

Technical Report

by

CrySyS Lab

http://www.crysys.hu/

Duqu 2.0:

A comparison to Duqu

v1.0 (10/Jun/2015)

Budapest, 2015

Authors:

Boldizsár Bencsáth, Gábor Ács-Kurucz, Gábor Molnár, Gábor Vaspöri, Levente Buttyán,

Roland Kamarás

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 2

Findings in brief

In October 2011, we analyzed a new threat what we named Duqu, and we showed that it has

close relationships to the infamous Stuxnet attack.

By courtesy of Kaspersky Lab, in late May 2015 we received samples about a new threat, with

the hint that it might be related to the Duqu attacks; however, these new samples are from

2014. We decided to carry out an individual research on the samples with the focus on the

connections between the original Duqu attack and the new threat, dubbed “Duqu 2.0”.

After analyzing the samples received, we think, that the adversaries behind Duqu malware are

back and active; while they modified their tools to be undetected by old methods, they also

strongly reused codes and ideas during their recent attacks. The numerous similarities that we

discovered between Duqu and Duqu 2.0 include the following:

 Similar string decryption routines related to Anti-Virus product strings

 Similar methods, magic number, bug and file format related to files encrypted with

AES by both threats

 Same non-standard CBC mode AES encryption used by both threats

 Extremely similar logging module with exactly the same magic numbers

 Similar C++-like coding and compiling style

In this report, we present supporting details and analysis for all the similarities listed above.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 3

Table of contents

1. Introduction ... 4

1.1. Hashes of the analyzed samples .. 6

2. Similarities and differences ... 7

2.1. General details ... 7

2.2. String decryption .. 9

2.3. AES encryption of the configuration file .. 14

2.4. Format of the (encrypted) configuration file ... 24

2.5. Logging functions ... 26

2.6. Command & Control communication .. 29

2.7. DLL imports .. 33

3. Indicators of Compromise ... 34

3.1. Detection based on communications .. 34

3.2. Yara rules to identify .. 36

4. Conclusion ... 37

5. References ... 37

6. Contact Information .. 39

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 4

1. Introduction

Stuxnet is probably the most well-known malware of our times. Its fame stems from the facts

that it targeted a very specific industrial facility, namely a uranium enrichment plant in Iran, it

aimed at physical destruction of uranium centrifuges, and it apparently accomplished its

mission successfully. In addition to all these characteristics, IT security experts also appreciate

its technical sophistication and the zero-day exploits that it used. Stuxnet was also an alarm to

the developed world: it shed light on the capabilities of advanced attackers, and at the same

time, on the numerous weaknesses of our computing infrastructure. Putting these two

together, people started to feel hopelessly vulnerable.

Yet, unfortunately, Stuxnet is not a unique example for a highly sophisticated targeted threat,

but there are numerous other pieces of malware of similar kind, including Duqu, Flame, Regin,

etc. Among those, Duqu is particularly interesting, not only because we discovered it back in

2011, but because our analysis pointed out that - while Duqu's objective is different - it has

very strong similarities to Stuxnet in terms of architecture, code, and methods to achieve

stealthiness. Today, it is widely believed within the IT security community that Duqu was

created by the same attackers who created Stuxnet.

And now we have a new member of the same family! Last month, we received interesting

samples from Kaspersky Lab with a hint that they might be related to the Duqu samples of

2011; however, these new samples are from 2014. Our common understanding was that it

would be interesting to figure out whether this new threat is indeed related to the old Duqu

attack, and we in the CrySyS Lab should try to focus our analysis efforts on answering this

question. It is important to emphasize that we did our analysis independently from Kaspersky

Lab: we did not read their preliminary report and they did not share any of their findings with

us (apart from the samples that we received from them).

The analysis results performed by Kaspersky Lab can be read in the following report:

https://securelist.com/blog/research/70504/the-mystery-of-duqu-

2-0-a-sophisticated-cyberespionage-actor-returns/

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 5

In this report, we present the results of our comparative analysis of the old version of Duqu
and the new version, codenamed “Duqu 2.0”. We concentrate on the description of the
relevant similarities and differences we have found between the two malware samples.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 6

1.1. Hashes of the analyzed samples

In the table below, one can see the MD5 fingerprints of the two samples we have examined

during our initial analysis:

Sample hashes (MD5) Information

c7c647a14cb1b8bc141b089775130834 main module

3f52ea949f2bd98f1e6ee4ea1320e80d main module

Table 1 – Hashes (MD5) of the samples we have analyzed

The first module will be referenced in this document with the name “c7c647”, and the second

with the name “3f52ea” according to the prefix of their MD5 hashes.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 7

2. Similarities and differences

In the following chapter, we will discuss the most conspicuous similarities and differences we

have found between the main modules of Duqu and Duqu 2.0.

2.1. General details

Both the two main modules of Duqu 2.0 we have analyzed (”c7c647” and ”3f52ea”) has 6

export functions which can be seen in the following figure:

Figure 1 – Structure of the first sample (“3f52ea”) – 6 export functions

Figure 2 – Structure of the second sample (“c7c647”) – 6 export functions

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 8

The new sample (both versions) is one big executable file that is linked by multiple modules.

The original Duqu had a main module that was divided into two sub-modules: an outside layer

and an internal part. In one version, the internal part was stored in a specific compressed

format, while in another version, which we investigated at a Duqu victim, it was stored in

cleartext in a resource data section of the main executable. The Duqu 2.0 version we

investigated is different: everything is incorporated in the main executable, but there are still

visible marks showing that the malware is linked/compiled from multiple different parts,

modules.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 9

2.2. String decryption

Some of the strings in Duqu 2.0 are obfuscated by XOR-based encryption. The actual routine

used is printed below:

.text:10012F6D test ecx, ecx

.text:10012F6F jnz short loc_10012F77

.text:10012F71 xor eax, eax

.text:10012F73 mov [edx], ax

.text:10012F76 retn

.text:10012F77 ; --

.text:10012F77

.text:10012F77 loc_10012F77: ;

.text:10012F77 mov eax, [ecx]

.text:10012F79 push esi

.text:10012F7A push edi

.text:10012F7B mov edi, 86F186F1h

.text:10012F80 xor esi, esi

.text:10012F82 xor eax, edi

.text:10012F84 mov [edx], eax

.text:10012F86 cmp ax, si

.text:10012F89 jz short loc_10012FA2

.text:10012F8B sub ecx, edx

.text:10012F8D

.text:10012F8D loc_10012F8D: ;

.text:10012F8D cmp [edx+2], si

.text:10012F91 jz short loc_10012FA2

.text:10012F93 add edx, 4

.text:10012F96 mov eax, [ecx+edx]

.text:10012F99 xor eax, edi

.text:10012F9B mov [edx], eax

.text:10012F9D cmp ax, si

.text:10012FA0 jnz short loc_10012F8D

Sample 1 – String decryption in Duqu 2.0 (assembly view)

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 10

The decompiled version of the above assembly code can be seen in the following sample:

unsigned int __fastcall xor_sub_10012F6D(int encrstr, int a2)

{

 unsigned int result; // eax@2

 int v3; // ecx@4

 if (encrstr)

 {

 result = *(_DWORD *)encrstr ^ 0x86F186F1;

 *(_DWORD *)a2 = result;

 if ((_WORD)result)

 {

 v3 = encrstr - a2;

 do

 {

 if (!*(_WORD *)(a2 + 2))

 break;

 a2 += 4;

 result = *(_DWORD *)(v3 + a2) ^ 0x86F186F1;

 *(_DWORD *)a2 = result;

 }

 while ((_WORD)result);

 }

 }

 else

 {

 result = 0;

 *(_WORD *)a2 = 0;

 }

 return result;

}

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 11

Sample 2 – String decryptor from Duqu 2.0 (2014)

The above string decryptor routine is a simple XOR decoder. It simply XORs consecutive 4-byte

blocks of the encrypted string buffer, given by its pointer in the first parameter of the

function, with a fixed 4-byte key (“0x86F186F1”). After the decryption of all consecutive 4-

byte blocks, the actual cleartext block is stored within the next 4 bytes of the output buffer,

pointed by parameter “a2”. The decrypted (cleartext) string is terminated with a “\0”

character, and if the decryptor cycle reaches the end of the (cleartext) string, the cleartext

string will be pointed by the address stored in output argument “a2”.

A closer look at the above C code reveals that the string decryptor routine actually has two

parameters: “encrstr” and “a2”. First, the decryptor function checks if the input buffer (the

pointer of the encrypted string) points to a valid memory area (i.e., it does not contain NULL

value). After that, the first 4 bytes of the encrypted string buffer is XORed with the key

“0x86F186F1” and the result of the XOR operation is stored in variable “result”. The first

DWORD (first 4 bytes) of the output buffer a2 is then populated by this resulting value

(*(_DWORD *)a2 = result;). Therefore, the first 4 bytes of the output buffer will

contain the first 4 bytes of the cleartext string.

If the first two bytes (first WORD) of the current value stored in variable “result” contain ‘\0’

characters, the original cleartext string was an empty string and the resulting output buffer

will be populated by a zero value, stored on 2 bytes. If the first half of the actual decrypted

block (“result” variable) contains something else, the decryptor routine checks the second half

of the block (“if (!*(_WORD *)(a2 + 2))”). If this WORD value is NULL, then

decryption will be ended and the output buffer will contain only one Unicode character with

two closing ’\0’ bytes.

If the first decrypted block doens’t contain zero character (generally this is the case), then the

decryption cycle continues with the next 4-byte encrypted block. The pointer of the output

buffer is incremeted by 4 bytes to be able to store the next cleartext block (”a2 += 4;”).

After that, the following 4-byte block of the ”ciphertext” will be decrypted with the fixed

decryption key (“0x86F186F1”). The result is then stored within the next 4 bytes of the output

buffer. Now, the output buffer contains 2 blocks of the cleartext string.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 12

The condition of the cycle checks if the decryption reached its end by checking the first half of

the current decrypted block. If it did not reached the end, then the cycle continues with the

decryption of the next input blocks, as described above. Before the decryption of each 4-byte

”ciphertext” block, the routine also checks the second half of the previous cleartext block to

decide whether the decoded string is ended or not.

The original Duqu used a very similar string decryption routine, which we printed in the

following figure below. We can see that this routine is an exact copy of the previously

discussed routine (variable ”a1” is analogous to ”encrstr” argument). The only difference

between the Duqu 2.0 and Duqu string decryptor routines is that the XOR keys differ (in

Duqu, the key is”0xB31FB31F”).

We can also see that the decompiled code of Duqu contains the decryptor routine in a more

compact manner (within a ”for” loop instead of a ”while”), but the two routines are

essentially the same. For example, the two boundary checks in the Duqu 2.0 routine (”if (

!*(_WORD *)(a2 + 2))” and ”while ((_WORD)result);”) are analogous to

the boundary check at the end of the ”for” loop in the Duqu routine (”if (!(_WORD)v4

|| !*(_WORD *)(result + 2))”). Similarly, the increment operation within the

head of the for loop in the Duqu sample (”result += 4”) is analogous to the increment

operation ”a2 += 4;” in the Duqu 2.0 sample.

int __cdecl b31f_decryptor_100020E7(int a1, int a2)

{

 _DWORD *v2; // edx@1

 int result; // eax@2

 unsigned int v4; // edi@6

 v2 = (_DWORD *)a1;

 if (a1)

 {

 for (result = a2; ; result += 4)

 {

 v4 = *v2 ^ 0xB31FB31F;

 *(_DWORD *)result = v4;

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 13

 if (!(_WORD)v4 || !*(_WORD *)(result + 2))

 break;

 ++v2;

 }

 }

 else

 {

 result = 0;

 *(_WORD *)a2 = 0;

 }

 return result;

}

Sample 3 – String decryptor from original Duqu (from “cmi4432.pnf” file)

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 14

2.3. AES encryption of the configuration file

The analyzed main module of Duqu 2.0 and also the old Duqu sample reads configuration

information from a special file. This configuration file is encrypted using the AES block cipher

in CBC mode with a CTS-like (Ciphertext Stealing) encryption of the last two cleartext blocks.

The format of the configuration file will be discussed in details in the next chapter.

Before the encryption of the configuration file, an AES wrapper object is created. This C++

object represents the context (parameters) of the encryption. Therefore, it also stores the

initialization vector (IV) of the encryption, the key of the cipher and the data to be encrypted.

The structure of this object’s class can be seen in the upper part of the next screenshot:

Figure 3 – Attributes of the AES wrapper class and an AES object

As we can see, the allocated memory area of an instance of the “aeswrapper” structure (class)

starts with a 16 bytes (128 bits) IV value (of course, the size of the IV equals the size of an AES

input block). It is followed by a 516-byte buffer (or other unused smaller attributes) which can

store the encryption key of the AES cipher. Size of this encryption key can be either 128, 192

or 256 bits (16, 24 or 32 bytes). The last 4 bytes of the “aeswrapper” structure contains the

pointer to the data to be encrypted.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 15

In addition to the attributes (IV, encryption key, pointer to a data buffer), the “aeswrapper”

class also contains methods. The most important methods are the “encrypt” and “initialize”

functions. As the name shows, the initialize method initializes the context (parameters)

of the encryption, therefore it sets the IV, key and data members of the “aeswrapper” object.

The IV is generated by “hand”, but the key is prepared from an initial key using the

prepare_key function. The encrypt method encrypts the data in the modified CBC-CTS-

like mode. The method uses an AES encryptor function. The nth_block method of the class

gives back a pointer to the n-th block of the data to be encrypted. Finally, the “aeswrapper”

class uses the last_block function to perform the CTS-like encryption mechanism at the

end. The function gives back a pointer not to the last partial (smaller than 16 bytes) input

block, but to the last 16 bytes of the input data buffer.

The implementation of AES prepare_key and encrypt methods are presumably copied

from function libraries.

The figure above shows the structures (structures of class instances) which we identified and

which are related to the encryption routine and the AES initialization, and the putative

attributes of these structures (classes). Using these structures, the disassembled code can be

more readable.

There is another structure in addition to the “aeswrapper” class called “aes” on the

screenshot above. An instance of this class represents an AES encryptor object. It has probably

3 attributes: key_schedule, precomputed and iteration_count.

In the following table, we can see the AES initialization routine (of the configuration file

encryption) of the old Duqu (on the left) and the new Duqu 2.0 sample (on the right) at

assembly code level. The decompiled code of the initialization function (for both malware

samples) can be seen in figure Sample 6. The AES initialization function initializes the

mentioned “aeswrapper” object, it sets the data buffer, prepares the encryption key, and

finally, generates the IV based on the magic constant.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 16

Duqu “netp” routine Duqu 2.0 “c7c64” routine

seg000:0002EE95 sub_2EE95 proc near ; CODE XREF:
sub_2D0A4+8Cp
seg000:0002EE95 ; sub_2EE50+36p
seg000:0002EE95
seg000:0002EE95 var_20 = byte ptr -20h
seg000:0002EE95
seg000:0002EE95 push ebp
seg000:0002EE96 mov ebp, esp
seg000:0002EE98 sub esp, 20h
seg000:0002EE9B push esi
seg000:0002EE9C push edi
seg000:0002EE9D mov [ebx+214h], eax
seg000:0002EEA3 push 8
seg000:0002EEA5 pop ecx
seg000:0002EEA6 lea eax, [ebp+var_20]
seg000:0002EEA9 push eax
seg000:0002EEAA lea eax, [ebx+10h]
seg000:0002EEAD mov esi, 10034600h
seg000:0002EEB2 lea edi, [ebp+var_20]
seg000:0002EEB5 push eax
seg000:0002EEB6 rep movsd
seg000:0002EEB8 call AES1_sub_2F9B1
seg000:0002EEBD pop ecx
seg000:0002EEBE pop ecx
seg000:0002EEBF pop edi
seg000:0002EEC0 xor eax, eax
seg000:0002EEC2 pop esi
seg000:0002EEC3
seg000:0002EEC3 loc_2EEC3: ; CODE XREF: sub_2EE95+3Dj
seg000:0002EEC3 mov ecx, eax
seg000:0002EEC5 xor ecx, 0DEADBABEh
seg000:0002EECB mov [ebx+eax*4], ecx
seg000:0002EECE inc eax
seg000:0002EECF cmp eax, 4
seg000:0002EED2 jb short loc_2EEC3
seg000:0002EED4 mov eax, ebx
seg000:0002EED6 leave
seg000:0002EED7 retn
seg000:0002EED7 sub_2EE95 endp

.text:1001551D sub_1001551D proc near ; CODE XREF:
sub_10007A22+28p
.text:1001551D ; sub_10007CB7+121p
.text:1001551D
.text:1001551D var_20 = byte ptr -20h
.text:1001551D arg_0 = dword ptr 8
.text:1001551D arg_4 = dword ptr 0Ch
.text:1001551D
.text:1001551D push ebp
.text:1001551E mov ebp, esp
.text:10015520 mov eax, [ebp+arg_0]
.text:10015523 lea edx, [ebp+var_20]
.text:10015526 sub esp, 20h
.text:10015529 push ebx
.text:1001552A push esi
.text:1001552B mov esi, [ebp+arg_4]
.text:1001552E mov ebx, ecx
.text:10015530 push edi
.text:10015531 push 8
.text:10015533 pop ecx
.text:10015534 mov [ebx+214h], eax
.text:1001553A lea edi, [ebp+var_20]
.text:1001553D rep movsd
.text:1001553F push 100h
.text:10015544 lea ecx, [ebx+10h]
.text:10015547 call AES_1_sub_1001690A
.text:1001554C pop ecx
.text:1001554D xor ecx, ecx
.text:1001554F
.text:1001554F loc_1001554F: ; CODE XREF: sub_1001551D+40j
.text:1001554F mov eax, ecx
.text:10015551 xor eax, 248561EFh ; MAGIC!
.text:10015556 mov [ebx+ecx*4], eax
.text:10015559 inc ecx
.text:1001555A cmp ecx, 4
.text:1001555D jb short loc_1001554F
.text:1001555F pop edi
.text:10015560 pop esi
.text:10015561 mov eax, ebx
.text:10015563 pop ebx
.text:10015564 mov esp, ebp
.text:10015566 pop ebp
.text:10015567 retn 0Ch
.text:10015567 sub_1001551D endp

Sample 4 – IV generation routine comparison (assembly view) – magic constants

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 17

In both cases, the highlighted part of the assembly code corresponds to the highlighted part

of the initialization routines in the decompiled versions of the code, which can be seen in

figure Sample 6. The only difference between the highlighted parts is the values of the magic

constants (“0xDEADBABE” vs. “0x248561EF”) which are used for the generation of the 128-bit

initialization vectors. The mentioned AES initialization routines (and also the common

encryption function) will be discussed later in this section in more details.

We also reverse engineered the encryption routine used by Duqu 2.0, which is illustrated in

the following block diagram:

Figure 4 – The applied config file encryption method used by the main module of Duqu 2.0 (and by the old

Duqu sample)

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 18

With the exception of the last two input blocks, consecutive blocks of the cleartext data are

encrypted with the AES encryption algorithm in CBC mode. Accordingly, the first block of the

input data (”P[0]”) is XORed with a fixed initialization vector (named as ”Fixed IV” in the figure

above). This 128-bit initialization vector (IV) differs between the old Duqu and the new Duqu

2.0 samples. The value of this IV is generated from a magic constant, as it can be seen in the

highlighted parts of the previous assembly code. As this magic constant is different in the old

and new samples, the generated IV will also be different.

The result of the previously mentioned XOR operation gives the first input block of the AES

encryption algorithm (“AES-256” is in use). The number 256 means that the AES algorithm has

256-bit key size. The block size of the AES cipher is constant 128 bits (16 bytes). “E[0]” is the

first output of the block cipher, so it will be the first encrypted block (“F[0]”).

Output of the block cipher (“E[0]”) is then XORed with the second input block (“P[1]”), and the

resulting block will be encrypted with AES-256. This procedure continues until the encryption

of the last but first block of the cleartext data.

If the size of the input data is an integer multiple of the block size of AES (i.e., 128 bits), then

the remaining last two blocks of the cleartext are encrypted in the same manner as the

previous input blocks. So, in this case, the whole encryption routine matches a simple CBC

mode encryption.

However, if the size of the input data is not an exact multiple of the AES block size, the last

partial block of the input data needs padding to be completed to a full block. In case of Duqu

2.0, the developers of the malware didn’t use padding in a traditional way. Instead, they use a

CTS-like (Ciphertext Stealing) method. The essence of the method used by the encryption

routine is that a part of the last but first block of the input data is encrypted twice using AES.

The last but first block (”P[n-1]”) of the cleartext data is XORed with the previous ciphertext

block (”E[n-2]”) and encrypted with AES-256 as previously. The result of this operation is the

”E[n-1]” output block. The ”E[n-1]” output block won’t be directly used as the (n-1)st

ciphertext block. Instead, the output ”E[n-1]” is splitted into two distinct parts: ”F[n-1]” and

another part which is then fed into the AES encryptor again.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 19

The last cleartext partial block (”P[n]”) – which has size less than 16 bytes – is completed from

its beginning to get a full AES input block. The data used for completing the last partial block is

taken from the end of the previous AES output block (”E[n-1]”). The resulting block will be fed

into the AES-256 cipher in the last step of the encryption process. The output of the last

invocation of the AES cipher will be the last ciphertext block (”F[n]”). The output of the last

but first invocation of the AES encryptor (”E[n-1]”) is split into two parts, and the first part of

size size_of_the_last_cleartext_block will be the (n-1)st ciphertext block (”F[n-

1]”).

The old Duqu samples used exactly the same encryption method. The decompiled code of the

AES encryptor of Duqu can be seen in the following sample, and one can see that this code

implements the method we have just explained and illustrated in the block diagram of Figure

8.

void aeswrapper::encrypt(aeswrapper *this)

{

 unsigned __int8 *cursor, *first_block, *prev_encrypted_block,

 *current_block, *last_block;

 int i, j, offset_to_iv, offset_to_previous_block;

 // First block

 cursor = aeswrapper::nth_block(this, 0);

 offset_to_iv = (char *)this - (char *)cursor;

 i = 16;

 do

 {

 *cursor ^= cursor[offset_to_iv]; // Buffer overflow if data

 ++cursor; // is under 16 bytes

 --i;

 }

 while (i);

 first_block = aeswrapper::nth_block(this, 0);

 AES::encrypt(&this->aes, first_block, first_block);

 // Other full blocks

 j = 1;

 if ((this->data->vtable->length(this->data) & 0xFFFFFFF0) > 0x10)

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 20

 {

 do

 {

 prev_encrypted_block = aeswrapper::nth_block(this, j - 1);

 cursor = aeswrapper::nth_block(this, j);

 offset_to_previous_block = prev_encrypted_block - cursor;

 i = 16;

 do

 {

 *cursor ^= cursor[offset_to_previous_block];

 ++cursor;

 --i;

 }

 while (i);

 current_block = aeswrapper::nth_block(this, j);

 AES::encrypt(&this->aes, current_block, current_block);

 ++j;

 }

 while (j < this->data->vtable->length(this->data) >> 4);

 }

 // Last block

 if (this->data->vtable->length(this->data) & 0xF)

 {

 last_block = aeswrapper::last_block(this);

 AES::encrypt(&this->aes, last_block, last_block); // Buffer underwrite

 // if data is under 16

 // bytes

 }

}

Sample 5 – Main file encryption routine (same in the new and old sample) with implementation bugs –

highlighted (red comments)

The next table compares the AES initialization routines of the old Duqu sample (upper part of

the table) and the main module of Duqu 2.0 (lower part of the table).

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 21

First, the initialization routine copies the pointer of the input data buffer into the “data”

member of the “aeswrapper” object. The routine takes this pointer as its second parameter.

The first parameter is the pointer (reference) of the object instance, since in C++, the first

(hidden) parameter of a (non-static) class method is always the pointer of the object, or in

other words, the “this” pointer. In case of Duqu 2.0, the routine has a third parameter, the

pointer to the buffer containing the key.

After that, the content of the “key” buffer (which is a global buffer in the first case) is copied

into the local “key_” buffer in both cases. Then the prepare_key method of the AES object

prepares the final encryption key based on this key, and feeds it into the “aeswrapper” object.

Invocation of the prepare_key method can also be seen in the assembly view (see Sample

4.), the method is referred by the name AES1_sub_2F9B1 in case of Duqu and

AES_1_sub_1001690A in case of Duqu 2.0. In the Duqu 2.0 case, the function has one

more parameter, as this can also be seen in the assembly view, and the length of the AES key

is chosen as 256 bits.

Finally, the remaining part of the code initializes the IV member of “aeswrapper” object. Every

byte of the IV is generated by XORing the index of the actual byte with a magic constant

(“0xDEADBABE” and “0x248561EF”, respectively, in the two cases). Byte index starts from

zero.

aeswrapper *aeswrapper::initialize(aeswrapper *this, buffer *data)

{

 unsigned int i;

 char key_[32];

 this->data = data;

 // Key is a constant global variable with fixed value

 qmemcpy(key_, key, sizeof(key_));

 // AES::prepare_key assumes that the key is always 256 bits

 AES::prepare_key(&this->aes, key_);

 i = 0;

 do

 {

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 22

 this->iv[i] = i ^ 0xDEADBABE; // Magic value

 ++i;

 }

 while (i < 4);

 return this;

}

aeswrapper *aeswrapper::initialize(aeswrapper *this, buffer *data,

 char *key

)

{

 unsigned int i;

 char key_[32];

 this->data = data;

 // Key is an argument

 qmemcpy(key_, key, sizeof(key_));

 // AES::prepare_key takes a key_length argument, supports 128, 192, 256

 AES::prepare_key(&this->aes, key_, 256);

 i = 0;

 do

 {

 this->iv[i] = i ^ 0x248561EF; // Magic value

 ++i;

 }

 while (i < 4);

 return this;

}

Sample 6 – Old Duqu and new Duqu 2.0 encryption initialization routine with differences – highlighted (red

comments)

As we can see, there are only three small differences between the routines: the magic

constants used by the IV generation, the fact that in Duqu the key is a constant global variable

with fixed value while in Duqu 2.0 it is an argument of the initialization function, and finally,

the possible length of the key.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 23

In case of Duqu, the prepare_key function assumes that the key is always 256 bits, while in

case of Duqu 2.0, the prepare_key function takes the key length as an argument. Key

length can be 128, 192 or 256 bits.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 24

2.4. Format of the (encrypted) configuration file

Under the encryption layer (which is identical in the new and old samples as described in the

previous section), the configuration file format of the new Duqu 2.0 samples is very similar to

the old Duqu config file format. For an overview, see Figure 5 below.

Figure 5 – File format found in Duqu (first diagram) and Duqu 2.0 (second diagram)

(Rectangles always denote little endian 4 byte integers if not stated otherwise)

The format is designed to hold key-value pairs. The keys are always 4-byte long, and the

values can be of arbitrary size. We believe that the keys are timestamps and the values are

configuration entries, although the file format could hold any other similarly structured

information (e.g. configurations).

The old file format begins with 4 bytes whose value is undefined. In the serialization process,

it is read from an uninitialized buffer, and it is ignored in the deserialization process. The new

file format does not have such a beginning byte sequence.

The main part of the file format is surrounded by 4 signature bytes at the beginning and at the

end. The byte sequence in the old Duqu file format is 0x839172FF, and in the new Duqu 2.0

version, it is 0x7749CB4D.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 25

In both cases, the next integer indicates the number of entries, followed by the entries

themselves.

Each entry begins with a 4-byte key, and then the value. In the new format, the value always

begins with 13 bytes (that can be logically divided into four 4 byte integers and a 1 byte value:

4+4+1+4+4), but in the old format, this is missing. Furthermore, the value contains a variable

size part in both formats. This is a length prefixed buffer that can hold arbitrary data.

In essence, the only difference between the Duqu and the Duqu 2.0 config file formats is the

presence of the undefined 4 bytes at the beginning of the file in the old version, and the

presence of the 13 additional value bytes in the new version.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 26

2.5. Logging functions

We’ve identified a characteristic logging function that is present in both Duqu and Duqu 2.0,

and is used extensively in the networking (mainly HTTP handling) part of the code. The logging

function itself is identical, and the data structure used for storing log entries is very similar.

The Duqu version of the data structure has embedded function pointers, while the Duqu 2.0

version uses a virtual function table like structure. The main difference from a C++ virtual

function table is that the pointer to the table is the last field of the associated structure

instead of the first field (see Figure 6).

In general, change in the coding style can be seen all over the code. While Duqu uses object

oriented style that is similar, but not identical to what C++ compilers do, Duqu 2.0 moved

mainly to “real” C++, but there are still deviations from the standard C++ style (like the

previously function table).

Figure 6 – Log entry structure and the associated virtual function table in Duqu and Duqu 2.0

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 27

Both the Duqu and Duqu 2.0 avoids storing the messages logged through this function. In both

codebase, a “handle_log_entry” function is called after creating the log entry structure, but

this function throws the object away (frees the memory) and does not print or save it. The

authors probably used C/C++ macros to avoid detailed logging in release builds, but in this

case we still see the logging function invocation. In this case, the macro was probably placed

in the function that should have printed the log message (handle_log_entry), and since this is

a virtual function, the compiler could not optimize out the function invocations directly.

The logging function is called equal times in the Duqu and the Duqu 2.0 samples, and the

invocation is always very similar (see Figure 7). The arguments are usually not strings

describing the event directly, but 4 byte magic numbers. The logging function is invoked equal

times, and the magic numbers are almost always identical in Duqu and Duqu 2.0.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 28

Figure 7 – References to the logger function in Duqu and Duqu 2.0, and one of the invocations

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 29

2.6. Command & Control communication

The network communication methods used by Duqu 2.0 are described in the following list.

SocketServer1:

In export function nr1, if in the config the "startSockServer" parameter is set,

it will start a server accordingly

SocketServer2:

Binds between ports 17000 and 17100, can be configured to be client or server

GifServer:

With Custom HTTP Server implementation, possibly based on SocketServer2

PipeComm:

PIPE or IPC communication, customizable network communication

HttpClient:

WinHTTP-based, simple client, uses "COUNTRY=" in cookie parameters,

(standard HTTP client)

Table 2 – Network communication methods used by Duqu 2.0

Duqu has used a very unique user agent string when communicating over HTTP:

Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.9.2.9)

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 30

In contrast, Duqu 2.0 chooses user agent string randomly from a large set of often used values

listed in Sample 7.

The following list shows the browser agent strings found in Duqu 2.0:

Mozilla/5.0 (Windows NT 5.1) AppleWebKit/535.6 (KHTML, like Gecko)

Chrome/16.0.897.0 Safari/535.6

Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0;

chromeframe/11.0.696.57)

Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.0; Trident/5.0;

chromeframe/11.0.696.57)

Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; InfoPath.1;

SV1; .NET CLR 3.8.36217; WOW64; en-US)

Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; WOW64;

Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR

3.0.30729; .NET CLR 1.0.3705; .NET CLR 1.1.4322)

Mozilla/5.0 (Windows NT 6.2; WOW64; rv:15.0) Gecko/20120910144328

Firefox/15.0.2

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; SLCC2; .NET CLR

2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0;

.NET4.0C; .NET4.0E)

Mozilla/5.0 (Windows NT 6.1; rv:6.0) Gecko/20110814 Firefox/6.0

Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; .NET

CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 2.0.50727; Media Center PC 6.0)

Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 5.2; Trident/4.0; Media Center

PC 4.0; SLCC1; .NET CLR 3.0.04320)

Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0;

FunWebProducts)

Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.15 (KHTML, like Gecko)

Chrome/24.0.1295.0 Safari/537.15

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 31

Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/5.0)

Mozilla/5.0 (Windows NT 6.1; rv:12.0) Gecko/20120403211507 Firefox/12.0

Mozilla/5.0 (Windows NT 6.2) AppleWebKit/537.4 (KHTML, like Gecko)

Chrome/22.0.1229.94 Safari/537.4

Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:5.0) Gecko/20110619 Firefox/5.0

Mozilla/5.0 (Windows; U; MSIE 7.0; Windows NT 6.0; en-US)

Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; SLCC1; .NET

CLR 3.0.4506.2152; .NET CLR 3.5.30729; .NET CLR 1.1.4322)

Mozilla/5.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4325)

Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/4.0; GTB7.4; InfoPath.1;

SV1; .NET CLR 2.8.52393; WOW64; en-US)

Mozilla/5.0 (Windows NT 6.1) AppleWebKit/535.7 (KHTML, like Gecko) Chrome/16.0.912.77

Safari/535.7ad-imcjapan-syosyaman-xkgi3lqg03!wgz

Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 5.1; FDM; .NET CLR 1.1.4322)

Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0; SLCC2; .NET CLR

2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; InfoPath.2;

.NET CLR 1.1.4322; .NET4.0C; Tablet PC 2.0)

Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0; GTB6.5; QQDownload

534; Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) ; SLCC2; .NET CLR

2.0.50727; Media Center PC 6.0; .NET CLR 3.5.30729; .NET CLR 3.0.30729)

Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 5.1; .NET CLR 1.1.4322)

Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)

chromeframe/10.0.648.205

Mozilla/5.0 (Windows NT 6.1; rv:15.0) Gecko/20120716 Firefox/15.0a2

Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko)

Chrome/17.0.963.66 Safari/535.11

Mozilla/5.0 (Windows NT 6.0; WOW64) AppleWebKit/535.11 (KHTML, like Gecko)

Chrome/17.0.963.56 Safari/535.11

Mozilla/5.0 (Windows NT 6.2) AppleWebKit/537.11 (KHTML, like Gecko)

Chrome/23.0.1271.26 Safari/537.11

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 32

Mozilla/5.0 (Windows NT 6.1; U; ru; rv:5.0.1.6) Gecko/20110501 Firefox/5.0.1

Firefox/5.0.1

Mozilla/5.0 (Windows NT 6.1.1; rv:5.0) Gecko/20100101 Firefox/5.0

Mozilla/5.0 (compatible; MSIE 7.0; Windows NT 5.2; WOW64; .NET CLR 2.0.50727)

Mozilla/5.0 (Windows NT 6.1; WOW64; rv:6.0a2) Gecko/20110612 Firefox/6.0a2

Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.16) Gecko/20120427

Firefox/15.0a1

Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; .NET CLR 1.1.4322;

.NET CLR 2.0.50727)

Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.11 (KHTML, like Gecko)

Chrome/23.0.1271.17 Safari/537.11

Mozilla/5.0 (Windows NT 5.1; rv:6.0) Gecko/20100101 Firefox/6.0 FirePHP/0.6

Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)

Mozilla/5.0 (Windows NT 6.2; Win64; x64; rv:16.0.1) Gecko/20121011 Firefox/16.0.1

Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:5.0) Gecko/20100101 Firefox/5.0

Mozilla/5.0 (Windows NT 6.0; WOW64) AppleWebKit/535.11 (KHTML, like Gecko)

Chrome/17.0.963.66 Safari/535.11

Mozilla/5.0 (compatible; MSIE 7.0; Windows NT 6.0; SLCC1; .NET CLR 2.0.50727; Media

Center PC 5.0; c .NET CLR 3.0.04506; .NET CLR 3.5.30707; InfoPath.1; el-GR)

Mozilla/5.0 (Windows NT 6.1; U;WOW64; de;rv:11.0) Gecko Firefox/11.0

Mozilla/3.0 (Windows NT 6.1; rv:2.0.1) Gecko/20100101 Firefox/5.0.1

Mozilla/5.0 (Windows; U; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 2.0.50727)

Mozilla/5.0 (Windows NT 6.1; de;rv:12.0) Gecko/20120403211507 Firefox/12.0

Sample 7 –48 Browser agent strings in Duqu 2.0

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 33

2.7. DLL imports

Duqu 2.0 uses more than one method to import functions from DLLs. One of the methods

utilizes a hash method to represent function names as 4 byte integers. It iterates through all

importable function and finds the one whose function name hash matches the given hash.

This hash function uses a magic number. A very similar import method and hash function is

used in Duqu and Duqu 2.0 although the magic numbers are different: 0x86F186F1 and

0xB31FB31F. Note that even the inner structure of the magic numbers are similar (2x2 bytes).

Sample 8 – Hash function used for imports in Duqu and Duqu 2.0

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 34

3. Indicators of Compromise

3.1. Detection based on communications

The malware can transmit information through HTTP traffic. It is most likely that one or more
infected computers can be proxy points towards the attacker, meaning that other infected
computers communicate with these proxies. These proxies can act as HTTP or HTTPS servers.
For HTTPS, a self signed certificate is created by the malware itself. (Most likely by contacting
gpl3.selfsigned.org). The Common Name (CN) field seems to be “*” in the created certificate.
During data transfer, the malware uses <5 random numbers>.gif for file name and a
843-byte GIF file + additional random bytes. The transmissions may be protected by AES.

One possible way to detect such transmission (if cleartext traffic is somehow available) to
detect the actual 843-byte GIF file. For the known two samples, this GIF portion was identical.

The actual image in hex dump is the following:

00000000 47 49 46 38 39 61 0b 00 0b 00 70 00 00 21 f9 04 |GIF89a....p..!..|

00000010 01 00 00 fc 00 2c 00 00 00 00 0b 00 0b 00 87 00 |.....,..........|

00000020 00 00 00 00 33 00 00 66 00 00 99 00 00 cc 00 00 |....3..f........|

00000030 ff 00 2b 00 00 2b 33 00 2b 66 00 2b 99 00 2b cc |..+..+3.+f.+..+.|

00000040 00 2b ff 00 55 00 00 55 33 00 55 66 00 55 99 00 |.+..U..U3.Uf.U..|

00000050 55 cc 00 55 ff 00 80 00 00 80 33 00 80 66 00 80 |U..U......3..f..|

00000060 99 00 80 cc 00 80 ff 00 aa 00 00 aa 33 00 aa 66 |............3..f|

00000070 00 aa 99 00 aa cc 00 aa ff 00 d5 00 00 d5 33 00 |..............3.|

00000080 d5 66 00 d5 99 00 d5 cc 00 d5 ff 00 ff 00 00 ff |.f..............|

00000090 33 00 ff 66 00 ff 99 00 ff cc 00 ff ff 33 00 00 |3..f.........3..|

000000a0 33 00 33 33 00 66 33 00 99 33 00 cc 33 00 ff 33 |3.33.f3..3..3..3|

000000b0 2b 00 33 2b 33 33 2b 66 33 2b 99 33 2b cc 33 2b |+.3+33+f3+.3+.3+|

000000c0 ff 33 55 00 33 55 33 33 55 66 33 55 99 33 55 cc |.3U.3U33Uf3U.3U.|

000000d0 33 55 ff 33 80 00 33 80 33 33 80 66 33 80 99 33 |3U.3..3.33.f3..3|

000000e0 80 cc 33 80 ff 33 aa 00 33 aa 33 33 aa 66 33 aa |..3..3..3.33.f3.|

000000f0 99 33 aa cc 33 aa ff 33 d5 00 33 d5 33 33 d5 66 |.3..3..3..3.33.f|

00000100 33 d5 99 33 d5 cc 33 d5 ff 33 ff 00 33 ff 33 33 |3..3..3..3..3.33|

00000110 ff 66 33 ff 99 33 ff cc 33 ff ff 66 00 00 66 00 |.f3..3..3..f..f.|

00000120 33 66 00 66 66 00 99 66 00 cc 66 00 ff 66 2b 00 |3f.ff..f..f..f+.|

00000130 66 2b 33 66 2b 66 66 2b 99 66 2b cc 66 2b ff 66 |f+3f+ff+.f+.f+.f|

00000140 55 00 66 55 33 66 55 66 66 55 99 66 55 cc 66 55 |U.fU3fUffU.fU.fU|

00000150 ff 66 80 00 66 80 33 66 80 66 66 80 99 66 80 cc |.f..f.3f.ff..f..|

00000160 66 80 ff 66 aa 00 66 aa 33 66 aa 66 66 aa 99 66 |f..f..f.3f.ff..f|

00000170 aa cc 66 aa ff 66 d5 00 66 d5 33 66 d5 66 66 d5 |..f..f..f.3f.ff.|

00000180 99 66 d5 cc 66 d5 ff 66 ff 00 66 ff 33 66 ff 66 |.f..f..f..f.3f.f|

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 35

00000190 66 ff 99 66 ff cc 66 ff ff 99 00 00 99 00 33 99 |f..f..f.......3.|

000001a0 00 66 99 00 99 99 00 cc 99 00 ff 99 2b 00 99 2b |.f..........+..+|

000001b0 33 99 2b 66 99 2b 99 99 2b cc 99 2b ff 99 55 00 |3.+f.+..+..+..U.|

000001c0 99 55 33 99 55 66 99 55 99 99 55 cc 99 55 ff 99 |.U3.Uf.U..U..U..|

000001d0 80 00 99 80 33 99 80 66 99 80 99 99 80 cc 99 80 |....3..f........|

000001e0 ff 99 aa 00 99 aa 33 99 aa 66 99 aa 99 99 aa cc |......3..f......|

000001f0 99 aa ff 99 d5 00 99 d5 33 99 d5 66 99 d5 99 99 |........3..f....|

00000200 d5 cc 99 d5 ff 99 ff 00 99 ff 33 99 ff 66 99 ff |..........3..f..|

00000210 99 99 ff cc 99 ff ff cc 00 00 cc 00 33 cc 00 66 |............3..f|

00000220 cc 00 99 cc 00 cc cc 00 ff cc 2b 00 cc 2b 33 cc |..........+..+3.|

00000230 2b 66 cc 2b 99 cc 2b cc cc 2b ff cc 55 00 cc 55 |+f.+..+..+..U..U|

00000240 33 cc 55 66 cc 55 99 cc 55 cc cc 55 ff cc 80 00 |3.Uf.U..U..U....|

00000250 cc 80 33 cc 80 66 cc 80 99 cc 80 cc cc 80 ff cc |..3..f..........|

00000260 aa 00 cc aa 33 cc aa 66 cc aa 99 cc aa cc cc aa |....3..f........|

00000270 ff cc d5 00 cc d5 33 cc d5 66 cc d5 99 cc d5 cc |......3..f......|

00000280 cc d5 ff cc ff 00 cc ff 33 cc ff 66 cc ff 99 cc |........3..f....|

00000290 ff cc cc ff ff ff 00 00 ff 00 33 ff 00 66 ff 00 |..........3..f..|

000002a0 99 ff 00 cc ff 00 ff ff 2b 00 ff 2b 33 ff 2b 66 |........+..+3.+f|

000002b0 ff 2b 99 ff 2b cc ff 2b ff ff 55 00 ff 55 33 ff |.+..+..+..U..U3.|

000002c0 55 66 ff 55 99 ff 55 cc ff 55 ff ff 80 00 ff 80 |Uf.U..U..U......|

000002d0 33 ff 80 66 ff 80 99 ff 80 cc ff 80 ff ff aa 00 |3..f............|

000002e0 ff aa 33 ff aa 66 ff aa 99 ff aa cc ff aa ff ff |..3..f..........|

000002f0 d5 00 ff d5 33 ff d5 66 ff d5 99 ff d5 cc ff d5 |....3..f........|

00000300 ff ff ff 00 ff ff 33 ff ff 66 ff ff 99 ff ff cc |......3..f......|

00000310 ff ff ff 00 00 00 00 00 00 00 00 00 00 00 00 08 |................|

00000320 28 00 ed 09 1c 48 50 20 3c 7b 07 13 22 5c 68 70 |(....HP <{.."\hp|

00000330 e0 41 87 0d 1f 2a 64 d8 b0 e2 c4 8b 10 09 4a 8c |.A...*d.......J.|

00000340 c8 10 63 c5 8f 1b 37 06 04 00 3b |..c...7...;|

0000034b

Sample 9 – Hexdump of the actual GIF image

The image itself is a small picture, basic color is yellow and there are some orange dots in it:

Sample 10 – The actual GIF image

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 36

3.2. Yara rules to identify

For the main binary of the malware, we propose the following rules for detection:

rule duqu2

{

strings:

$a = { 0F B6 C8 8B C1 0F AF C9 83 E0 ?? C1 E0 ?? 05 ?? ?? ?? ?? 0F

AF D8 8B ?? ?? ?? 33 D9 }

$b = { 0F 84 ?? ?? ?? ?? 0F B7 06 B9 ?? ?? ?? ?? 33 C1 3D ?? ?? ??

?? 0F 85 ?? ?? ?? ?? 8B }

condition:

any of them

}

Sample 11 – Yara rules for detection of Duqu 2.0

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 37

4. Conclusion

We’ve made an initial analysis to prove our claims that there is a strong connection between

Duqu and Duqu 2.0 malwares. Our main goal was to highlight the most striking similarities and

differences between the samples. Similarities shows that the developers of Duqu 2.0 have

reused the code basis of the old Duqu specimens and the differences found in the binaries

indicates that the developers of Duqu have modified their tools to avoid detections.

5. References

[CrySySDuqu]

CrySyS, Duqu: A Stuxnet-like malware found in the wild, v0.93 (14/Oct/2011)

http://www.crysys.hu/publications/files/bencsathPBF11duqu.pdf

[SymantecDuqu]

Symantec, W32.Duqu: The precursor to the next Stuxnet, Version 1.4 (November 23,

2011)

http://www.symantec.com/content/en/us/enterprise/media/security_response/white

papers/w32_duqu_the_precursor_to_the_next_stuxnet.pdf

[KasperskyDuqu]

Kaspersky Lab, Duqu: Steal Everything, Kaspersky Lab’s investigation - “The Mystery of

Duqu” in blogs

http://www.kaspersky.com/about/press/major_malware_outbreaks/duqu

[SymantecDossier]

Symantec, W32.Stuxnet Dossier, Version 1.4 (February 2011)

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 38

http://www.symantec.com/content/en/us/enterprise/media/security_response/white

papers/w32_stuxnet_dossier.pdf

[KasperskyDuqu2.0]

Kaspersky Lab, The Duqu 2.0: Technical Details, Version: 1.9.8 (2.June.2015)

https://securelist.com/blog/research/70504/the-mystery-of-duqu-2-0-a-sophisticated-

cyberespionage-actor-returns/

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 39

6. Contact Information

Questions and comments are welcome. The corresponding author is
Dr. Boldizsár Bencsáth
bencsath@crysys.hu

Laboratory of Cryptography and System Security
CrySyS – http://www.crysys.hu/
Budapest University of Technology and Economics
Department of Telecommunications
1117 Magyar Tudósok Krt. 2.
Budapest, Hungary

GPG BENCSATH Boldizsar <boldi@crysys.hu>
Key ID 0x64CF6EFB
Fingerprint 286C A586 6311 36B3 2F94 B905 AFB7 C688 64CF 6EFB

