
1/8

EquationDrug rootkit analysis (mstcp32.sys)
artemonsecurity.blogspot.com/2017/03/equationdrug-rootkit-analysis-mstcp32sys.html

Malware arsenal that have been used by very sophisticated & so-called state-sponsored
cyber group named "Equation Group" already was perfectly described by Kaspersky in their
report. As always, it is hard to make an assumption about attribution of this malware as well
as about origins of such elite cyber group. Anyway, it's obviously that code development and
the cost of infrastructure for cyberattacks in such scale took enough human and money
resources. As regular readers of my blog could notice, now I'm concentrating on research of
rootkits allegedly belong to sophisticated/state-sponsored cyber actors. It is also interesting to
assess skills of authors in driver development and compare it with code from another similar
"products".

In the last year Equation Group group was hacked by another hacking group called Shadow
Brokers, who claimed that got access to secret sources of NSA cyber toolkits. As we already
know, SB released some exploits and backdoors for routers/network devices of some vendors
that belong to EG. The last leak from SB was dedicated to set of PE-files, which used by
Equation Group for cyberespionage and named EquationDrug. Analyzed driver mstcp32.sys
was taken from this leak.

The driver mstcp32.sys

 (SHA256:26215BC56DC31D2466D72F1F4E1B6388E62606E9949BC41C28968FCB9A9D60A6)
masked as "Microsoft TCP/IP driver".

http://artemonsecurity.blogspot.com/2017/03/equationdrug-rootkit-analysis-mstcp32sys.html
https://securelist.com/files/2015/02/Equation_group_questions_and_answers.pdf
https://3.bp.blogspot.com/-yXOn9gL9PiI/WIhzjCggbeI/AAAAAAAAEaA/sttOPUqYqt0jw9nk7LqGj-90A2V9seOrgCLcB/s1600/Computer-hacker-silhouette.jpg
https://en.wikipedia.org/wiki/The_Shadow_Brokers

2/8

Authors also took some steps to mask malicious purpose of this driver. For example, if you
look to its imports or dump strings from file, you can't find something really suspicious. The
driver imports API from NDIS kernel mode library called NDIS.SYS to work with network
packets on physical level (that fully corresponds to its purpose). Actually, authors hid
malicious indicators inside driver into encrypted data. Below you can see decrypted strings
from driver's body.

https://1.bp.blogspot.com/-DjNBpk-_GI4/WIh_cmD9VwI/AAAAAAAAEaU/jX82FQXDFhUVG-MvV3d1gRn2108rKuIAwCLcB/s1600/22.png

3/8

As you can see from dumped strings above, the rootkit attaches itself to Windows network
stack for capturing packets on NDIS level. Also, it is clear that the rootkit implements injection
of malicious code into trusted Windows processes - Services.exe (SCM) & Winlogon.

Below you can see compilation date of this driver, which indicates that it was compiled
already almost 10 years ago. This means that cyber espionage group used the rootkit and
was active already in 2007. Also authors were interested to make their operations stealthy
from user eyes, putting code into Ring 0.

https://1.bp.blogspot.com/-y64wbgf_XcU/WIiBy4Ssx9I/AAAAAAAAEag/8juTWkJiDTI3SQNqctKDSbhA8O9ezEnqgCLcB/s1600/33.png

4/8

Timestamp from debug directory matches with its analog from IMAGE_FILE_HEADER.

Below you can see screenshot of start rootkit code.

https://1.bp.blogspot.com/-e8Qme9RhgsM/WNzTTtK9nGI/AAAAAAAAE5g/8YSBFuWjnZkH13ViqKr46_LvIKt9hJ79ACLcB/s1600/555.png
https://3.bp.blogspot.com/-xGGMgItPij8/WNzTpsSgVDI/AAAAAAAAE5k/s90G7KVBkioLpIbdH4YL2S5aaH_QyHICwCLcB/s1600/666.png
https://1.bp.blogspot.com/-515kOymsgUU/WNzWd17qATI/AAAAAAAAE5w/9jGrv8yFh7sT47GtLSn3QXntWk5c8LhdQCLcB/s1600/1111.png

5/8

Malicious data decryption is a first step that takes the driver. After that it creates device object
with name \Device\Mstcp32 and performs initialization steps. The device name doesn't hard
coded into driver's body, it forms on base of driver service name (Mstcp32 as original name).

As you can see from image above, driver dispatches following IRP requests:

IRP_MJ_CREATE
IRP_MJ_CLOSE
IRP_MJ_READ
IRP_MJ_WRITE
IRP_MJ_DEVICE_CONTROL
IRP_MJ_CLEANUP.

The driver registers itself as NDIS filter. It checks interface with GUID {4d36e972-e325-11ce-
bfc1-08002be10318} (that located into encrypted part of data) and gets list of instances that
already registered in Windows. It tries to find specific instance with value LowerRange ==
"ethernet" into HKLM\SYSTEM\CurrentControlSet\Control\Class\{4d36e972-e325-11ce-bfc1-
08002be10318}\000X\Ndi\Interfaces. After driver code found it, it appends own value to this
parameter as shown on image below.

As I already mentioned above, the rootkit was written by authors in 2007, so range of
supported Windows versions is extremely small comparing with nowadays malware.

https://4.bp.blogspot.com/-LedxpSTzc5Y/WIiGOuQ1oZI/AAAAAAAAEas/7MWQ2VC8AFgr6T-nnNVdZdGojqeIIasnACLcB/s1600/44.png
https://1.bp.blogspot.com/-Tfq4bbf9Js4/WIimWyoo3MI/AAAAAAAAEbA/Z9w-pR81dWMXapIp9l7bbVOvnmAoEC3xACLcB/s1600/66.png
https://4.bp.blogspot.com/-8EHRzXXVwAM/WIimad5FIbI/AAAAAAAAEbE/Es-TewskY_MB70DoMgVilJiXZaFfjoEvQCLcB/s1600/99999.png

6/8

Moreover, like other rootkits authors in that time, they use a lot of undocumented fields in
kernel mode objects for retrieving the data they need. Next Windows NT versions are
supported by the rootkit.

Windows NT 4.0 (1381)
Windows 2000 (2195)
Windows XP (2600)
Windows Server 2003 (3790)

You can see that the rootkit uses various undocumented offsets in EPROCESS and
ETHREAD kernel objects for some purposes, including, enumerating running processes and
threads, checking thread alertable state, retrieving pointer to PEB and etc.

Injection of malicious code into processes is made in usual for such rootkits manner:
Attach_To_Process->Allocate_Virtual_Memory->InsertApc.

https://1.bp.blogspot.com/-T1GfUR-rAtg/WNzuh7O0bCI/AAAAAAAAE6A/xcQUjfDyI84Xhyvqvf97VjGnsORdupHNQCLcB/s1600/6666.png

7/8

Conclusion

https://3.bp.blogspot.com/-2sMstBYrLvY/WN0TTzS693I/AAAAAAAAE6c/79UieDt-y2Aed-3XZE9_9YnIWGst2vxRgCLcB/s1600/852.png
https://1.bp.blogspot.com/-5iEVsJ5Tofk/WN0PgGOceAI/AAAAAAAAE6Q/MJLKWniHBS0dsGsabiTD_J5aPvHx_XIzgCLcB/s1600/89.png

8/8

Unlike authors of other state-sponsored rootkits that were already mentioned in my blog,
authors of mstcp32.sys don't rely on Windows native API for performing some operations, for
example, for enumeration processes and threads. Instead this, they use undocumented
kernel objects offsets for retrieving some data mentioned above. A significant portion of code
in rootkit body is NDIS-oriented and dedicated to communication with network. There are a lot
of Windows kernel rules for correctly organizing communication between NDIS driver and
other parts of OS.

The rootkit driver supports IOCTL for sending data over network on NDIS level. This means
that network logic of communicating with remote host is located into user mode part that use
driver for this purpose.

https://3.bp.blogspot.com/-r-KfyP2cPg8/WN0fxklET7I/AAAAAAAAE6s/Tnl9GU6PRO0PFFEVFe9UugBXBJSbVD5KgCLcB/s1600/741.png

