
1/10

COMpfun successor Reductor infects files on the fly to
compromise TLS traffic

securelist.com/compfun-successor-reductor/93633/

Authors

 GReAT

In April 2019, we discovered new malware that compromises encrypted web
communications in an impressive way. Analysis of the malware allowed us to confirm that the
operators have some control over the target’s network channel and could replace legitimate
installers with infected ones on the fly. That places the actor in a very exclusive club, with
capabilities that few other actors in the world have.

We called these new modules ‘Reductor’ after a .pdb path left in some samples. Besides
typical RAT functions such as uploading, downloading and executing files, Reductor’s
authors put a lot of effort into manipulating digital certificates and marking outbound TLS
traffic with unique host-related identifiers.

The Kaspersky Attribution Engine shows strong code similarities between this family and the
COMPfun Trojan. Moreover, further research showed that the original COMpfun Trojan most
probably is used as a downloader in one of the distribution schemes. Based on these

https://securelist.com/compfun-successor-reductor/93633/
https://securelist.com/author/great/


2/10

similarities, we’re quite sure the new malware was developed by the COMPfun authors.

The COMpfun malware was initially documented by G-DATA in 2014. Although G-DATA
didn’t identify which actor was using this malware, Kaspersky tentatively linked it to the Turla
APT, based on the victimology. Our telemetry indicates that the current campaign using
Reductor started at the end of April 2019 and remained active at the time of writing (August
2019). We identified targets in Russia and Belarus.

We registered two initial infection schemes: Reductor spreads by either infecting popular
software distributions (Internet Downloader Manager, WinRAR, etc. and, for at least one
victim, through a popular warez website over HTTP); or its decryptor/dropper is spread using
COMpfun’s ability to download files on already infected hosts.

How to mark the TLS handshake without even touching the traffic

The malware adds digital certificates from its data section to the target host and allows the
operators to add additional certificates remotely through a named pipe. The solution that
Reductor’s developers found to mark TLS traffic is the most ingenious part. They don’t touch
the network packets at all; instead developers analyzed the Firefox source code and Chrome
binary code to patch the corresponding pseudo random number generation (PRNG)
functions in the process’s memory.

Browsers use PRNG to generate the ‘client random’ sequence for the network packet at the
very beginning of the TLS handshake. Reductor adds encrypted unique hardware- and
software-based identifiers for the victims to this ‘client random’ field. In order to patch the
system’s PRNG functions, the developers used a small embedded Intel instruction length
disassembler.

https://www.gdatasoftware.com/blog/2014/10/23941-com-object-hijacking-the-discreet-way-of-persistence
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/10/02152758/compfun-successor-reductor-1.png


3/10

In order to patch browser PRNG memory functions and add unique user IDs into the TLS handshake,
the developers of Reductor had to analyze Firefox and Chrome code

Why we believe on-the-fly infection took place

As we don’t know what happens on the ‘server’ side, we can only rely on ‘client’ analysis. In
order to distinguish handshakes of interest from all the TLS traffic, the campaign operators
firstly have to decrypt this ‘client hello’ field. This means the campaign operators somehow
need to have access to the target’s traffic.

The Reductor malware does not carry out a man-in-the-middle (MitM) attack itself. However,
our initial thought was that the installed certificates may facilitate MitM attacks on TLS traffic;
and the ‘client random’ field, with the unique ID in the handshake, would identify the traffic of
interest. Later analysis provided even more basis for this idea.

We initially observed that infected installers were downloaded from HTTPS warez websites;
but, as often happens, the files themselves were downloaded through unencrypted HTTP.
This makes it technically possible to replace the files with malicious ones during the
download process. Interestingly, the configuration data of some samples contained very
popular legitimate websites. We really don’t think they were compromised to serve as control
servers.

In any case, we didn´t initially know how the installers were infected, because the original
downloaded files were no longer available for analysis on the warez websites. And there was
always the possibility that the installers were infected on the website from which they were
originally downloaded.

Then more recent Reductor telemetry gave us a clue. This time samples were again being
downloaded from warez websites, but we were able to confirm that in this new case the
original installers were not infected. This allowed us to confirm that Reductor’s operators

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/10/02152811/compfun-successor-reductor-2.png


4/10

have some control over the target’s network channel and could replace legitimate installers
with infected ones on the fly.

Reductor features

The malware authors are creative and sometimes even seem to be having a bit of fun. For
instance, one of the web domains they use for COMpfun (the publicly known name) is
compfun[.]net. The domain-user-password triad hardcoded into the decryptor-dropper was
“uac is useless”. Here’s a summary of the different types of campaign artifacts found:

Initial infection Escalation, detection
avoidance

Main payload

Malware COMpfun Trojan Reductor dropper-
decryptor

Reductor Trojan

Process One of the browsers Same browser lsass.exe

Persistence COM CLSID hijacking Auxiliary module, N/A LSA notification package

Net
encryption

AES 128 Local module, N/A AES 128

Host
encryption

Configuration data
encrypted with one
byte XOR and
compressed with
LZNT1

Reductor in resources
encrypted with one
byte XOR and
compressed with
LZNT1

Victims’ unique IDs in
TLS ‘client hello’
encrypted using XOR
with changing round key

As we have already mentioned, there are two different methods used by the attackers to
spread Reductor. In the first scenario, the attackers use infected software installers with 32-
and 64-bit versions of Reductor included. These installers may be for popular Internet
Download Manager, Office Activator, etc.

In the second scenario, the targets are already infected with the COMpfun Trojan, which
uses COM CLSID for persistence. After getting into the browser’s address space, the Trojan
can receive the command to download additional modules from the C2. As a result, the
target’s browser downloaded Reductor’s custom dropper-decryptor.

The coding style is quite distinctive throughout the modules. Take a look at them in the
following table:

Feature Description

Strings
storage

All the strings in use, such as function names for resolving dynamic
addresses, are returned by the small functions. The developers probably
implemented them using the C preprocessor #define directive.



5/10

Function
address
dynamic
resolution

For every dynamic linked library in use, the developers implemented a
standalone function and a custom structure to store the addresses of its
functions for further use.

Extensive
use of
custom
structures

The developers used custom structures for every task: C2 communication,
thread synchronization, resolving of system function addresses, etc.

System fingerprinting hashes inside TLS ‘client random’

As mentioned above, Reductor adds its own ‘victim id’ inside TLS packets. The first four-byte
hash (cert_hash) is built using all of Reductor’s digital certificates. For each of them, the
hash’s initial value is the X509 version number. Then they are sequentially XORed with all
four-byte values from the serial number. All the counted hashes are XOR-ed with each other
to build the final one. The operators know this value for every victim, because it’s built using
their digital certificates.

The second four-byte hash (hwid_hash) is based on the target’s hardware properties:
SMBIOS date and version, Video BIOS date and version and hard drive volume ID. The
operators know this value for every victim because it’s used for the C2 communication
protocol. The resulting custom 16-byte structure to spoof the originally PRNG-generated
values looks like this:

1

2

3

4

5

6

struct client_hello_system_fingerprint {

DWORD initial_xor_key; // First four bytes generated by original system PRNG function

DWORD predefined_const; // Set to 0x45F2837D

DWORD cert_hash; // Reductor's digital certificates hash

DWORD hwid_hash // Target's hardware hash

};

The latter three fields are encrypted using the first four bytes – initial PRN XOR key. At every
round, the XOR key changes with the MUL 0x48C27395 MOD 0x7FFFFFFF algorithm. As a
result, the bytes remain pseudo random, but with the unique host ID encrypted inside.

PRNG patching

The table below enumerates the patched auxiliary and PRNG system functions.



6/10

Library Patched function Features

Auxiliary
functions

“ntdll.dll” RtlReleaseResource() Save auxiliary data like current thread ID
and current tick count;

memcpy() If “client hello” has to be copied, then
count cert_hash and hwid_hash, change
source bytes to encrypted
client_hello_system_fingerprint structure
and call original memcpy();

One of the C
runtime
libraries

time64() Save time passed since 1 January 1970;

“kernel32.dll”
or
“kernelbase.dll”

GetSystemTimeAsFileTime()

PRNG
functions

“nss3.dll” PK11_GenerateRandom() Call original PRNG function and generate
initial XOR key from its result. Change
PRNG result: set seventh byte to 1, then
save 0x45F2837D, hwid and cert hashes.
Encrypt the result and return it instead of
the original PRN. It will affect calls to
ssl3_SendClientHello() ->
ssl3_GetNewRandom(ss-
>ssl3.hs.client_random);

“advapi32.dll” CryptGenRandom() Spoof these system PRNG function
results in similar way with some minor
changes;

“bcrypt.dll” BCryptGenRandom()

“chrome.dll” PRNG function Find PRNG function by its binary code
template and patch it like all the
aforementioned.

Firefox nss3.dll PK11_GenerateRandom() patching

Reductor patches nss3.dll for Firefox. This library’s source code is publicly available.
PK11_GenerateRandom() is used in the /security/nss/lib/ssl/ssl3con.c in the
ssl3_GetNewRandom() function. The SSL3_RANDOM_LENGTH constant is 32 bytes, so



7/10

Reductor’s code changes all the results and the functions, which call to
ssl3_GetNewRandom() will receive the modified random data with the encrypted target
fingerprinting inside.

In this case, the caller function to ssl3_GetNewRandom(ss->ssl3.hs.client_random) is
ssl3_SendClientHello() in order to generate the client random data for the initial
communication handshake.

To affect the TLS handshake malware authors patched PK11_GenerateRandom() inside the Firefox
process memory

Patching PK11_GenerateRandom() would also affect the generation of any 256-bit (32 bytes)
initialization vector (IV) generation, for example, for AES 256 in ssl_SelfEncryptProtect() or
other crypto functions in NSS libraries used by Firefox. From our point of view, this would be
a side effect of Reductor with no additional purpose.

Installed digital certificates

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/10/02152758/compfun-successor-reductor-1.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/10/02152811/compfun-successor-reductor-2.png


8/10

Reductor samples hold DER-encoded root X509v3 certificates in the .data section to add on
the target hosts. The malware is also able to get additional certificates from the operators
through a named pipe.

Certificate SHA1 fingerprint CA for root
cert

Valid till (GMT)

119B2BE9C17D8C7C5AB0FA1A17AAF69082BAB21D ie-paypal 2031.11.17
22:56:10

546F7A565920AEB0021A1D05525FF0B3DF51D020 GeoTrust Rsa
CA

2031.11.17
22:56:10

959EB6C7F45B7C5C761D5B758E65D9EF7EA20CF3 GeoTrust Rsa
CA

2031.11.17
22:56:10

992BACE0BC815E43626D59D790CEF50907C6EA9B VeriSign, Inc. 2031.11.17
22:56:10

One of the decoded CA X509v3 certificates inside the Reductor malware

C2 communication

All C2 communications are handled in a standalone malware thread. Reductor sends HTTP
POST queries to the /query.php scripts on the C2s listed in its configuration. The POST
query contains the target’s unique hardware ID encrypted with AES 128. The C2 returns one
of the following encrypted commands.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/10/02152825/compfun-successor-reductor-3.png


9/10

C2
command

Features

hostinfo Get the host name

gettimeout Get the timeout value from the corresponding registry value

options Parse strings and set corresponding values in the system registries. So far
only one option is supported – timeout

domainlist Transmit the current C2 domains used by target

downfile Download the file of interest

upfile Upload the file of interest

execfile Create the process that executes mentioned file

nop Do nothing. Possibly used to check the connection with the host

kill Delete installed digital certificates, files, cookies and system registry values
including those related to COM CLSID or LSA notification package
persistence

deletefile Delete file at a specified path

certlist Renew the digital certificates installed on target

Conclusions

Turla has in the past shown many innovative ways to accomplish its goals, such as using
hijacked satellite infrastructure . This time, if we’re right that Turla is the actor behind this
new wave of attacks, then with Reductor it has implemented a very interesting way to mark a
host’s encrypted TLS traffic by patching the browser without parsing network packets. The
victimology for this new campaign aligns with previous Turla interests.

We didn’t observe any MitM functionality in the analyzed malware samples. However,
Reductor is able to install digital certificates and mark the targets’ TLS traffic. It uses infected
installers for initial infection through HTTP downloads from warez websites. The fact the
original files on these sites are not infected also points to evidence of subsequent traffic
manipulation.

File Hashes

27CE434AD1E240075C48A51722F8E87F
4E02B1B1D32E23975F496D1D1E0EB7A6
518AB503808E747C5D0DDE6BFB54B95A
7911F8D717DC9D7A78D99E687A12D7AD

[2]

https://securelist.com/compfun-successor-reductor/93633/


10/10

9C7E50E7CE36C1B7D8CA2AF2082F4CD5
A0387665FE7E006B5233C66F6BD5BB9D
F6CAA1BFCCA872F0CBE2E7346B006AB4

Domains and IPs

adstat.pw
bill-tat.pw

Browser
Digital Certificates
Encryption
HTTPS
Malware Descriptions
RAT Trojan
Trojan-Dropper
Turla

Authors

 GReAT

COMpfun successor Reductor infects files on the fly to compromise TLS traffic

Your email address will not be published. Required fields are marked *

https://securelist.com/tag/browser/
https://securelist.com/tag/digital-certificates/
https://securelist.com/tag/encryption/
https://securelist.com/tag/https/
https://securelist.com/tag/malware-descriptions/
https://securelist.com/tag/rat-trojan/
https://securelist.com/tag/trojan-dropper/
https://securelist.com/tag/turla/
https://securelist.com/author/great/

