . .

GL numerical solver in the recursive form is written as:

y(tm) = f (y(tm), tm)h−α −
k

∑
j=1

cα
j y(tm−j),m = 0, 1, 2, . . . , M. (8)

A further elaboration of the Grunwald–Letnikov (GL)-based numerical solver can be
seen in [45].

3. Model Formulation of Fractional Order Stuxnet Virus

The formulation of a fractional-order Stuxnet virus model (FO-SVM) is presented
here. A detailed workflow of the proposed FO-SVM is shown in Figure 1. The entire
FO-SVM is segmented into five classes: three for computer population, i.e., susceptible S(t),
infected I(t), and damaged M(t), and two for removable storage media, i.e., susceptible
storage media Us(t) and infected storage media Us(t). However, N(t) represents the
total population, i.e., N(t) = S(t) + I(t) + M(t), and total removable devices U(t), i.e.,
U(t) = Us(t)+UI(t). In the rest of the article, the variables with respect to time t, S(t), I(t),
M(t), Us(t), Us(t), N(t), and U(t) are denoted by S, I, M, Us, UI , N, and U, respectively.
Let A1 and A2 represent the arrival of new computing nodes and removable storage media,
respectively, damage rate caused to PLC’s due to virus infection is represented by ρ , β1 is
the infectious contact rate of susceptible nodes with infected nodes during the network scan,
and β2 denotes the contact rate of infectious-removable storage media with susceptible
computer nodes, r1 and r2 represent the natural removal (death) of computer nodes and
removable devices from the network, respectively. The number of nodes in Internet
protocol version 4 (IPv4) is 232, and the probability of finding susceptible nodes in IPv4
scheme is S/232. Susceptible nodes can be infected at the rate β1SI or at β2SUI

/
N, while

the removable storage media could be infected at a rate of β2Us I
/

N. Removable storage
media is a common source of virus spread in critical industrial air-gapped networks, which
are isolated from normal networks. The removable storage devices facilitate the flow of
information to and from the networks that make them as an easy prey for intruders [46]. In
this study, fractional-order virus model is used to explain the spread of the virus, especially
Stuxnet [47,48] in industrial networks through removable storage media. A proposed
flow chart diagram of the Stuxnet virus model is shown in Figure 2, and the fundamental
mathematical equations of the model are given as:
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DαS = A1 −
β1SI
232 −

β2SUI
N

− r1S,

Dα I =
β1SI
232 +

β2SUI
N

− ρI − r1 I,

Dα M = ρI − r1M,

DαUs = A2 −
β2Us I

N
− r2Us,

DαUI =
β2Us I

N
− r2UI

(9)

where α ∈ [0, 1] represents the order of the fractional derivative term Dα = dα
/

dtα. For the
value of α = 1, the above-mentioned FO-SVM system provided in a set of Equation (9) will
be converted into a first-order system. From the differential equations mentioned in (9),
solving the equations by taking the value of α = 1, we get

dN
dt

= A1 − r1N,

dU
dt

= A2 − r2U.
(10)

The change in population is given by c1 = A1 − r1 and c2 = A2 − r2, and the values
of these constants may be negative, positive or zero.

Figure 1. FO-SVM model proposed graphical overview.
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Figure 2. FO-SVM model schematic flow diagram.

Solving the set of Equation (10), we get

N(t)→ A1

r1

∆
= N∗, t→ ∞,

U(t)→ A2

r2

∆
= U∗, t→ ∞.

(11)

The system given in Equation (9) can be simplified by incorporating N and U vari-
ables, as in:

Dα I =
β1(N − I −M)I

232 +
β2(N − I −M)UI

N
− ρI − r1 I,

Dα M = ρI − r1M,

DαUI =
β2(U −UI)I

N
− r2UI ,

(12)

where
N(t) = N∗ + (N(0)− N∗)e−r1t,

U(t) = U∗ + (U(0)−U∗)e−r2t.
(13)

Using Equation (11) in system (12), one may obtain a limit system (IMUI), as in [49,50]:

Dα I =
β1(N∗ − I −M)I

232 +
β2(N∗ − I −M)UI

N∗
− ρI − r1 I,

Dα M = ρI − r1M,

DαUI =
β2(U∗ −UI)I

N∗
− r2UI .

(14)

The equations in system (14), are the reduced version of (9), and will be used in
further investigations.

4. Model Analysis

In this unit, stability analysis of the model is performed through the derivation of
basic reproduction number, R0. The endemic and disease-free equilibrium points of the
system are investigated for a local as well as global stability analysis.
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4.1. Basic Reproduction Number (R0)

In epidemiology modeling, a basic reproduction number is defined as the advent of a
new infection in an entirely susceptible population due to an infected individual, and is
usually represented by R0. The value of R0 determines the spread of infection; for R0 > 1
infection will spread in the population, and for R0 < 1 infection will soon end [51].

To simplify the derivation process, a reduced model (14) has been utilized for further
investigation of R0. The calculation of R0 is based on the value of α = 1. The necessary
condition of a disease epidemic is based on the increase in the infected individuals, with
the supposition that, initially, the entire population is susceptible.

For the case of Dα I > 0, we have DαUI > 0

β1(N∗ − I −M)I
232 +

β2(N∗ − I −M)UI
N∗

− ρI − r1 I > 0, (15)

and, accordingly, in case of DαUI > 0, we have

β2(U∗ −UI)I
N∗

− r2UI > 0. (16)

With the assumption that all the population is susceptible at the start, the above
expressions may be written as:

β1N∗ I
232 +

β2N∗UI
N∗

− ρI − r1 I > 0, (17)

β2U∗ I
N∗

− r2UI > 0. (18)

Simplifying the above relations, we have

β1N∗

(ρ + r1)232 +
β2

2U∗

r2N∗(ρ + r1)
> 1. (19)

Accordingly,

R0 =
β1N∗

232(ρ + r1)
+

β2
2U∗

r2N∗(ρ + r1)
. (20)

Equation (20) represents the basic reproduction number derived for the model.

4.2. Equilibria Studies

In this subsection, we study the equilibrium points of FO-SVM model Equation (14).
The FO-SVM model has virus-free equilibrium and endemic equilibrium points. In the
endemic equilibrium point, the spread of infection is observed.

For equilibria studies, we have

Dα I = 0, Dα M = 0, DαUI = 0,

equilibrium points of system (14) for virus-free and endemic are as: K0 = (I, M, UI) = (0, 0, 0)
and K∗ = (I∗, M∗, U∗I ) for R0 > 1.

The analysis for the endemic equilibria of model (14) is written as:

β1(N∗ − I −M)I
232 +

β2(N∗ − I −M)UI
N∗

− ρI − r1 I = 0,

ρI − r1M = 0,

β2(U∗ −UI)I
N∗

− r2UI = 0.

(21)
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Solving the equations in set (21), we obtain the expressions for the endemic equilibrium
point (I∗, M∗, U∗I ) as:

I∗ =

√
b2 − 4ac− b

2a
, (22)

M∗ =
ρ

r1
I∗, (23)

U∗I =
β2U∗

β2 I∗ + r2N∗
I∗, (24)

where

a =
(ρ + r1)β1β2

232r1N∗
,

b =
β2(ρ + r1)(1− R0)

N∗
+

β3
2U∗

N∗r2
+

β1(r2)β2
2U∗

232r1
(ρ + r1),

c = (ρ + r1)(1− R0)r2.

It is evident from Equation (22) that the possibility of infection spread, i.e., I∗ > 0, is
only verified for the value of R0 > 1.

4.3. Disease Free Equilibrium

Theorem 1. Disease-free equilibrium (DFE) point of a system is locally and asymptotically stable
at K0, if R0 < 1.

Proof. The DFE point of a system is locally asymptotically stable at K0 = (I, M, UI) = (0, 0, 0).
The Jacobian matrix of function f : R3 → R3 with components:

Dα I =
β1(N∗ − I −M)I

232 +
β2(N∗ − I −M)UI

N∗
− ρI − r1 I,

Dα M = ρI − r1M,

DαUI =
β2(U∗ −UI)I

N∗
− r2UI .

(25)

Thus, the Jacobian matrix at K0, DFE point of integer-order model (14) is given as:

DFE(K0) =


β1 N∗

232 − ρ− r1 0 β2
ρ −r1 0

β2U∗
N∗ 0 −r2.

 (26)

System (26) characteristic equation is

|λI − DFE(K0)| =

∣∣∣∣∣∣∣∣∣
λ− β1 N∗

232 + ρ + r1 0 −β2
−ρ λ + r1 0
− β2U∗

N∗ 0 λ + r2

∣∣∣∣∣∣∣∣∣ = 0, (27)

and simplify as:

(λ + r1)

[(
λ− N∗β1

232 + ρ + r1

)
(λ + r2)−

β2
2U∗

N∗

]
= 0. (28)

The corresponding Eigen values of the above relation are

λ1 = −r1,[(
λ− N∗β1

232 + ρ + r1

)
(λ + r2)−

β2
2U∗

N∗

]
= 0.

(29)
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Simplifying the above expression to find the remaining Eigenvalues

r1(λ + r2) + ρ(λ + r2) + λ(λ + r2)− (λ + r2)
N∗β1

232 −
β2

2U∗

N∗
= 0,

λ2 + λ

(
r1 + r2 + ρ− N∗β1

232

)
+ r1r2 + ρr2 − r2

N∗β1

232 −
β2

2U∗

N∗
= 0,

λ2

r2(ρ + r1)
+

λ
(

r1 + r2 + ρ− N∗β1
232

)
r2(ρ + r1)

+

(
1− N∗β1

232(ρ + r1)
− β2

2U∗

N∗r2(ρ + r1)

)
= 0,

λ2

r2(ρ + r1)
+

λ

r2

(
r2

ρ + r1
+

r1 + ρ

ρ + r1
− N∗β1

232(ρ + r1)

)
+ (1− R0) = 0,

and rearranging the above expression

λ2

r2(ρ + r1)
+

λ

r2

(
r2

ρ + r1
+ 1− N∗β1

232(ρ + r1)

)
+ (1− R0) = 0, (30)

and, for R0 < 1, Equation (9) can be written as:

λ2

r2(ρ + r1)
+

λ

r2

(
r2

ρ + r1
+ 1− N∗β1

232(ρ + r1)

)
+ (1− R0) = 0. (31)

Using the expression (31) in Section 4.3, make the coefficient positive for R0 < 1,
which shows that system Section 4.3 eigenvalues are in a stable region; this confirms that
the system is asymptotically stable for point K0 when R0 < 1. If system is stable for the
value of α = 1, it will be stable for the value of α < 1, as reported in [52]. This completes
the proof.

Theorem 2. If R0 < 1, then point K0 is globally asymptotically stable, and otherwise unstable.

Proof. Considering the Lyapunov function mentioned below,

L(I, M, UI) = I +
β1

233ρ
M2 +

β2

r2
UI . (32)

The function in R3 is positive, for R3 = (I, M, UI) and (I > 0, M > 0, UI > 0).
For α = 1, the derivative of Lyapunov function (32) is

DαL(I, M, UI) = Dα I +
2β1

233ρ
MDα M +

β2

r2
DαUI , (33)

DαL(I, M, UI) =
β1(N∗ − I −M)I

232 +
β2(N∗ − I −M)UI

N∗
− ρI − r1 I +

β1 MI
232 +

r1β1 M2

232ρ

+
β2

2U∗ I
N∗r2

− β2
2U1 I

N∗r2
− β2U1,

=

(
β1N∗

232 +
β2

2U∗

N∗r2
− ρ− r1

)
I − β1 I2

232 −
β2(M + I)UI

N∗
− r1β1 M2

232ρ

− β2
2 M2UI I
N∗r2

,

=

(
(ρ + r1)

(
β1 N∗

232(ρ+r1)
+ β2

2U∗

N∗r2(ρ+r1)

)
−ρ− r1

)
I − β1 I2

232 −
β2(M + I)UI

N∗
− r1β1 M2

232ρ

− β2
2 M2UI I
N∗r2

,

= (ρ + r1)(R0 − 1)I − β1 I2

232 −
β2(M + I)UI

N∗
− r1β1 M2

232ρ
− β2

2UI I
N∗r2

.

(34)
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For R0 < 1, this implies that DαL ≤ 0 and K0 is the only invariant set of system (21).
According to the LaSalle Invariance Principle, K0 is proven to be globally asymptotically
stable. Hence, equilibrium point K0 is globally asymptotically stable for R0 < 1. Addition-
ally, if the system is stable for the value of α = 1, then the system will be stable for α < 1,
as described in [52].

4.4. Endemic Stability

The endemic stability of equilibrium point K∗= (I∗, M∗, U∗I ) is investigated in this
section for the values of R0 > 1 and I∗ ≥ 0.

Theorem 3. Endemic equilibrium point K∗ is locally asymptotically stable, if R0 > 1.

Proof. Consider the function f : R3 → R3 with components and the Jacobian matrix of the
system (14) as:

Dα I = f1(I∗, M∗, U∗I ) =
β1(N∗ − I∗ −M∗)I∗

232 +
β2(N∗ − I∗ −M∗)U∗I

N∗
− ρI∗ − r1 I∗,

Dα M = f2(I∗, M∗, U∗I ) = ρI∗ − r1M∗,

DαUI = f3(I∗, M∗, U∗I ) =
β2(U∗ −U∗I )I∗

232 − r2U∗I ,

J(I∗, M∗, U∗I ) =


∂ f1
∂I∗

∂ f1
∂M∗

∂ f1
∂U∗I

∂ f2
∂I∗

∂ f2
∂M∗

∂ f2
∂U∗I

∂ f3
∂I∗

∂ f3
∂M∗

∂ f3
∂U∗I

.

The endemic equilibrium of system (14) is K∗= (I∗, M∗, U∗I ), for the value of α = 1, the
Jacobian matrix at endemic point is mentioned below.

J(K∗) =

 Λ − β1 I∗

232 −
β2UI

∗

N∗
β2(N∗−I∗−M∗)

N∗

ρ −r1 0
β2(U∗−UI

∗)
N∗ 0 β2 I∗

N∗ − r2

, (35)

where Λ = β1(N∗−2I∗−M∗)
232 − β2UI

∗

N∗ − ρ− r1.
The characteristic equation of (35) is

|λI − J(K∗)| = 0,∣∣∣∣∣∣∣
λ−Λ β1 I∗

232 + β2UI
∗

N∗ − β2(N∗−I∗−M∗)
N∗

−ρ λ + r1 0
− β2(U∗−UI

∗)
N∗ 0 λ + β2 I∗

N∗ + r2

∣∣∣∣∣∣∣ = 0,

simplifies as:

λ3 + (b11 + b22 + b33)λ
2 + (b11b22 + b11b33 + b22b33 (36)

− b12b21 − b13b31)λ + b11b22b33 − b12b21b33 − b13b31b22 = 0,

where
b11 = − β1 N∗

232 + β1(2I∗+M∗)
232 +

β2U∗I
N∗ + ρ + r1,

b12 = β1 I∗

232 +
β2U∗I

N∗ ,

b21 = −ρ, b23 = 0, b22 = r1, b13 = − β2(N∗−I∗−M∗)
N∗ ,

b31 = − β2(U∗−U∗I )
N∗ , b33 = β2 I∗

N∗ + r2, b32 = 0.
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For stability analysis, Hurwitz criteria may be used, as reported in [53,54] for sys-
tem (36). Equating the Equation (36) coefficient with the general characteristics equation,
we have

b0 = 1,
b1 = b11 + b22 + b33,
b2 = b11b22 + b11b33 + b22b33 − b12b21 − b13b31,
b3 = b11b22b33 − b12b21b33 − b13b31b22.

Determinants (D1, D2 and D3) of the Equation (36) are stated in Hurwitz as:

D1 = b1 = b11 + b22 + b33,

= − β1N∗

232 +
β1(2I∗ + M∗)

232 +
β2U∗I

N∗

+ ρ + r1 + r1 +
β2 I∗

N∗
+ r2,

using the value of Equation (20) for R0 > 1 as:

β1N∗

232 +
β2

2U∗

r2N∗
> ρ + r, we have

D1 = − β1N∗

232 +
β1(2I∗ + M∗)

232 +
β2U∗I

N∗
+

β1N∗

232 +
β2

2U∗

r2N∗
+ r1 +

β2 I∗

N∗
+ r2,

D1 =
β1(2I∗ + M∗)

232 +
β2U∗I

N∗
+

β2
2U∗

r2N∗
+ r1 +

β2 I∗

N∗
+ r2,

D1 > 0,

and

D2 = b1b2 − b3b0,

D2 = (b11 + b22 + b33)(b11b22 + b11b33 + b22b33 − b12b21

− b13b31)− b11b22b33 + b12b21b33 + b13b31b22,

= b2
11b22 + b2

11b33 + b11b22b33 − b11b12b21 − b11b13b31

+ b11b2
22 + b11b22b33 + b2

22b33 − b22b12b21

− b22b13b31 + b11b22b33 + b11b2
33 + b22b2

33

− b33b12b21 − b33b13b31 − b11b22b33

+ b33b12b21 + b22b13b31,

D2 = b2
11b22 + b2

11b33 + b11b2
22 + b22b2

33 + b11b2
33 + b2

22b33

+ 2b11b22b33 − b11b12b21 − b11b13b31 − b22b12b21 − b33b13b31.

The above expressions remain positive, except for −b13b31(b11 + b33), D2, which, if
positive for R0 > 1, is simply represented as:

D2 = +veterms + (b11b33 − b13b31)(b11 + b33),
D2 = D2−1 + D2−2,

Here, D2−1 represent the positive terms in D2, while, for the remaining terms, repre-
sented with D2−2, we have
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D2−2 = (b11b33 − b13b31)(b11 + b33)

=


(

β1(N∗−I∗−M∗)
232 + ρ + r1

)
r2

− β2
2(N∗−I∗−M∗)(U∗−UI

∗)
N∗2

(b11 + b33),

=


 β1(N∗−I∗−M∗)

232 + ρ + r1

− β2
2(N∗−I∗−M∗)(U∗−UI

∗)
r2 N∗2

r2

(b11 + b33),

=




β1(N∗−I∗−M∗)
232 + ρ + r1

− β2
2(N∗−I∗−M∗)U∗

r2 N∗2 +
β2

2(N∗−I∗−M∗)UI
∗

r2 N∗2

r2

(b11 + b33),

=




β1(N∗−I∗−M∗)
232 + ρ + r1−

β2
2U∗

r2 N∗ +
β2

2 I∗U∗

r2 N∗2 +
β2

2 M∗U∗

r2 N∗2

+
β2

2(N∗−I∗−M∗)UI
∗

r2 N∗2

r2

(b11 + b33),

using the value of R0 > 1, and after simplification, the above expression becomes

D2−2 >





β1(N∗−I∗−M∗)
232

+ β1 N∗

232 +
β2

2U∗
r2 N∗ −

β2
2U∗

r2 N∗ +
β2

2 I∗U∗

r2 N∗2

+
β2

2 M∗U∗

r2 N∗2 +
β2

2(N∗−I∗−M∗)UI
∗

r2 N∗2


r2


(b11 + b33),

D2−2 >




β1(N∗−I∗−M∗)

232

+ β1 N∗

232 +
β2

2 I∗U∗

r2 N∗2

+
β2

2 M∗U∗

r2 N∗2 +
β2

2(N∗−I∗−M∗)UI
∗

r2 N∗2

r2


(b11 + b33),

D2−2 > 0,

as a result

D2 > 0.

D3 = b3(b1b2 − b0b3),

D3 = b3(D2),

= (b11b22b33 − b12b21b33 − b13b31b22)((b11 + b22

+ b33)(b11b22 + b11b33 + b22b33 − b12b21 − b13b31)

− b11b22b33 + b12b21b33 + b13b31b22)

= (b11b22b33 − b12b21b33 − b13b31b22)D2,

> (b11b33 − b13b31)b22D2,

The positivity of the expression b11b33 − b13b31 for R0 > 1 is already proved for the case
D2; therefore, D3 > 0.

Thus, all the values of D1, D2 and D3 are positive, so all the eigenvalues of the
Equation (36) are negative, for R0 > 1. This proves that the endemic equilibrium point K∗

is locally asymptotically stable. The proof of theorem is completed.
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5. Simulation and Results

In this section, the results of numerical simulations for FO-SVM are presented to
understand the dynamics of virus spread in a critical network infrastructure in the pres-
ence of removable storage connectivity, which may compromise the air-gap between the
networks. Numerical experimentation is conducted for the designed FO-SVM as given
in Equation (9) for a different variation in parameters and initial start-up scenarios, as
given in Tables 1 and 2, respectively. The dynamic behavior of the fractional order (FO)
model is studied by varying the non-integer order derivative α. Most FO differential sys-
tems lack exact analytical solutions, so the numerical solver based on Grunwald–Letnikov
(GL) procedure, as described in Section 2 is exploited for an approximate solution to the
model. The security firms, including Symantec, tracked 100,000 infected computers as of
29 September 2010, in the world. Additionally, available real data are used to validate the
accuracy and convergence of the model for the Stuxnet virus spread. The virus infects
approximately 100,000 users from 155 different countries, and 63% were only in Iran. Due
to this attack, the number of hosts that lost functionality (hardware connected to these
hosts was damaged due to sudden increase in frequency of up to 1410 Hz, which then
decreased to 2 Hz and increased to 1064 Hz in spite of the normal working range of from
807 Hz to 1210 Hz) due to virus attack. A virus operates the machines connected with the
hosts at an extreme range of frequencies dictated by Stuxnet and caused physical damage
to 1500 centrifuge machines (approximately 1200 in Iran only). Approximately 3280 unique
samples and variants of the Stuxnet virus were recorded by Symantec and other security
corporations [3,6,55].

Table 1. Values of parameters used in model simulation for different scenarios.

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

A1 0.042 0.042 40 100 5600 5600 5600 412 5600
A2 0.042 0.042 45.7 60 412 412 412 5600 412
β1 0.6 0.4 0.385 0.4 0.4 0.4 0.745 0.4 0.4
β2 0.6 0.8 0.795 0.635 0.745 0.745 0.4 0.745 0.004
ρ 0.00265 0.0051 0.001 0.009 0.021 0.8 0.021 0.021 0.021
r1 0.1126 0.19 0.0804 0.1598 0.1276 0.0804 0.1276 0.1276 0.1276
r2 0.0088 0.027 0.027 0.027 0.0131 0.0131 0.0131 0.0131 0.0131

Table 2. Starting values of variables used in the simulation of different scenarios.

Variables S I M US UI

Case 1 2.3× 106 10,000 10 50,000 10,000
Case 2 2.3× 106 30,000 10 50,000 10,000
Case 3 2.3× 106 30,000 10 30,000 10,000

Case 4–9 2.3× 106 30,000 10 30,000 5000

In order to establish the working accuracy of GL-based numerical solvers, the results
of the scheme are compared with state-of-the-art numerical solvers based on the Runge–
Kutta (RK) method for the value of α = 1. The results are determined for nine cases of
integer order models (9) by a GL-based computing technique for inputs t ∈ [0, 60] with
step size h = 0.001 (time t represents months). Numerical solutions to the model for the
same inputs are also calculated by the RK method for each variation. Figure 3 highlights the
comparison of model behavior with Stuxnet virus real-world data. FO-SVM model results
shown in Figure 3 are calculated using the RK method to assume the value of fractional
order α = 1.
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Figure 3. Simulation of Stuxnet virus spread with available data of parameters A1 = 0.042, A2 = 0.042,
β1 = 0.366, β2 = 0.6, ρ = 0.00265, r1 = 0.1126, r2 = 0.0088, S = 2.3× 106, I = 10,000, M = 10, Us = 50,000,
UI = 10,000.

In Figure 3, the number of hosts versus time in months is plotted, which shows the
effect of the Stuxnet attack on the number of hosts as time passes.The number of infected
hosts is 96,760 (real infected host number was 100,000), and the number of damaged hosts
is 1500 (real damaged host number was 1500) in 23 months time, which shows the model
accuracy for real-world virus data, as shown in Figure 3, with red and blue dots, respec-
tively. In this case, removable media are considered to be 60,000, and, after increasing the
number of removable-storage media, infection in the host nodes also increases (96,760 after
23 months).

The number of infected removable-storage devices is 43,740 in 23 months, and in
24 months, the time number of infected devices increases to 44,920. An increase in the
number of damaged hosts is observed after the increase in infected hosts in 24 months’
time. This highlights the role of removable-storage media in spreading the infection in
isolated critical networks in the absence of any remedial strategy in the model. Stuxnet is
an advanced, persistent threat (APT) type of malicious code that penetrates in the remote
system in a quasi-autonomous fashion. Then, a 23-month decline in the number of infected
hosts is observed due to the availability of remedial technique and other controlling
mechanisms. However, the Stuxnet virus was carried by removable-storage media spreads
in other·networks.

In Figure 4, the solutions to the RK method with GL solver is compared with an error
analysis of susceptible hosts S: a and b for cases 2 to 4, c and d for cases 5 to 7, and e and f
for cases 8 to 10. Comparisons of results from both the RK numerical solver and GL-based
method (for fractional-order α = 1) are presented for susceptible hosts S in nine cases. The
error analysis, based on the absolute difference between the two approaches, is also plotted
in Figure 4 to assess closeness. The results show a matching of both solutions of up to
three decimal places of accuracy. The small errors in these plots show that the results of
the GL method are in good agreement with the standard RK numerical technique, which
establishes the working accuracy of the GL-based solver. In Figure 5, the solution of the
RK method with the GL solver is compared in the case of infected hosts I and damaged
hosts M: a and b for cases 1 to 3, c and d for cases 4 to 6, and e and f for cases 7 to 9.
Figure 4 compares solutions for the RK method with GL solver in case of susceptible and
infected removable-storage media: a and b for cases 1 to 3, c and d for cases 4 to 6, and
e and f for cases 7 to 9. In Figures 5 and 6, the solution of the RK method with a GL
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solver are compared and presented for infected nodes I, damaged node M, susceptible
removable-storage media Us and infected removable-storage media UI , respectively, for
nine model cases.

Figure 4. Solution comparison of the RK method with GL solver and error analysis with susceptible
S hosts: a and b for cases 2 to 4, c and d for cases 5 to 7, and e and f for cases 8 to 10. (a) Solution
comparison of the RK method with GL solver for cases 2 to 4, (b) error analysis for cases 2 to 4,
(c) Solution comparison of the RK method with GL solver for cases 5 to 7, (d) error analysis for cases
5 to 7, (e) Solution comparison of the RK method with GL solver for cases 8 to 10, (f) error analysis
for cases 8 to 10.

These nine cases also explain the virus spread behavior in different scenarios. Consid-
ering Figures 4–6, and the different cases simulated, we have the following comments.

The effect of changing the infectious contact rate β1 from 36.6% to 60% is highlighted
in case 1 of Equation (9) (value of β1 in Figure 3 is 36.6%). It is observed that the number of
infected hosts in 24 months is 96,760, as shown in Figure 5a (in Figure 3, the number of
infected hosts in 24 months is 96,270), which shows a slight increase in infected hosts due
to β1. In case 2, the number of initially infected hosts is assumed to be 30,000. Increasing
the contact rate of infectious removable media (in case 2) reduces the number of susceptible
hosts rapidly as compared to case 1 (Figure 4a). However, the number of infected hosts is



Mathematics 2021, 9, 2160 17 of 27

reduced (Figure 5a) due to an increase in the natural removal rate of hosts and removable
storage r1 and r2 (hosts are removed to save them from the Stuxnet attack). In case 3, we
reduce the damage rate and the quantity of initial susceptible removable-storage media,
which reduces infected removable-storage media number (Figure 6b) and increases the
infected hosts, as in Figure 5a). A decrease in damaged hosts is observed in case 3, despite
the increase in the number of infected hosts.

Figure 5. Solution comparison of RK method with GL solver for infected hosts I and damaged hosts
M; a and b for cases 1 to 3, c and d for cases 4 to 6 while e and f for cases 7 to 9. (a) Comparison of
RK method with GL solver for infected hosts in cases 1 to 3, (b) Comparison of RK method with GL
solver for damaged hosts in cases 1 to 3, (c) Comparison of RK method with GL solver for infected
hosts in cases 4 to 6, (d) Comparison of RK method with GL solver for damaged hosts in cases 4 to 6,
(e) Comparison of RK method with GL solver for infected hosts in cases 7 to 9, (f) Comparison of RK
method with GL solver for damaged hosts in cases 7 to 9.

In case 4, FO-SVM model dynamics are observed by increasing the arrival rate
of new nodes and the arrival rate of new removable-storage devices, as mentioned in
Tables 1 and 2. The results show that increasing the arrival rate of new hosts and arrival
rate of new removable-storage media will not spread the infection faster without the pres-
ence of a sufficient number of infected removable-storage devices, as shown in Figure 5c.
In cases 5 and 6, we further increase the values of the arrival rate of new nodes as well as
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removable-storage devices for an in-depth behavior analysis of the model. Both cases have
similar parameters, except case 6, which represents a higher damage rate (especially for
zero-day vulnerability or for a new virus attack) that increases the number of damaged
computers and reduces the number of infected computers (removed due to high damage
rate) in the networks as compared to case 5. Case 5 shows the high number of infected
nodes (Figure 5c) because the Stuxnet virus only destroys the machines with specific
hardware (Siemens specific PLCs) and remains dormant till it finds the target. In case 6
(Figure 5c,d), the number of infected hosts decreases; however an increase in the number
of damaged hosts is observed due to an increase in damage rate ρ.

Figure 6. Solution comparison RK method with GL solver for susceptible and infected-removable-
storage media: a and b for cases 1 to 3, c and d for cases 4 to 6, and e and f for cases 7 to 9.
(a) Comparison of RK method with GL solver for susceptible removable storage media in cases 1 to 3,
(b) Comparison of RK method with GL solver for infected removable storage media in cases 1 to 3,
(c) Comparison of RK method with GL solver for susceptible removable storage media in cases 4 to 6,
(d) Comparison of RK method with GL solver for infected removable storage media in cases 4 to 6,
(e) Comparison of RK method with GL solver for susceptible removable storage media in cases 7 to 9,
(f) Comparison of RK method with GL solver for infected removable storage media in cases 7 to 9.
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In case 7, the values of β1 and β2 of case 6 are swapped to observe the behavior of
the model. In case 7, the value of β1 = 0.745, as compared to 0.4 in case 6, and the value
of β2 = 0.4, as compared to 0.745 in case 6. These swaps are carried out to observe the
devastation effect of infected removable storage media as compared to the effect of infected
nodes in the model, because infected removable media have a greater devastation effect.
Simulation results show that the number of damaged nodes in case 6 is 35,000, whereas, in
case 7, it is 5000, due to a decrease in the value of β2 infectious contact rate of removable
storage media (Figure 5e).

However, by increasing β2 value (removable-storage media’s infectious contact rate
with susceptible computers) and A2 (the arrival of removable-storage media) for case 8
will also increase the infection in the network. This outlines the importance of removable-
storage media in spreading the virus in air-gapped networks (Figure 5e). In case 9, the
contact rate of susceptible computer nodes with infectious removable-storage media β2
is reduced, which results in a reduction in damaged nodes (Figure 5f) and infected nodes
(Figure 5e), and an increase in the number of susceptible storage devices (Figure 6e). Case 9
further elaborates the scenario presented in case 8.

The derivative order α = 1 is presented in Figures 4–6. The effect of change in fractional
order α is presented in Figures 7–11. A detailed analysis of the FO-SVM model is conducted
by changing the fractional order α in the system (9), such that one may observe fast-
changing as well as super-slow growth in the model dynamics. The fractional order
solution of the FO-SVM model for different values of the fractional order α is solved using
a GL-based solver. The solutions are determined for nine cases of FO-SVM by a GL-based
numerical procedure for different fractional orders, i.e., α = [0.5, 0.75, 0.8, 0.85, 0.9, 0.95, 1],
for the inputs t ∈ [0, 60] with step size h = 0.001. Results for the dynamics of the FO-SVM
model in terms of susceptible S, infected I, and damaged M computers are plotted in
Figures 7–9 for cases 1–3, 4–6, and 7–9, respectively. Susceptible removable-storage media
Us and infected-removable-storage media UI are plotted in Figures 10 and 11 for cases 1–4
and 5–9, respectively, for different values of the fractional order α.

Figure 7 shows a simulation of fractional order, i.e., α = [0.5, 0.75, 0.8, 0.85, 0.9, 0.95, 1]
for the FO-SVM model for different values of fractional order α for case 1–3 of susceptible
S, infected I and damaged hosts M. In Figure 7, the number of susceptible, infected and
damaged hosts is plotted versus time for cases 1–3 for different values of α = [0.5, 0.75,
0.8, 0.85, 0.9, 0.95, 1]. A consistent pattern is observed in the evolution of curves with the
value of α. The value of infected hosts in case 1 with α = 1 is 96,760, and for α = 0.95, the
value of infected hosts is approximately 56,000 for t = 24 months, as shown in Figure 7b. In
Figure 7c, the number of damaged hosts (hosts that were connected with specific models
of Siemens PLCs) for the value of α = 0.95 are 1000 for t = 30. Adjusting the value of α to
0.98 may adjust the number of damaged hosts to 1500, which matches the real published
data of the Stuxnet virus. This illustrates the controllability feature of α for tuning the
model. Despite the rapid spreadability of the Stuxnet virus, it causes little or no harm to
the systems that do not have specific hardware.

Figure 8 shows the simulation of fractional order dynamics of the FO-SVM model for
different values of fractional order α for cases 4–6, and Figure 9 depicts the simulation of
fractional-order dynamics of the FO-SVM model for case 7–9. Figures 8 and 9 highlight
the results for variation in fractional order α, which shows that variation in α gives smooth
variations in the dynamics of the model. For α = 0.1, we have the slowest evolution.
Simulation of fractional order dynamics of FO-SVM model for different values of fractional
order α for case 1–5 of susceptible removable-storage media Us and infected-removable-
storage media UI are illustrated in Figure 10. Figure 11 shows the simulation of fractional
order dynamics of FO-SVM model for different values of fractional order α, for cases
5–9 of susceptible removable-storage media Us, and infected-removable-storage media
UI . In Figures 10 and 11, the number of susceptible storage media and infected storage
media is plotted for case 1–9 against the time variation for different values of fractional
order α = [0.5, 0.75, 0.8, 0.85, 0.9, 0.95, 1]. It is observed that tuning the values of α tunes
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the dynamics of transients, as shown in Figure 10a. The value of susceptible storage media
for t = 1 and α = 0.95 is 35,000, which is effectively reduced to 10,000 by a slight change in
fractional order α from 0.95 to 0.8. In contrast, a slow change is observed in the dynamics
of the FO-SVM model for α = 0.1. Increasing the fractional order α increases the rate of
change of the variables. Fractional-order virus models provide extra tunable parameters in
the form of α, which highlight more minute changes in the model dynamics.

Figure 7. Simulation of fractional order dynamics of FO-SVM model for different values of fractional order α for cases 1
(a–c), 2 (b–f) and 3 (g–i) of susceptible S, infected I and damaged hosts M.
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Figure 8. Simulation of fractional order dynamics of FO-SVM model for different values of fractional order α for cases 4 (a–c),
5 (b–f) and b (g–i) of susceptible S, infected I and damaged hosts M.



Mathematics 2021, 9, 2160 22 of 27

Figure 9. Simulation of fractional order dynamics of FO-SVM model for different values of fractional order α for cases 7 (a–c),
8 (b–f) and 9 (g–i) of susceptible S, infected I and damaged hosts M.
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Figure 10. Simulation of fractional order dynamics of FO-SVM model for different values of fractional order α for
cases 1 (a,b), 2 (c,d) and 3 (e,f), 4 (g,h) and 5 (i) of susceptible removable-storage media Us and infected-removable-storage
media UI .
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Figure 11. Simulation of fractional order dynamics of FO-SVM model for different values of fractional order α for cases 5 (a),
6 (b,c) and 7 (d,e), 8 (f,g) and 9 (h,i) of susceptible removable-storage media Us and infected-removable-storage media UI .

6. Conclusions

A detailed analysis of the novel design of the fractional order Stuxnet virus model
is presented, with richer dynamics for the transmission of virus spread in an isolated
critical network through removable-storage media. The fractional-order Stuxnet-virus-
based mathematical models are found to be at least as stable as integer-order models. The
fractional order value α of the proposed fractional Stuxnet virus model more effectively
controls the solution reachability towards a steady state point. Additionally, the fractional
order system of the Stuxnet virus model can tackle the different responses, including
super-slow evolutions and very fast transients; these responses are found to have long
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memory characteristics in the system. Taking the value of α = 0.98, one may adjust the
number of damaged hosts to 1500 in case 1, which matches the damage caused by the
Stuxnet virus. The transformation process of the classical model into a fractional model
is very sensitive to the value of the order of differentiation α, and can be converted to a
simple SIR model if we choose the values of the infectious contact rate β2 = 0. A theoretical
analysis of the model capturing the Stuxnet virus-spreading characteristics is determined
by a mathematical derivation of the basic reproduction number R0 for the value of α = 1.
Equilibrium points of the model are globally and asymptomatically stable for R0 < 1 and
R0 > 1, respectively.

In the future, one may exploit the strength of stochastic numerical solvers [56–61]
based on fractional evolutionary and swarming techniques [62–67] for a detailed analysis
of the designed fractional-order Stuxnet virus model. Additionally, new definitions of
the fractional operator, such as Yang–Machado [35] and Yang–Abdel–Aty–Cattani [36]
fractional derivatives looks promising for the development of new computing solvers for
the numerical solution of the fractional-order Stuxnet virus model and other fractional-
order systems with better theoretical justifications, a better applicability domain, proof of
the accuracy, convergence, stability, and robustness.
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