
1/11

May 13, 2020

Evading Detection with Excel 4.0 Macros and the BIFF8
XLS Format

malware.pizza/2020/05/12/evading-av-with-excel-macros-and-biff8-xls/

Abusing legacy functionality built into the Microsoft Office suite is a tale as old as time. One
functionality that is popular with red teamers and maldoc authors is using Excel 4.0 Macros
to embed standard malicious behavior in Excel files and then execute phishing campaigns
with these documents. These macros, which are fully documented online, can make web
requests, execute shell commands, access win32 APIs, and have many other capabilities
which are desirable to malware authors. As an added bonus, the Excel format embeds
macros within Macro sheets which can be more challenging to examine statically than VBA
macros which are easier to extract. As a result, many malicious macro documents have a
much lower than expected rate of detection in the AV world.

Malware campaigns, such as the ZLoader campaign (described in great detail by InQuest
Labs here, here, and here) are actively abusing this functionality to perform mass phishing
attacks. The campaign is so prolific that I’ve actually received one of these maldocs in one of
my personal email accounts. Because of its effectiveness and low detection rate, this
technique is also popular in the penetration testing community. Outflank described how to
embed shellcode in Excel 4.0 Macros in 2018, and tooling has been published to abuse this
functionality via Excel’s ExecuteExcel4Macro VBA API.

While there is clearly already a spotlight on the subject of Excel 4.0 Macros, I believe that
only the surface of this attack vector has been scratched. There’s no doubt that defenders
are building better signal on malicious macros (one of the tools which originally had 0
detections on VirusTotal is now up to 15 at the time of writing this post), but there is also
evidence that some of this signal can be brittle and unreliable.

For example, the ZLoader campaign obfuscates its macros using a series of cells that build
each command from CHAR expressions. Ex: =CHAR(61) evaluates to the = character.

https://malware.pizza/2020/05/12/evading-av-with-excel-macros-and-biff8-xls/
https://pentestlab.blog/2018/01/16/microsoft-office-dde-attacks/
https://blog.talosintelligence.com/2017/07/template-injection.html
https://news.sophos.com/en-us/2019/07/18/a-new-equation-editor-exploit-goes-commercial-as-maldoc-attacks-using-it-spike/
https://www.decalage.info/files/eu-19-Lagadec-Advanced-VBA-Macros-Attack-And-Defence.pdf
https://security-soup.net/analysis-of-a-new-emotet-maldoc-with-vba-downloader/
https://exceloffthegrid.com/using-excel-4-macro-functions/
https://inquest.net/blog/2019/01/29/Carving-Sneaky-XLM-Files
https://inquest.net/blog/2020/03/18/Getting-Sneakier-Hidden-Sheets-Data-Connections-and-XLM-Macros
https://inquest.net/blog/2020/05/06/ZLoader-4.0-Macrosheets-
https://outflank.nl/blog/2018/10/06/old-school-evil-excel-4-0-macros-xlm/
https://github.com/med0x2e/genxlm
https://github.com/outflanknl/Scripts/blob/master/ShellcodeToJScript.js
https://docs.microsoft.com/en-us/office/vba/api/excel.application.executeexcel4macro
https://www.virustotal.com/gui/file/f5a67b22f0362403b851664b6edd25928383d7f68099b61612e580b94734fe7a/detection

2/11

A ZLoader

Campaign’s Macro Sheet (image from @DissectMalware)
There’s plenty to build a signature on in this sheet:

The repeated usage of the =CHAR(#) cells to define formula content one character at a
time.
The use of the Auto_Open label which triggers automatic execution of the macro sheet
once the “Enable Content” button is pressed.
ZLoader marks their macro sheets as hidden which has a detectable static signature
The use of numerous Formula expressions to dynamically generate additional
expressions at runtime.

A lot of this would appear to be good enough signal to just block outright – Windows
Defender, for example, considers just about any usage of =CHAR(#) to be malicious. Making
an empty macro sheet that contains one cell with =CHAR(42) and another with =HALT() will
immediately flag the document as malicious:

https://twitter.com/DissectMalware/status/1243282739123621888

3/11

If you try to save this document with Windows Defender enabled, it will block the save
operation
This is probably a bit overkill, but apparently the number of legitimate users that do this is
small enough that Windows can roll out a patch to all machines marking it malicious. A more
reasonable signature, which seems resistant to false positives, is @DissectMalware’s
macro_sheet_obfuscated_char YARA rule:

rule macro_sheet_obfuscated_char
{
 meta:
 description = "Finding hidden/very-hidden macros with many CHAR functions"
 Author = "DissectMalware"
 Sample = "0e9ec7a974b87f4c16c842e648dd212f80349eecb4e636087770bc1748206c3b
(Zloader)"
 strings:
 $ole_marker = {D0 CF 11 E0 A1 B1 1A E1}
 $macro_sheet_h1 = {85 00 ?? ?? ?? ?? ?? ?? 01 01}
 $macro_sheet_h2 = {85 00 ?? ?? ?? ?? ?? ?? 02 01}
 $char_func = {06 ??
?? ?? ?? ?? 1E 3D 00 41 6F 00}
 condition:
 $ole_marker at 0 and 1 of ($macro_sheet_h*) and #char_func > 10
}

This rule looks for three things:

1. The standard magic header for Office documents D0CF11E0A1B11AE1 at the start of
the file.

2. A macro sheet (defined in a BoundSheet8 BIFF Record) with a hidden state set to
Hidden or VeryHidden.

3. The presence of at least 10 Formula BIFF Records which have an Rgce field
containing two Ptg structures – a PtgInt representing the value 0x3D (which maps to
the = character) and a PtgFunc with an Ftab value of 0x6F (the matching tab value for
the CHAR function).

https://pastebin.com/V8SGgdZL
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/b9ec509a-235d-424e-871d-f8e721106501
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/8e3c6978-6c9f-4915-a826-07613204b244
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/6cdf7d38-d08c-4e56-bd2f-6c82b8da752e
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/9310c3bb-d73f-4db0-8342-28e1e0fcb68f
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/508ecf18-3b81-4628-95b3-7a9d2a295bca
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/87ce512d-273a-4da0-a9f8-26cf1d93508d
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/00b5dd7d-51ca-4938-b7b7-483fe0e5933b

4/11

Unless you are fairly acquainted with the Excel 2003 Binary format (also known as BIFF8),
the third search condition is likely to read as a series of random letters jammed together
rather than anything coherent. To better understand what exactly is being discussed, let’s
take a quick detour into the BIFF8 file format.

The Excel 97-2003 Binary File Format (BIFF8)

Before office documents were saved in the Open Office XML (OOXML) format, they were
saved in a much more succinct binary format focused on describing the maximum amount of
information with the minimum number of bytes. Legacy office documents are stored in a
Compound Binary File Format (CBF) while their actual application specific data (such as
Word document content or Excel workbook information) is stored within binary streams
embedded in the CBF header.

Excel’s workbook stream is a direct series of Binary Interchange File Format (BIFF) records.
The records are fairly simple – there are 2 bytes for describing the record type, 2 bytes for
describing the remaining length of the record, and then the relevant record bytes. An Excel
workbook is just a series of BIFF records beginning with a BOF record and eventually ending
with a final EOF record. Microsoft’s Open Specifications project has helpfully documented
every one of these records online. For example, if we are parsing a stream and read a record
beginning with the byte sequence 85 00 0E 00 , we are reading a BoundSheet8 record
that is 14 bytes long.

The BoundSheet8

definition from Microsoft
From Microsoft’s documentation we can see that BoundSheet8 records contain a 4 byte
offset pointing to the relevant BOF record, 2 bits used for describing the visible state of the
sheet, a single byte used for describing the sheet type, and a variable number of bytes used
for the name of the sheet.

https://www.loc.gov/preservation/digital/formats/fdd/fdd000510.shtml
https://en.wikipedia.org/wiki/Office_Open_XML
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cfb/53989ce4-7b05-4f8d-829b-d08d6148375b
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/4d6a3d1e-d7c5-405f-bbae-d01e9cb79366
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/012176fe-5802-423b-9135-78e22642456b
https://docs.microsoft.com/en-us/openspecs/main/ms-openspeclp/3589baea-5b22-48f2-9d43-f5bea4960ddb
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/43684742-8fcd-4fcd-92df-157d8d7241f9
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/b9ec509a-235d-424e-871d-f8e721106501

5/11

Hex

dump of a VeryHidden Macro sheet’s BoundSheet8 BIFF record
The above hex dump represents a BoundSheet8 record for a Macro sheet that has been
“Very Hidden” – essentially made inaccessible from within Excel’s UI. This record would
match the YARA sig byte regex of $macro_sheet_h2 = {85 00 ?? ?? ?? ?? ?? ?? 02
01} . The signature begins with the matching BIFF record id for BoundSheet8 (85 00),
then ignores the size (2 bytes) and the lbPlyPos record (4 bytes). It then matches the
hsState field (02) followed by the byte indicating that the sheet is a macro sheet (01).
This is a reasonable match for sheets that follow the BIFF8 specification.

Fiddling with BIFF Records

However, there are a few tricks to essentially dodge this signature component by abusing
flexibility in the specification. For example, the hsState field is only supposed to be
represented by 2 bits – the remaining 6 bits of that byte are reserved. Theoretically this
means that touching these bits should invalidate a spreadsheet, but this is not what happens
in practice. Say we replaced the value 02 (b’00000010 in binary) with a different value by
flipping some bits (b’10101010) like AA – would Excel also treat that as a hidden sheet? I
can’t speak for all versions of Excel, but in my testing with Excel 2010 and 2019, the answer
is yes.

Essentially, by following the majority of the specification, but not following the exact way that
Excel has traditionally generated these documents creates an entirely new set of Excel
binary sheets which bypasses most static signatures. The remainder of this blog post will
focus on a few examples of abusing the BIFF8 specification to create alternate, but valid,
Excel documents.

Label (Lbl) Records

Lbl records are used for explicitly naming cells in a worksheet for reference by other
formulas. In some cases, Lbl records can contain macros or trigger the download and
execution of other macros. From a malicious macro author’s perspective, though, the most
likely usage of a Lbl record is to define the Auto_Open cell for their workbook. If a workbook
has an explicitly defined Auto_Open cell then, once macros are enabled, Excel will
immediately begin evaluating the macros defined at that cell and continue evaluating cells
below it until a HALT() function is invoked. Understandably, the existence of an Auto_Open
Lbl record is considered fairly suspicious, so there are a number of workarounds attackers
have taken to hide their usage of this functionality. Let’s see if there are some other evasion
techniques hiding in the Lbl record specification:

https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/d148e898-4504-4841-a793-ee85f3ea9eef
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/more-excel-4-0-macro-malspam-campaigns/
http://www.greyhathacker.net/?p=948
https://twitter.com/DissectMalware/status/1251271398481367040

6/11

The Lbl record is a big

structure with plenty of room for abuse
By default, when an Auto_Open label is defined in a BIFF8 document, it has its fBuiltin flag
set to true, and its name field set to the value 01 , indicating that this is an Auto_Open
function. The first 17 bytes of this record (21 if you include the 4 byte header) can likely be
used as a signature to identify usage. This does assume a lack of meddling with the
reserved bytes which default to 00 , but signatures could probably replace these with
wildcard bytes and not pick up too many false positives. Given that normal labels are never
going to have a single byte value of 01 , there is a very small chance of triggering false
positives with this as well.

A default Lbl

entry for Auto_Open
If a user attempts to save any variation on the Auto_Open label (like alternative capitalization
AuTo_OpEn), Excel will automatically convert it back to the shortened fBuiltin version
shown above. However, when Excel opens an OOXML formatted workbook there is no
equivalent shorthand record for Auto_Open, it is simply stored as a string. So what happens
if we explicitly create a Lbl record, leave fBuiltin as false, and give it a name of
Auto_Open?

https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/d148e898-4504-4841-a793-ee85f3ea9eef

7/11

A Lbl record

with fBuiltin flipped to false, and the Name field set to Auto_Open
If a Lbl record is generated with these properties and inserted into an Excel document, Excel
will still treat the referenced cell as an Auto_Open cell and trigger it. So we can create a
label that triggers Auto_Open behavior but doesn’t look like the default record. This is a
good start, but once a technique like this became well known it would also be vulnerable to a
quick signature. As is, there are already plenty of AV solutions that will explicitly look for the
Auto_Open string since attackers have been abusing this in OOXML documents in the wild.

An

example of an OOXML document abusing Excel’s flexible Auto_Open parsing
Excel is surprisingly flexible when it comes to considering a text field matching the
Auto_Open label – apparently the application only checks if the label starts with the string
Auto_Open. This results in maldocs with labels like Auto_Open21. In fact, if you use Excel
to save a label with name like Auto_Open222, it will actually save the record using a
combination of the fBuiltin flag, and then append the extra characters, as can be seen
below.

How Excel

saves the label Auto_Open222 – note it maintains the fBuiltin flag (20) and doesn’t include
the Auto_Open text, just the 0x01 indicating Auto_Open
Appending characters is great, but can we inject additional characters into the Auto_Open
string in a way that Excel will still read it? A common trick in bypassing input validation is to
try injecting null bytes to see if it results in the string being terminated early. Occasionally null
bytes are also good for changing the length of a string without affecting its value.

The

Auto_Open label with null bytes injected

8/11

How Excel’s Name

Manager renders this Lbl record
Excel will actually give us the best of both worlds, from an attacker perspective, when
injecting null bytes. The Auto_Open functionality will remain intact and still trigger for the cell
we specify, but the Name Manager will not properly display any part of the name after the
first null byte. Additionally, our Lbl record’s name data will not be easily match-able with a
predictable regex.

The rabbit hole actually can go deeper than just null byte injection, however – the Name field
in Lbl records is represented by a XLUnicodeStringNoCch record. This record allows us to
specify strings using either (essentially) ASCII or UTF16 depending on whether we set the
fHighByte flag. Besides further breaking any signatures relying on a contiguous Auto_Open
string, the usage of UTF16 opens a whole new world of string abuse to attackers.

Unicode is traditionally a parsing nightmare in the security space due to inconsistent
handling of edge cases across implementations. Excel is no exception to this, and it appears
that when an unexpected character is encountered, the label parsing code will simply ignore
it. From testing it appears that any “invalid” unicode character found will be skipped entirely.
There are likely exceptions to the rule, but it appears that any entry that claims to be an
invalid combination on fileformat.info can be injected into XLUnicodeStringNoCch records
without impacting parsing. For example, if we build a string like
"\ufefeA\uffffu\ufefft\ufffeo\uffef_\ufff0O\ufff1p\ufff6e\ufefdn\udddd" ,

this will still trigger the Excel Auto_Open functionality.

After some

fun with Unicode this looks VERY different from our initial Lbl record
This could be combined with null byte injection to hide the manipulation from the Name
Manager UI entirely, or the Lbl record’s fHidden bit could be set to stop it from appearing in
the Name Manager entirely. The ability to inject an arbitrary amount garbage in between
letters in the Lbl name significantly increases the difficulty of building a reliable signature for
this technique.

The Rgce and Ptg Structures

https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/e64abeee-2f3a-4004-b9e3-3d67e29d6066
https://hackernoon.com/%CA%BC-%C5%9B%E2%84%87%E2%84%92%E2%84%87%E2%84%82%CA%88-how-unicode-homoglyphs-will-break-your-custom-sql-injection-sanitizing-functions-1224377f7b51
https://owasp.org/www-pdf-archive/Unicode_Transformations_Finding_Elusive_Vulnerabilities-Chris_Weber.pdf
https://medium.com/bugbountywriteup/unicode-vs-waf-xss-waf-bypass-128cd9972a30
https://www.rapid7.com/db/vulnerabilities/windows-mozilla-firefox-bom-utf-xss
https://www.fileformat.info/info/unicode/char/fefe/index.htm

9/11

Let’s revisit the YARA rule from earlier, specifically the part for detecting usages of
=CHAR(#):

$char_func = {06 ??
?? ?? 1E 3D 00 41 6F 00}

This signature is keying on the beginning of a Formula record, and then the
CellParsedFormula structure towards the end. CellParsedFormula structures contain three
things:

1. cce – The size of the following rgce structure
2. rgce – The actual structure containing what we’d consider to contain the formula
3. rgcb – A secondary structure containing supporting information that might be

referenced in rgce

So what on earth is an Rgce structure? Why it’s a set of Ptg structures of course! Ptg
structures, short for “Parse Thing”, are the base component of Formulas. While one might
expect to find a string representation of a formula like =CHAR(61), this wouldn’t mesh with
BIFF8’s hyper-focus on reducing file size. Each formula is represented as a series of Ptg
expressions which describes a small piece of what a user would consider to be a formula.
For example, =CHAR(61) is in fact two components – a reference to the internal CHAR
function, and the number 61. Each of these representations has a corresponding Ptg
structure.

The CHAR function is represented by a PtgFunc, a Ptg record which contains a reference to
a predefined list of functions in Excel known as the Ftab.

The Ftab value table

specifying that 0x6F is the CHAR function

https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/8e3c6978-6c9f-4915-a826-07613204b244
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/7dd67f0a-671d-4905-b87b-4cc07295e442
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/6cdf7d38-d08c-4e56-bd2f-6c82b8da752e
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/9310c3bb-d73f-4db0-8342-28e1e0fcb68f
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/e7625cc8-3da9-4154-b449-49cf1bbd9703
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/87ce512d-273a-4da0-a9f8-26cf1d93508d
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/00b5dd7d-51ca-4938-b7b7-483fe0e5933b
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/00b5dd7d-51ca-4938-b7b7-483fe0e5933b

10/11

The number 61 is represented by a PtgInt structure which is just the standard Ptg header
and an integer with the value of 61:

Many Ptg records, like the PtgInt, are fairly straightforward
As a result, we end up with the binary signature of 1E 3D 00 41 6F 00 (41 is the Ptg
number for PtgFunc). One thing that might stand out here, however, is the fact that the
ordering of this data seems backwards – the PtgInt(61) data is stored before the
PtgFunc(CHAR) data.

This is because Ptg expressions are described using Reverse Polish Notation (RPN). RPN
allows for quick parsing of a series of operators and operands without needing to worry
about parentheses, items are processed in the order they are read. For example: 3 4 − 5
+ represents taking the value 3 and 4, then applying the subtraction function to those values
to get -1. The value 5 is taken and the addition function is applied to -1 and 5, resulting in 4.
This mentality is useful for stack-based programming languages, and it is used here to
simulate what is essentially a stack of Ptg expressions. In our example here, the operand
PtgInt(61) is popped off the stack, then the PtgFunc(CHAR) is applied to it.

The reason this is relevant is because the RPN stack-based format of Ptg structures allows
us to easily create some very obfuscated expressions without needing to worry about their
binary representation. For example, Microsoft Defender blocks all =CHAR(#) expressions –
but what if we write a formula like =CHAR(ROUND(61.0,0)). This function is essentially the
same, but ends up being represented very differently at the byte level:

The

bytes of our new Formula’s rgce
The rgce listed here is now PtgNum(61.0), PtgInt(0), PtgFunc(ROUND), PtgFunc(CHAR).
As an added “bonus”, PtgNum represents its data as a double, so the value of 61 is
represented as 00 00 00 00 00 80 4E 40 . Embedding a function has also completely

https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/508ecf18-3b81-4628-95b3-7a9d2a295bca
https://en.wikipedia.org/wiki/Reverse_Polish_notation

11/11

changed the order of our Ptg structures such that the bytes of PtgFunc(CHAR) and
PtgNum(61.0) are no longer adjacent. The original signature of 1E 3D 00 41 6F 00 is no
longer tracking this Formula.

In short, the rgce block is ideally designed from a malware author’s perspective. There are
numerous ways to represent the exact same functionality that look completely different from
a static analysis perspective. The byte layout of the rgce block is also highly sensitive to
change, turning a single value into a function invocation can rearrange the order of all other
Ptg bytes within the expression.

Introducing Macrome

Much of the work necessary for testing some of these methods involved manually writing
XLS files rather than using Excel. While there are plenty of tools for reading the BIFF8 XLS
format, good tooling for manually creating and modifying XLS files doesn’t appear to be as
common. As a result, I’ve created a tool for building and deobfuscating BIFF8 XLS Macro
documents. This tool, Macrome, uses a modified version of the b2xtranslator library used by
BiffView.

Macrome implements many of the obfuscations described in this blog post to help
penetration testers more easily create documents for phishing campaigns. The modified
b2xtranslator library can be used for research and experimentation with alternate obfuscation
methods. Macrome also provides functionality that can be used to reverse many of these
obfuscations in support of malware analysts and defenders. The tool was originally going to
include functionality to process macros to help bypass obfuscated formulas, but
@DissectMalware has already created a fantastic tool called XLMMacroDeobfuscator which
goes above and beyond anything I was planning on dropping. It’s really a great piece of tech
that I’d recommend anyone who has to analyze these kinds of documents.

I’ll be posting in the future about how to further expand Macrome and implement your own
obfuscation and deobfuscation methods. In the meantime, please give the tool a try at
https://github.com/michaelweber/Macrome. If you have any suggestions or feature requests
please let me know here or open an issue!

https://github.com/michaelweber/Macrome
https://github.com/michaelweber/Macrome
https://github.com/EvolutionJobs/b2xtranslator
https://www.aldeid.com/wiki/BiffView
https://twitter.com/DissectMalware/
https://github.com/DissectMalware/XLMMacroDeobfuscator
https://github.com/michaelweber/Macrome

