
1/20

Divergent: "Fileless" NodeJS Malware Burrows Deep
Within the Host

blog.talosintelligence.com/2019/09/divergent-analysis.html

 
Update (09/27/2019): Additional information regarding the malware interaction with various
online advertisements has been included to highlight the click-fraud related network
communications associated with Divergent.

https://blog.talosintelligence.com/2019/09/divergent-analysis.html
https://1.bp.blogspot.com/-nqHVaS7-u2k/XY0O1vBgoLI/AAAAAAAABTQ/Pfw41x6j8hQlcXJC9sWIk4qBK1g8ae31QCLcBGAsYHQ/s1600/image10.png


2/20

Executive summary

 
Cisco Talos recently discovered a new malware loader being used to deliver and infect
systems with a previously undocumented malware payload called "Divergent." We first dove
into this malware after we saw compelling data from Cisco Advanced Malware Protection's
(AMP) Exploit Prevention.

This threat uses NodeJS — a program that executes JavaScript outside of a web browser —
as well as the legitimate open-source utility WinDivert to facilitate some of the functionality in
the Divergent malware. The use of NodeJS is not something commonly seen across
malware families.

The observed malware campaigns associated with Divergent feature the use of persistence
techniques most commonly associated with "fileless" malware, leaving behind few artifacts
for researchers to look at. This malware can be leveraged by an attacker to target corporate
networks and appears to be primarily designed to conduct click-fraud. It also features several
characteristics that have been observed in other click-fraud malware, such as Kovter.

Technical Details

 
Talos has identified a new moduler malware that is being used to facilitate the installation of
a previously undocumented malware family, which we are referring to as Divergent, due to
the naming convention used by the malware during variable declaration and the creation of
environment variables. While we were unable to determine the delivery mechanism used, we
were able to perform analysis of the malware loader as well as the Divergent malware that it
is used to install on victim systems. Divergent is a malware family designed to generate
revenue for attackers via the use of click-fraud, similar to other click-fraud malware such as
Kovter. Technical details associated with both the installation and operation of the Divergent
malware are described in the following sections.

Installation

 
The malware has many similarities with other popular fileless malware families, particularly
Kovter. Like Kovter, it relies heavily on the registry for staging and storage of configuration
data while avoiding more traditional on-access endpoint scanning of files on disk. It also uses
a key in the registry to maintain persistence, and relies on PowerShell to install itself on the
infected host.

When first delivered and executed on a victim's machine, the malware is in the portable
executable (PE) format. Its first task, however, is to install itself to the system in a less
suspicious form, namely as an HTML Application (HTA) that will load the malware from the

https://nodejs.org/en/
https://www.reqrypt.org/windivert.html
https://en.wikipedia.org/wiki/Fileless_malware


3/20

registry.

Installation begins by creating several registry keys containing the different parts of the
loader as well as the data of the malware PE. The malware reads all the information
embedded in its data section and creates three new randomly named registry keys, each
holding a different stage of the loader code needed to execute the malware PE using
reflective injection.

Next, the HTA loader is written to the CSIDL_COMMON_APPDATA folder (typically
C:\ProgramData\) and set to execute each time the user logs on by adding an entry to the
"HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run" registry key.

An example of an HTA loader and the accompanying registry entries necessary to execute
the malware once installed are:

17T21vYHOb.hta ::
e4a49af295d6e61877a458a014fe63b733be942c506496b53070aa3d9ca421d8
ZfjrAilGdH.reg ::
5863f35959aa542a27319e098f40166f3ace09d265f4ec6d739318c0b739745e

 
This registry file contains the following subkeys in the key HKLM\Software\ZfjrAilGdH which
are set by the installation process (the key names are randomly generated and will be
different for each installation):

Lvt4wLGLMZ :: JScript executed by ZfjrAilGdh.hta
kCu2DZ9WI0 :: PowerShell used to reflectively inject the malware
4FLJBnefsN :: hex data representing the malware PE

Fileless malware loader

The HTA is heavily obfuscated but when cleaned up, evaluates to an eval of the JScript in
the registry key "HKLM\Software\ZfjrAilGdh\Lvt4wLGLMZ" via a
"ActiveXObject.WScript.Shell.RegRead" (shown here as pseudo code):

 

The JScript in the reg key executes the following powershell (shown here deobfuscated):
 

https://1.bp.blogspot.com/-XBGFcv3d8qw/XY0PAxOyTXI/AAAAAAAABTU/Px0JMXvNYF8bhIg9XCNULea5EMFOqaT6ACLcBGAsYHQ/s1600/image6.png
https://1.bp.blogspot.com/-UTmE75nbvVQ/XY0PFP8kRbI/AAAAAAAABTY/LjYBX983qtMcRYKm1YrnWhadG9JQJaHrwCLcBGAsYHQ/s1600/image14.png


4/20

This code will execute the code found in the registry location
HKLM\Software\ZfjrAilGdH\kCu2DZ9WI0 after setting the variable regkeyname to the data
found in the registry location HKLM\Software\ZfjrAilGdH\4FLJBnefsN. The registry key
4FLJBnefsN contains the bytes of the malicious portable executable (PE) with a modified
DOS header, namely the MZ has been replaced with null bytes.

The code from kCu2DZ9WI0 is a version of PowerShell Empire's reflective PE injection script
that will inject the malware:

At this point, the malware executes.
 

 

Divergent malware

There are two main parts of this threat: one to receive and execute commands from a C2
server and another to execute external component scripts. The configuration for each part is
stored in the registry in JSON format.

The component configuration describes which components should be executed and how.
This example configuration will execute three different JScript components:

 

https://1.bp.blogspot.com/-JbcYX3l3MMs/XY0PMoJoZqI/AAAAAAAABTg/NYOkcN1RXkUpjbClinvhpOKmST_XBTC3ACLcBGAsYHQ/s1600/image3.png
https://1.bp.blogspot.com/-E-QAMeX_Bns/XZJCgW6myII/AAAAAAAABWw/87kbhmV6-w4jI4S4R4tcdKz-vKZZwNqZwCLcBGAsYHQ/s1600/infect-process.jpg


5/20

Each entry is parsed, and each filename and args value is passed along for execution by the
malware. Detailed analysis of the call_03 (see Now I See You), all_socks_05 (see Click
Fraud), and block_av_01 (see Block AV Component) components can be found below.

The network configuration stores two classes of C2: "accl" is a list of URLs that the malware
should attempt to contact for system information delivery and for commands to execute,
while "acll" is a list of URLs the malware should attempt to contact for possible updates to
either configuration file. The default values from ZfjrAilGdH.reg are:

 

https://1.bp.blogspot.com/-IA5bH8MZtEI/XY0PV71XVqI/AAAAAAAABTo/-bX8jyEyt3kzo1sGNghyJkr-MDKSUtZBACLcBGAsYHQ/s1600/image12.png


6/20

Notice that "version" is an epoch timestamp, converting to Saturday, March 30, 2019 7:14:29
PM GMT. The earliest reference we found containing several IOCs from this malware sample
dates back to February 2019.

Once executed, the malware begins with five anti-analysis checks. If any of these checks fail,
a beacon is sent to a static URL containing a direct IP and sleeps indefinitely:

 

https://1.bp.blogspot.com/-G9ZcM15HZ28/XY0PbjPGehI/AAAAAAAABTs/6mPpOfLWzZI83LAZYd8hiMH3V2jY0EkJACLcBGAsYHQ/s1600/image2.png
https://www.hybrid-analysis.com/sample/a7656ccba0946d25a4efd96f4f4576494d5f1e23e6ad2acc16d2e684656a2d4f?environmentId%3D100
https://1.bp.blogspot.com/-wrMgSD1aYzg/XY0Pgarq48I/AAAAAAAABTw/qUjg569lfHEJEY0pvg60aAhYL-zZy5_ywCLcBGAsYHQ/s1600/image7.png


7/20

The beacon message indicates which anti-analysis check failed to pass. The malware
checks for unwanted processes and loaded modules by hashing process file names and
module names respectively, then comparing each hash against two separate pre-computed
lists for each. The lists contain hashes for endpoint security software and hypervisor services
as running the sample under both scenarios failed these checks. It also checks for a host
CPU with at least two cores, the presence of a debugger, and finally compares system
uptime intervals to determine if the sample is running within a sandbox or virtual machine.

If the process is running with the appropriate privileges, it uses WMI (Windows Management
Instrumentation) to query recognized anti-virus software installed on the host. In particular,
it's looking for the antivirus software Windows Defender. If found, it proceeds to disable
various components of Windows Defender and Windows Updates.

https://1.bp.blogspot.com/-545AdH34M20/XY0PlR4P0wI/AAAAAAAABT0/lpEsozSVyL8iQV2eqBiXbayJUiQUv3UywCLcBGAsYHQ/s1600/image21.png


8/20

Once completed, it attempts to bypass UAC using CMSTP, if needed. Additional code is
executed to check for any updates to the malware's two configuration files. Empty POST
requests are sent to each of the URLs in the first configuration's accl key. These URLs are
later contacted with a comprehensive set of sensitive information from the host. Most are
non-responsive but still online. Many appear to be, or once were, compromised hosts used
for the C2 network.

The set of direct IP URLs found in the first configuration's acll key are contacted until one
server responds back with a configuration update. A response containing an RC4 encrypted
update to the first of the malware's configurations in the Registry. In this sample, the RC4 key
"seiC4aimaish9zah8kah" is static, and decryption results in a lengthier update for the first
configuration:

The data is stored in the pre-existing registry subkey to update the value (in this example,
HKLM\SOFTWARE\ZfjrAilGdH\194956). As of Sept. 9, 2019, the version timestamp for the
latest config pulled was Thursday, Aug. 29, 2019 11:50:19 a.m.

The second configuration is stored in the last remaining value in the ZfjrAilGdH registry
subkey (HKLM\SOFTWARE\ZfjrAilGdH\2177774). Default values mentioned near the
beginning of this section remained in use during runtime.

The primary flow of the malware code reaches an end but repeats select tasks every 90
minutes. It continues to check for configuration updates, continues to send encrypted
sensitive information from the infected host, and continues to process any C2 responses that
might contain additional commands to execute. The following commands and parameters
are supported by the C2 protocol used by Divergent:

 
killall: Terminate all processes initiated by the malware, delete corresponding files
kill: Find process of specified component, terminate process, and delete the file
stop: Find process of specified component, terminate process
resume: Given pre-existing component, execute file
modules: From the same response data, pull additional configuration data from the
following keys:

name
filename
args
version
type

https://attack.mitre.org/techniques/T1191/
https://1.bp.blogspot.com/-Dwni6Aa2iuo/XY0PprMWwnI/AAAAAAAABT8/vQhfCN_BCVM40c6NPyEWUmyk9MkwJfWDwCLcBGAsYHQ/s1600/image5.png


9/20

download
Key

Using this data, the malware sends additional requests to download each specified file. The
files are written to disk and executed.

update: From the same response data, pull additional configuration data from the
following keys:

filename
download
Key

Same as the modules command, the malware sends additional requests to download each
specified file. Each file is written to disk and executed. Finally, the task deletes the Registry
data stored in its subkey (handles both HKCU and HKLM).

The command update_interval modifies the main thread's sleep counter for the ending loop
(the default time is 90 minutes).

Components

Block AV component

 
The block_av_01 component attempts to block anti-virus software from receiving updates by
blocking all outbound TCP connections on port 80 and port 443. With older revisions of this
malware package, this functionality was delivered via a JScript file named bav01.js but in
newer versions, this has been seen delivered by PowerShell in the fake PNG trpl.png (see
Fake PNG PowerShell Delivery).

This installation script starts by creating a new folder (e.g. SystemConfigInfo000) to hold the
files necessary for execution. The two files to be installed are WinDivert.dll and either
WinDivert32.sys or WinDivert64.sys, depending on the host CPU architecture. These are the
legitimate WinDivert binaries and are used by the malware to create its packet filter.

The WinDivert binaries are embedded in bav01.js as comments and written to disk with .b64
extensions. The following is the code to retrieve the embedded resource named arch5 from
the script, embedded in a comment block in the format /*[<resource name>[resource data]]*/:

 



10/20

Each WinDivert binary is then decoded from base64 using the Windows Certificate Services
utility certutil.exe. For example:

This script is set to execute as a task each time the computer starts. This is accomplished by
creating a scheduled task with a random-looking service name that is set to run as the
SYSTEM user at the highest run level:

Next, the following PowerShell command is executed (shown here decoded) to execute the
base64 encoded PowerShell commands in the environment variable 'nttyuuyt':

The 'nttyuuyt' environment variable was set by bav01.js previously and contains a base64
encoded PE and the PowerShell commands necessary to reflectively inject this executable
(truncated for readability):

At this point in the script, installation is complete and the PE-based module to block anti-virus
HTTP/HTTPS connections is loaded.

To achieve its anti-virus blocking, the reflectively loaded PE periodically checks the names of
all running processes against a predefined list. If any process names appear in the list, the
PIDs are added to the filter string passed to WinDivertOpen which will block all traffic to that
process on remote ports 80 or 443. An example filter string is:

((processId=620 or processId=736) and (remotePort==80 or remotePort==443))

https://1.bp.blogspot.com/-FslFforOnLM/XY0QCyel3CI/AAAAAAAABUQ/QZkhiFkr48cbH_eD53Q7PXSb1W-VELIpQCLcBGAsYHQ/s1600/image1.png
https://1.bp.blogspot.com/-pQYHcs7-IUA/XY0QGrIGRoI/AAAAAAAABUU/XM_0_Nqa9xIqLuvgaM8dABH5rJENaSNowCLcBGAsYHQ/s1600/image18.png
https://1.bp.blogspot.com/-YCuRbG7by84/XY0QR9tLbZI/AAAAAAAABUY/60t8IPtRVgEGR8oWOGL3aJ6L0l4NVKZXQCLcBGAsYHQ/s1600/image24.png
https://1.bp.blogspot.com/-GspipPTUR6Y/XY0QZk2RRDI/AAAAAAAABUk/GVhL7pkQ36wjV4nRnf6xRNkt8rJRan_egCLcBGAsYHQ/s1600/image22.png
https://1.bp.blogspot.com/-eVZpleewc5U/XY0Qd6Df3vI/AAAAAAAABUo/-InqDRrqNJUGMEILJ5_rDL9VKp8RQMWcQCLcBGAsYHQ/s1600/image19.png
https://www.reqrypt.org/windivert-doc.html#divert_open


11/20

Example process names that would be blocked include msmpeng.exe (Windows Defender)
and svchost.exe.

Click Fraud

The all_socks component is a NodeJS-based Socket.IO client that is commanded to
navigate to arbitrary web pages by the attacker ostensibly for monetization and click fraud
purposes. With older revisions of this malware package this functionality was delivered via a
JScript file named either 04sall.js or 05sall.js, but in newer versions this has been seen
delivered by PowerShell in the fake PNG strpk.png (see Fake PNG PowerShell Delivery).

Like the anti-virus blocking component, the click fraud component makes use of the
WinDivert library and therefore installs the necessary WinDivert DLL and driver in the same
manner as bav01.js, described above. Additionally, the NodeJS executable and a NodeJS
Socket.IO client named app.js are part of the installation process for this component. Older
versions of this component also installed two executables, divergent.exe and
mdivergent.exe, however in later versions, these are executed from memory via reflective PE
injection.

The malicious NodeJS application, seen either as app.js or init.js, is a simple Socket.IO client
that takes a base64 encoded IP address as its only parameter.

node.exe app.js <base64 encoded IP>

In all samples we have encountered, the IP address has been 176.9.117.194 (encoded as
MTc2LjkuMTE3LjE5NA==). Upon execution, the malicious NodeJS app will make a request
to the IP passed as a parameter:

 

The response from this server is the address of the next server which the application will
connect to. This new connection uses Socket.IO web sockets to maintain continuous
communication between the victim and the server so the server can periodically send

https://1.bp.blogspot.com/-geZWhy3VG4E/XY0QlUr_2kI/AAAAAAAABUw/0sTmjUNzYNM2mQC5ETu3HxhgmSWE2hmMgCLcBGAsYHQ/s1600/image16.png


12/20

commands. The commands sent from this second server contain the host address of an
advertisement revenue service and the entire HTTP request that should be made to that
server, effectively faking a click on an advertisement link.

To protect themselves from these kinds of fraudulent requests, advertisement monetization
services may go to extra lengths to confirm the device making the request is the type of
device it claims to be. For example, if the monetization service only expects mobile devices,
it may reject requests that have the characteristics of desktop devices. We believe the
divergent.exe and mdivergent.exe executables are used by the 04sall.js/05sall.js
components to circumvent these kinds of checks (see TCP/IP stack fingerprinting).

The divergent and mdivergent PEs make use of the WinDivert library to intercept and rewrite
the first SYN packet of the 3-way TCP handshake for all outgoing connections the infected
host attempts to make. The changes made to the SYN packets depend on which executable
was used, either divergent.exe or mdivergent.exe; divergent.exe will rewrite the TCP header
options to follow the same format as Android devices while mdivergent.exe will rewrite the
TCP header options to follow the format as iOS devices. Which version of the divergent
executable is used is dependent on the app.js deployment script (either 04sall.js or 05sall.js).
These scripts contain code that decides which version should be used depending on a
variable named macchance which can be passed to the deployment script as its only
parameter. This variable contains the probability that mdivergent.exe will be deployed
instead of divergent.exe (the PowerShell parameter, normally base64 encoded, is shown
here in its decoded form):

https://1.bp.blogspot.com/-LxrxtDOVJkE/XY0Qo1Lla8I/AAAAAAAABU0/loPwNvVQXm0naHVEsYfu07HcssQH0MB_QCLcBGAsYHQ/s1600/image9.png
https://en.wikipedia.org/wiki/TCP/IP_stack_fingerprinting


13/20

In the code shown above, the variables and and mac correspond to the code necessary to
reflectively inject divergent.exe and mdivergent.exe respectively, i.e. and represents Android
and mac represents iOS.

For either of these divergent executables to work properly, several changes to the TCP/IP
stack on the infected machine must be made; these include setting the TTL to 64, turning on
the timestamp TCP header options, and changing the MTU to 1440. Once those changes
have been made, the system is forced to reboot with a false message of
Critical_Windows_Update:

With these changes made, the divergent executables can perform the necessary
modifications to each SYN packet so that they follow the standards of the device the host
should be disguised as.

During our analysis of systems actively infected with Divergent, we observed several web
requests initiated by the malware attempting to interact with various online advertisements
and advertising platforms, indicative of the previously described click-fraud process
performed by the malware. Similar to what was observed related to the modification of the
TCP configuration, the User-Agent field was modified to make the web requests appear as if
they had originated from a mobile device. Web requests were made to various online
advertising services and were similar to the following:

https://1.bp.blogspot.com/-QI_p3NiWm1M/XY0Qs3EdKLI/AAAAAAAABU8/hl0aVIlTTdQ54R_GXmfn93DslypUpSPSACLcBGAsYHQ/s1600/image20.png
https://1.bp.blogspot.com/-zdnLyfzYLeE/XY0QwW1CZXI/AAAAAAAABVE/y37pSOOekF4ugHSYGuSeXj1BrYd2UW3AQCLcBGAsYHQ/s1600/image23.png
https://1.bp.blogspot.com/-QYnOXIFzuEQ/XY5_nkIWp5I/AAAAAAAABWE/3ISlVgm7gDUkrt_ct0N4KQBny_YSlRUlgCLcBGAsYHQ/s1600/image14.png


14/20

We also observed additional web requests similar to the following, which included a standard
desktop User-Agent:

Additionally, the malware attempts to interact with “in-app” advertising platforms such as
Mobfox.

 

Now I See You

 
The component named call_03 by the malware's configuration file, which is delivered by the
em_02.js and em_03.js scripts, appears to be a means of installing a remote assist tool on
the infected machine that would allow the attacker to view and possibly control the victim's
computer.

Like the previous components, the PE associated with em_03.js is executed via reflective PE
injection, this time with the environment variable fdghjgfdhj.

https://1.bp.blogspot.com/-2qyGlTVl9u8/XY5_yDHRtsI/AAAAAAAABWI/r8wo8DggcboRN537PZHBQmTbE-4CbXYyQCLcBGAsYHQ/s1600/image24.png
https://1.bp.blogspot.com/-vkuUsENweUk/XY6ABN1En6I/AAAAAAAABWQ/WHt3utWql8g9P9ThIi7cBX1rWpSHoL7IwCLcBGAsYHQ/s1600/image20.png
https://1.bp.blogspot.com/-TabPBXRHGmg/XY6AOc-OuNI/AAAAAAAABWY/OCJvhFiTMVsvE-_04PCt9-1IkHYmZw6mACLcBGAsYHQ/s1600/image1.png


15/20

The PE to be injected is a DLL which, according to its export table, was originally called
now_i_see_you.dll. This DLL has a single exported function named VoidFunc which contains
all of its functionality. When VoidFunc is executed, it makes an HTTP GET request to the
hxxps://uoibppop[.]tk/. It then takes the response from this server and treats it as a new URL
to navigate to. Using COM objects, the DLL launches an instance of Internet Explorer,
resizes the window to fit the entire screen and navigates to the URL in the response. At the
time of analysis, the server was active but did not respond with any data so we were unable
to confirm what was being hosted there.

Additionally, the DLL hides the Windows taskbar so the user is more compelled to comply
with any instructions on the page that is presented to them. Next, the malware enters a loop
looking for a process containing the string gotoassist (older versions also looked for
teamviewer), ostensibly for confirming that the user followed the instructions in Internet
Explorer by downloading and running the attacker's malware. Once this process is running,
the Windows Taskbar is restored to view. A process list is gathered and sent to the URL
hxxps://uoibppop[.]tk/clean; no response is expected from the server. The registry key
`HKEY_CURRENT_USER\Software\fbsjbdfhsv` is created and the key value `weqr` is set to
1, indicating that execution was successful, then the process exits. Instead of a URL, the
attacker has the option to send the word stop to the victim which will cause the DLL to
forcefully reboot the infected machine.

While we do not know what URL the victim is intended to navigate to and therefore which
program they are to be tricked into running, based on the process names gotoassist and
teamviewer and the original DLL name of now_i_see_you.dll, it is likely that the victim is
intended to install one of these remote administration software.

Fake PNG PowerShell delivery

 
Newer versions of the Divergent malware package no longer deliver and execute
components as JScript, instead multi-stage PowerShell scripts are used. The first stage will
retrieve the second stage from a static URL. The first-stage PowerShell is heavily
obfuscated:

 

https://1.bp.blogspot.com/-OlTLjpZvtKc/XY0Q38Oj3DI/AAAAAAAABVM/O1LG1fraGvsvPugHzr_fcd4252TUznh6gCLcBGAsYHQ/s1600/image4.png


16/20

Here is our deobfuscated version:

While the requested resource features the extension normally associated with PNG images,
it is actually malicious Powershell that has been encrypted using RC4 with the encryption
key "raimeey2nu," which was stored in the previous PowerShell (the particular
implementation of RC4 used can be found here).

We have encountered following URLs to retrieve the encrypted PowerShell:
 

hxxp://1292172017[.]rsc.cdn77[.]org/images/trpl.png
hxxp://1292172017[.]rsc.cdn77[.]org//imtrack/strkp.png

The first URL delivers the PowerShell version of bav01.js and the second delivers the
PowerShell version of 05sall.js.

Taking a deeper look at the PowerShell version of 05sall.js, we see Base64 encoded blobs
corresponding to binaries associated with WinDivert. Like its JScript counterpart, the
Powershell decodes these blobs and saves them to the filesystem location defined by the

https://1.bp.blogspot.com/-6yQI6vSOZnw/XY0Q8AhLMNI/AAAAAAAABVU/k3aAuDA26aoowhwqcf13FclelkS-3_JDACLcBGAsYHQ/s1600/image8.png
https://1.bp.blogspot.com/-OkZnHRkuBuA/XY0RALJBZ-I/AAAAAAAABVY/6SP44hmNO34RtfHublkaGuJIxNJ25mLnQCLcBGAsYHQ/s1600/image15.png
https://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
https://gist.github.com/HarmJ0y/4edc5bf4cccb0aef5553a860a3e433e3
https://github.com/basil00/Divert


17/20

environment variable %ALLUSERSPROFILE%.

Shellcode stored within the PowerShell is loaded into a new memory region using the
Windows API function VirtualAlloc and then executed to continue the infection process:

 

 

Conclusion

 
The malware loader described is currently under active development. Talos has observed
multiple versions of the loader being used to install the Divergent malware. Attackers are
attempting to monetize these infections through the use of click fraud. The threat landscape
is constantly evolving as attackers test new techniques and methodologies to maximize their
revenue generation capabilities. Organizations should be aware of these changes and
ensure that their security programs are able to remain effective against these changing
tactics, techniques, and procedures. This threat is successfully stopped by the Cisco
Advanced Malware Protection (AMP) Exploit Prevention engine, and the resulting event data
assisted with our analysis of the threat. Talos will continue to monitor the threat landscape to
ensure that customers remain protected.

https://1.bp.blogspot.com/-LXmb2wQvE_I/XY0RE29EI1I/AAAAAAAABVg/FXffoHuK9igiGCnDuHf5j_LYgfWEZhgIgCLcBGAsYHQ/s1600/image13.png
https://1.bp.blogspot.com/-6YBDkE6XnFo/XY0RJBYtmHI/AAAAAAAABVo/IBuM1Lk8HcQ3sCvrRE0CcXY2I7KKVv2VgCLcBGAsYHQ/s1600/image17.png


18/20

Coverage

Additional ways our customers can detect and block this threat are listed below.

Advanced Malware Protection (AMP) is ideally suited to prevent the execution of the
malware used by these threat actors.

Cisco Cloud Web Security (CWS) or Web Security Appliance (WSA) web scanning prevents
access to malicious websites and detects malware used in these attacks.

Email Security can block malicious emails sent by threat actors as part of their campaign.

Network Security appliances such as Next-Generation Firewall (NGFW), Next-Generation
Intrusion Prevention System (NGIPS), and Meraki MX can detect malicious activity
associated with this threat.

AMP Threat Grid helps identify malicious binaries and build protection into all Cisco Security
products.

Umbrella, our secure internet gateway (SIG), blocks users from connecting to malicious
domains, IPs, and URLs, whether users are on or off the corporate network.

Open Source Snort Subscriber Rule Set customers can stay up to date by downloading the
latest rule pack available for purchase on Snort.org.

Indicators of Compromise (IOCs)

 
The following IOCs have been observed as being associated with these malware campaigns.

HTA Hashes:

https://1.bp.blogspot.com/-g0Z45j-7UoI/XWZAlOvn6CI/AAAAAAAABVE/x_P5xk15_9k6rljDXgv206KT6CHASsStQCLcBGAs/s1600/image12.png
https://www.cisco.com/c/en/us/products/security/advanced-malware-protection
https://www.cisco.com/c/en/us/products/security/cloud-web-security/index.html
https://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html
https://www.cisco.com/c/en/us/products/security/email-security-appliance/index.html
https://www.cisco.com/c/en/us/products/security/firewalls/index.html
https://www.cisco.com/c/en/us/products/security/intrusion-prevention-system-ips/index.html
https://meraki.cisco.com/products/appliances
https://www.cisco.com/c/en/us/solutions/enterprise-networks/amp-threat-grid/index.html
https://umbrella.cisco.com/
https://www.snort.org/products


19/20

47b5dac9152220fbbf122eff89ac93d42e9196f5ab665a2a6d99594246ab8a81
062688aec1bdf1208bd72a77696e1fbcd1076f54bd6e59141ed12b6f8e3ba32c

PE32 Hashes:

 
c7052f4676102bfe39ab19c227832861caa2959933e296ee1806973619948624

 781adc919a705ca3e8a82fe1d1eac68f651c50ba402172aea033eaec7879e932
 05fbd38ea0b99621d22ce5f057173fdec40f3dccd63f887e1c301766c6597714

 2135acda2d2739773fbb827e8d180ac901c040d2f071127bb597a714591672cd
 72b6a8bf9598bd445e26a04ab58be62ed3941fb1fe4cf4a094a6272a77b66009

 ba04eacaa80bb5da6b02e1e7fdf3775cf5a44a6179b2c142605e089d78a2f5b6
 a82dd93585094aeba4363c5aeedd1a85ef72c60a03738b25d452a5d895313875

 2f4a9ef2071ee896674e3da1a870d4efab4bb16e2e26ea3d7543d98b614ceab9
 77498f0ef4087175aa85ce1388f9d02d14aaf280e52ce7c70f50d3b8405fea9f

 b2d29bb9350a0df93d0918c0208af081f917129ee46544508f2e1cf30aa4f4ce
 bf2cdd1dc2e20c42d2451c83b8280490879b3515aa6c15ab297419990e017142

 ba04eacaa80bb5da6b02e1e7fdf3775cf5a44a6179b2c142605e089d78a2f5b6
 a7656ccba0946d25a4efd96f4f4576494d5f1e23e6ad2acc16d2e684656a2d4f

 607b2f3fd1e73788a4d6f5a366c708dbb12d174eba9863ade0af89ca40e1fdba

URLs:

hxxps://1292172017[.]rsc[.]cdn77[.]org/images/trpl.png
 hxxps://1292172017[.]rsc[.]cdn77[.]org/imtrack/strkp.png

Mutexes:

Global\Divergent
 Global\CreatorsPatch

 Global\LocalLow7

IP Addresses:

 
95[.]70[.]244[.]209

 13[.]228[.]224[.]121
 54[.]241[.]31[.]99

 103[.]31[.]4[.]11
 103[.]31[.]4[.]54
 198[.]41[.]128[.]74

 198[.]41[.]128[.]55
 131[.]0[.]72[.]36

 131[.]0[.]72[.]59
 



20/20

188[.]114[.]96[.]87
188[.]114[.]96[.]116
43[.]250[.]192[.]98
43[.]250[.]192[.]87
217[.]160[.]231[.]125
208[.]91[.]197[.]25
184[.]168[.]221[.]42
103[.]224[.]248[.]219
31[.]31[.]196[.]120
217[.]160[.]223[.]93
103[.]224[.]248[.]219
184[.]168[.]221[.]45
119[.]28[.]87[.]235
23[.]227[.]38[.]32
50[.]63[.]202[.]39
216[.]239[.]34[.]21
83[.]243[.]58[.]172
5[.]9[.]41[.]178
88[.]198[.]26[.]25
62[.]75[.]189[.]110
109[.]239[.]101[.]62
107[.]186[.]67[.]4
184[.]168[.]221[.]63
45[.]55[.]154[.]177
104[.]28[.]2[.]169
202[.]56[.]240[.]5
89[.]163[.]255[.]171
185[.]243[.]114[.]111


