
{ マルウェア | 脆弱性 | スパム | 0day | ボットネット } のセキュリティ・ブログ

English Report of "FHAPPI Campaign" : FreeHosting APT
PowerSploit Poison Ivy
This is the English translation of analysis I made in Japanese: "#OCJP-136: 「FHAPPI」 Geocities.jpとPoison Ivy(スパ
イウェア)のAPT事件", it has been translated by a professional hacker and translator, Mr. "El" Kentaro. He is very
good so I will not change any words he wrote, please contact him for the Japanese/English "techie" translation. -
rgds, @unixfreaxjp

１．１．Background

2 1 8 0 2 2 1

記事のアーカイブ

RSS

OCJPって何？

ファイル送る便（英語版）

ファイル送る便（バックアップ）

モバイル アクセス

リンクリンク / 案内案内

検索

記事の検索記事の検索

アーカイブ・ダイレクトリー

アーカイブ・ダイレクトリーアーカイブ・ダイレクトリー

最近の記事最近の記事

今日のお勧め解析記事今日のお勧め解析記事

#OCJP-134: ダブル「ダブル「sh」」ELFのリのリ
バーシングバーシング （（Linuxハッキング事ハッキング事

 More Create Blog Sign In

Save web pages as PDF with PDFmyURL

http://blog.0day.jp/
http://blog.0day.jp/2017/03/ocjp-136-geocitiesjp-poison-ivy-apt.html
https://twitter.com/elkentaro
http://i.imgur.com/XL9we7I.png
https://www.blogger.com/comment-iframe.g?blogID=31816458&pageID=8874761909483540838&blogspotRpcToken=9148522
http://blog.0day.jp/p/blog-page.html
http://blog.0day.jp/rss.xml
http://blog.0day.jp/2012/01/cleanup-japan-ocjp.html
http://x.malwaremustdie.org/sendsample.html
http://www.geocities.jp/arc_ocd/sendsamplejp.html
http://blog.0day.jp/?m=1
http://blog.0day.jp/feeds/posts/default
http://blog.0day.jp/2017/01/ocjp-134-shmolinux.html
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

For the better insights of this analysis you can view my interview with good Q & A in here (link).

VXRL(credit) contacted us regarding an APT phishing email that included a download link to a malware being hosted on
a Geocities website.

Sample/Evidence.

*) Because we think its an APT attack we cannot disclose all of the contents of the email.

After receiving the request to takedown and URL information, much of the received malware information was very
unclear. I also examined the signature detection rate which turned out to be none. There was too few details. Without
the definite proof Geocities would not be able to do anything I decided to reverse engineer the APT.

Here are the results of my analysis please use it to remove the malware.

From the URL the malware was hosted on GeoCities Japan , Geocities is not a malware or malicious site but a free
website hosting for blogs and homepage.

■はじめに 今回Linuxのハッキング事件
のレポートを書かせて頂きます。 内容的
には「Linux OS x86」、「ELFバイナリリ
バーシング」と「シェルコード」の絡み
となります。 この記事を読むだけでも
OKですし、もし再現したい場合ASM、
gccとLinuxリバーシン...

件調査）件調査）

#OCJP-098： 【警告】 285件日本国内
のウェブサイトが「Darkleech
Apache Module」に感染されて、IEで
アクセスすると「Blackhole」マル
ウェア感染サイトに転送されてしまい
ます！

bash 0dayマルウェア感染の「real
time」リバースエンジニアリング

【警告】新規Linux/Mayhemマルウェ
アの感染

#OCJP-128: ロシア系マルウェアボッ
トネットのカムバック

【研究情報】暗号化されているマル
ウェアデータが何とかPythonで…

Lockyランサムウェア: インフェック
ション仕組みのモニタリング・レコー
ド

#OCJP-130: スパムボットに感染され
たPCからのスパムメール(マルウェア
url)

PEStudio 8.18, Wireshark &
VirusTotalを使いマルウェア調査ガイ
ドビデオを作りました

#OCJP-132: Linux IoTのマルウェア、
国内の感染について

0day.JPの人気の投稿の人気の投稿

Save web pages as PDF with PDFmyURL

http://securityaffairs.co/wordpress/57309/apt/fhappi-campaign.html
http://i.imgur.com/meJDZmo.png
http://blog.0day.jp/2013/03/ocjp-098-285blackhole-exploit-kit.html
http://blog.0day.jp/2014/09/bash-0dayreal-time.html
http://blog.0day.jp/2015/06/linuxmayhem.html
http://blog.0day.jp/2015/10/ocjp-128-11.html
http://blog.0day.jp/2015/06/python.html
http://blog.0day.jp/2016/07/locky.html
http://blog.0day.jp/2016/07/pc.html
http://blog.0day.jp/2014/04/pestudio-818-wireshark-virustotal.html
http://blog.0day.jp/2016/11/ocjp-132-linux-iot.html
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

The account “vbiayay1” was used to host the actual malware sample.

The contents of the hosted malware file was VBScript encoded script.

This was a “Wow” moment for me, it was the first time I have seen this type of file from Geocities.jp and the file

#OCJP-136: 「FHAPPI」 Geocities.jp
とPoison Ivy(スパイウェア)のAPT事件

Linux Malware Research List

MMD-0061-2016 - Linux/OverkillMod

MMD-0060-2016 - Linux/UDPfker

MMD-0059-2016 - Linux/IRCTelnet

MMD-0058-2016 - Linux/NyaDrop

MMD-0057-2016 - Linux/LuaBot

MMD-0056-2016 - Linux/Mirai

MMD-0055-2016 - Linux/PnScan

MMD-0054-2016 - ATMOS botnet

MMD-0053-2016 - Linux/STD IRCBot

MMD-0052-2016 - Overall Linux DDoS

MMD-0051-2016 - Linux/Tiny ELF-2

MMD-0050-2016 - Linux/Torte

MMD-0049-2016 - Java/DldrRCE

MMD-0048-2016 - Linux/DDOS.TF

MMD-0047-2015 - Linux/SSHV HidePID

MMD-0045-2015 - Linux/KDefend

MMDブログアーカイブ

MalwareMustDie! (MMD)

JVN脆弱性情報脆弱性情報

最新最新CVE情報情報

Cyber Awareness (US-CERT)

Exploits(最新版のみ最新版のみ)

Save web pages as PDF with PDFmyURL

http://i.imgur.com/mRCvi5W.png
http://i.imgur.com/bKC3MOL.png
http://blog.0day.jp/2017/03/ocjp-136-geocitiesjp-poison-ivy-apt.html
http://blog.malwaremustdie.org/2016/11/linux-malware.html
http://blog.malwaremustdie.org/2016/11/mmd-0061-2016-emech-for-ddos.html
http://blog.malwaremustdie.org/2016/10/mmd-0060-2016-linuxudpfker-and-chinaz.html
http://blog.malwaremustdie.org/2016/10/mmd-0059-2016-linuxirctelnet-new-ddos.html
http://blog.malwaremustdie.org/2016/10/mmd-0058-2016-elf-linuxnyadrop.html
http://blog.malwaremustdie.org/2016/09/mmd-0057-2016-new-elf-botnet-linuxluabot.html
http://blog.malwaremustdie.org/2016/08/mmd-0056-2016-linuxmirai-just.html
http://blog.malwaremustdie.org/2016/08/mmd-0054-2016-pnscan-elf-worm-that.html
http://blog.malwaremustdie.org/2016/06/mmd-0054-2016-atmos-botnet-and-facts.html
http://blog.malwaremustdie.org/2016/04/mmd-0053-2016-bit-about-elfstd-irc-bot.html
http://blog.malwaremustdie.org/2016/02/mmd-0052-2016-skidddos-elf-distribution.html
http://blog.malwaremustdie.org/2016/02/mmd-0051-2016-debungking-tiny-elf.html
http://blog.malwaremustdie.org/2016/01/mmd-0050-2016-incident-report-elf.html
http://blog.malwaremustdie.org/2016/01/mmd-0049-2016-case-of-java-trojan.html
http://blog.malwaremustdie.org/2016/01/mmd-0048-2016-ddostf-new-elf-windows.html
http://blog.malwaremustdie.org/2015/12/mmd-0047-2015-sshv-ssh-bruter-elf.html
http://blog.malwaremustdie.org/2015/12/mmd-0045-2015-kdefend-new-elf-threat.html
http://blog.malwaremustdie.org/2016/
http://jvn.jp/rss/jvn.rdf
http://nvd.nist.gov/download/nvd-rss.xml
http://www.us-cert.gov/ncas/current-activity.xml
http://www.exploit-db.com/rss.xml
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

looked suspicious so I decided to do some more analysis.

VBScript is a subset of Visual Basic and for people who have used Visual Basic or any VBA macro it should be a
familiar programming language. However VBScript is designed to be run and executed within the browser and only
can call functions considered basic such as file access and printing. Microsoft VBScript can be executed under
Windows Script Host or Powershell.

First I manually decoded the VBScript encoded sample , leading to the following code:

*) if you want to know how this is possible contact me directly @malwaremustdie

The code by using Windows Script Host VBScript creates and object in the shell (read: CMD) and executes a run of the
following code:

powershell.exe -w hidden -ep bypass -Enc "etc etc etc".

The meaning is, during script execution powershell hides the output (-w hidden) and executes "etc etc etc" which is
the base 64 coded command (Enc = EncodedCommand) without authentication (-ep bypass, ep = ExecutionPolicy).

2. Reversing marathon of base64

FreeBSD VuXML

Linuxセキュリティ・アップデートセキュリティ・アップデート

マイクロソフト・セキュリティ情報マイクロソフト・セキュリティ情報

おすすめ研究サイト一覧おすすめ研究サイト一覧

Schneier on Security
Installing a Credit Card Skimmer on a
POS Terminal
19 時間前

malekal's site
Réparer l’association de fichiers sur
Windows
21 時間前

Didier Stevens
!exploitable Crash Analyzer –
Statically Linked CRT
1 日前

Sucuri Blog
Persistent Malicious Redirect
Variants
1 日前

Virus Bulletin news
New paper: Does malware based on
Spectre exist?
1 日前

Errata Security
Your IoT security concerns are
stupid
5 日前

Dynamoo's Blog
Phishing and fraudulent sites hosted
on 188.241.58.60 (Qhoster)
1 か月前

Save web pages as PDF with PDFmyURL

http://i.imgur.com/9Urlw8u.png
http://i.imgur.com/VOQqG8v.png
https://www.vuxml.org/freebsd/rss.xml
http://www.linuxsecurity.com/static-content/linuxsecurity_advisories.rss
https://technet.microsoft.com/en-us/security/rss/bulletin
https://www.schneier.com/blog/
https://www.schneier.com/blog/archives/2018/07/installing_a_cr.html
https://www.malekal.com
https://www.malekal.com/reparer-association-fichiers-windows/
https://blog.didierstevens.com
https://blog.didierstevens.com/2018/07/17/exploitable-crash-analyzer-statically-linked-crt/
https://blog.sucuri.net
https://blog.sucuri.net/2018/07/persistent-malicious-redirect-variants.html
https://www.virusbulletin.com/rss
https://www.virusbulletin.com/blog/2018/07/new-paper-does-malware-based-spectre-exist/
https://blog.erratasec.com/
https://blog.erratasec.com/2018/07/your-iot-security-concerns-are-stupid.html
https://blog.dynamoo.com/
https://blog.dynamoo.com/2018/05/phishing-and-fraudulent-sites-hosted-on.html
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

Windows PowerShell is a useful and extensible command line developed by Microsoft Interface (CLI) shell and
scripting language.
Designed on the basis of object oriented, it is based on .NET Framework. PowerShell is having strict policy for
performing the script execution, however, by using optional execution parameter the attacker can utilize PowerShell
to run a malicious script. Once called Microsoft Shell (MSH, codenamed Monad).

Continuing the decoding of the "etc etc etc" code, leads to the following script↓

Once again its a VBScript , this script creates a web client object and uses the proxy setting and user rights to
download a file from a url and execute the file.

This allow the opening of a .doc (MS word) file.

Kahu Security
Reflow JavaScript Backdoor
3 か月前

contagio
Rootkit Umbreon / Umreon - x86,
ARM samples
3 か月前

MALware FORensics SECurity
Sundown Exploit kit
1 年前

S!Ri.URZ
ThinkPoint
2 年前

XyliBox
Citadel 0.0.1.1 (Atmos)
2 年前

Andre' M. DiMino -
SemperSecurus
Another look at a cross-platform
DDoS botnet
4 年前

Save web pages as PDF with PDFmyURL

http://i.imgur.com/sbTVTnC.png
http://www.kahusecurity.com
http://www.kahusecurity.com/2018/reflow-javascript-backdoor/
http://contagiodump.blogspot.com/
http://contagiodump.blogspot.com/2018/03/rootkit-umbreon-umreon-x86-arm-samples.html
http://malforsec.blogspot.com/
http://feedproxy.google.com/~r/MalwareForensicsSecurity/~3/ZdM7yb7ydkg/sundown-exploit-kit.html
http://siri-urz.blogspot.com/
http://siri-urz.blogspot.com/2016/05/thinkpoint.html
http://www.xylibox.com/
http://www.xylibox.com/2016/02/citadel-0011-atmos.html
http://www.sempersecurus.org/
http://www.sempersecurus.org/2013/12/another-look-at-cross-platform-ddos.html
https://www.blogger.com
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

Then by utilizing IEX (Invoke-Expression) commandlet will allow it to execute a script under Windows PowerShell and
download and execute a .ps1 file from another url.

Lets dive into the .ps1 file↓

Save web pages as PDF with PDFmyURL

http://i.imgur.com/L6tg1A0.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

Once again its a base 64 encoded code, and it shows that it used the IEX command to decode.

Looks like this malicious actor really likes base 64 , so back to reversing the base 64 manually.

Save web pages as PDF with PDFmyURL

http://i.imgur.com/w7vMNI9.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

The above is the decoded code, but its another base 64 encoded code.　(_　_|||)；；；；

However it finally revealed some of the infection code, the actual malware payload is in this base 64 code.

The code also revealed infection vectors for 32 bit and 64 bit , it hides itself as a fake “Security Update” process and
uses powershell.exe to execute the base 64 code by decoding it with an IEX command.

Ok, back to decoding base 64 again!!
Once decoded the 2 functions came up and a shellcode appeared.

Save web pages as PDF with PDFmyURL

http://i.imgur.com/cr7bhWZ.png
http://i.imgur.com/g2yaotj.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

The above codes are all self-explanatory, read the commands line by line. It explains how a powershell can be used as
lethal vector to exploit a bad malware by process injection, and all are in a script!!!

The last part looked familiar and after searching the MalwareMustDie tweets, it turned out to be a

３．３．Copy/Pasting PowerSploit/CodeExecution PoC

Save web pages as PDF with PDFmyURL

http://i.imgur.com/Z1J9vo7.png
http://i.imgur.com/PilH8ms.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

PowerSploit/CodeExecution PoC code.

Copy-and-Paste rulzzz….(maybe)

This is one of the reasons I am against releasing malware code to the public.
GitHub is full of these types source codes.

The main payload of this sample turned out to be mostly a copy and paste job of the PowerSploit/CodeExection and
the shell code and multilayered base64 encoding is original to this sample.

So to reveal the actually shell code we have decode the rest using base 64 again…oh no..

$Shellcode = [System.Convert]::FromBase64String($Shellcode32)

Once decoded the shellcode header can be analyzed as:↓

４．４．ShellCode

Save web pages as PDF with PDFmyURL

https://github.com/PowerShellMafia/PowerSploit/blob/master/CodeExecution/Invoke-Shellcode.ps1
http://i.imgur.com/MYvZ9TO.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

We could just reverse engineer it as is, however it might take some time..

Save web pages as PDF with PDFmyURL

http://i.imgur.com/C1S4pLK.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

So looks like we need and XOR , Key “0xe9” and byte length: 0x2183 . I didn't want to write it further before, but now
is okay, here's a simple explanation for this XOR stuff. Poison Ivy malware itself is the XOR resulted binary. It will
inject the actual payload to the userinit.exe (we will go there in following section) as the SECOND shellcode. This XOR

Save web pages as PDF with PDFmyURL

http://i.imgur.com/juBGdRR.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

resulted shellcode data contains basic information of the campaign itself.

Its getting late and I need my beauty sleep, and I can’t spend much time on this so I will share a neat way to handle
this shellcode :)

So I used assembly and created a PE binary file using this shellcode.

Saving the shell code data in the .text section of the assembly file and the entry point(EP) will be "adjusted" by the
compiler during compilation process therefore you can execute this shellcode as a binary PE file. This method is very
useful when analyzing shellcodes. And by using a Unix environment you can create this PE without risking an infection.
(For this sample I conducted most of my analysis in FreeBSD)

Save web pages as PDF with PDFmyURL

http://i.imgur.com/P9BvFfT.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

By using gcc or nasm to compile the PE file can be created in FreeBSD.

So we can now analyze the code for further analysis and behavior analysis of the malware without any risk.（＾－＾ｖ

So it turns out that much of the behavior of the sample conducts many malware actions, the shellcode extracts
information of its victim and calls back to a C2 server and other nefarious actions.
Writing out exactly what the payload does will take a very long time but here is the draft of the sample’s payload
behavior diagram in a hand writing I made for my own memo during stepping (sorry for an ugly hand writing) ↓

Save web pages as PDF with PDFmyURL

http://i.imgur.com/L9CIq2N.png
http://i.imgur.com/iQihJzJ.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

(This hand writing diagram contains the shellcode process, for both shellcodes used by FHAPPI. The first one is what
had been injected by the powershell.exe, the second one is what had been injected into the userinit.exe process. I’ll
clean up once I get to it, besides the malicious actor could be reading this post too. So once the necessary steps are
taken I might clean this up)

Shellcode is a piece of code used as a payload that uses software security holes in computer security. Shell codes are
often written in machine language. In order to allow an attacker to control an intruding machine, they often launches
a shell, for that a machine language code is executed.
Shell code is not necessarily just to start a shell, even without opening any shell, intrusion of malicious commands
can be performed, for example, executing a specific function of a library by addressing specific work space in kernel
for execution of a malicious activities, so it is said that the name of shell code is insufficient. However, other terms
have not been established so far.

The shell code utilizes many system calls and hence the shell code itself is somewhat bloated.
The following picture is the list of DLL calls I yanked from forensics.
(sorry for not cleaning this up, #neverenoughtime)↓

５．５．POISON IVY

Save web pages as PDF with PDFmyURL

http://i.imgur.com/mFTaAHV.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

*) you will need to sort these out by analyzing the flow of the malware in assembly mode.

I notices this is a 「Poison Ivy」 during the first stage of trace-assembly analysis of the shellcode:

Save web pages as PDF with PDFmyURL

http://i.imgur.com/hO81W8U.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

As you can see a fake 「userinit.exe」process was made, and a malicious code was injected in the process and then
to be executed. The victims will see a BAD 「userinit.exe」process is doing bad stuff. This is a typical Poison Ivy
scheme. Further, the usage of the certain combination of DLL is showing a typical pattern of the threat too. More
over, the date stamped in the MUTEX name is mostly used by Poison Ivy (specific format).

What looks like a mouse, should be a mouse..

If you want to see the whole figure of Poison Ivy used by this campaign, you will need to compile it as a binary and
analyze it as per described above, or you can decrypt the XOR with a patience, and then go by opcode per opcode
reversing. It is very do-able, and as the proof you can see the following screenshots of what I decrypted by radare2 (I
only use one r2 shell for this under a FreeBSD OS, no fancy stuff, if I can do this then you can do the same)

Save web pages as PDF with PDFmyURL

http://i.imgur.com/9v7u7vt.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

In the malware prosess "userinit.exe" there was a shellcode being injected. It looks like this:

Another shellcode in a shellcode..

Save web pages as PDF with PDFmyURL

http://i.imgur.com/NNigflP.png
http://i.imgur.com/eE5iXSM.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

This second shell code was generated during the XOR-decrypting process when PowerSploit (malware script of
powershell.exe) injected the first shell code, and the first shell code to then injecting this second shell code into
userinit.exe process. First shell code is the whole PoisonIvy itself, second shellcode is the installed infectious
payload to the client's PC. See the screenshot I took while cracking the first shell code by XOR below in radare2, it
shows the second shell code was formed during the first shell code was XOR-decrypted itself:

Save web pages as PDF with PDFmyURL

http://i.imgur.com/4XVXSte.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

↑It's hard to see or noticing malicious part of the second shellcode by ASCII view, let's see it in binary mode↓

Save web pages as PDF with PDFmyURL

http://i.imgur.com/weTq1cD.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

Now I see the suspicious「 CreateThread 」DLL call printed out in there, very suspicious.
The type of this shellcode is in x86-32 with the size of 255 bytes.

To get more idea on how it works, you will have to see it's flow with any tool you prefer, but I have my beloved one,
and the result is like this:

Save web pages as PDF with PDFmyURL

http://i.imgur.com/9nmNckr.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

It called the mapped addresses in the kernel prepared by the previous shellcode for kernel32.dll,advapi.dll, ws2_32.dll

Save web pages as PDF with PDFmyURL

http://i.imgur.com/KYHfDk2.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

and kernelbase.dll, so one need to run the powershell script to see the exact address use. I see the usage of the
VirtualAlloc, CreateThread, LookupPrivilegeValueA, AdjustTokenPrivileges, CreateFileA, getsockname, sleep,
GetComputerNameA, GetPriorityClass, SetPriorityClass DLL functions were called.

To explain it a bit more, Poison Ivy shellcode during injection of the userinit.exe process was direct/undirectly
involved in loading the necessary DLLs in the kernel space. The second shellcode (injected to the userinit.exe) has
two types of "calls", the short ones are caling to the "Hint" address of the function in a DLL in memory map and
second one is aiming for the "RVA" addresses.

To confirm about which address belongs to which functions of what DLL, one needs to know which DLL that was
beforehand used or loaded by the malware and then during the condition of "infection" or during the simulation of that
infection, the dump of the related DLL can show exact addresses that are applicable. For this case, there are many
ways to dissect this, in the Windows OS there is tool called PE Dumper. This tool (or similar ones) will show which are
RVA and Hint calls addresses and goes to specific functions. This is why I can know precisely which call were used.
Noted: I can not be too transparent for not inspiring other bad guys to do the same.

In my test PC (it's a 64bit windows since I run it as image under BSD) the snapshot of kernel.dll calls can be seen as
per following screenshot picture:

Save web pages as PDF with PDFmyURL

https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

The reversed process for the second shellcode can be disassembled as per what I did in below report (it is the "head"
of the longer analysis).

Save web pages as PDF with PDFmyURL

http://i.imgur.com/qZ0F8YT.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

You can see this "bad" userinit.exe is operated and creating the file called 「Plug1.dat」, it made socket for the
further works, and querying PC info through 「HKEY_LOCAL_MACHINE\SYSTEM\Setup の SystemSetupInProgress」,
we'll see the values sent afterward. The next malicious process will be executed too. And these overall process will be
looped. I had to terminate the process of loop itself in the 9th time, so I save the data of the Plug1.dat to Plug9.dat.

The process being executed by the second shellcode can be seen clearly. I made a graph to describe it as per below:

Save web pages as PDF with PDFmyURL

http://i.imgur.com/vNOQzVO.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

※）memo: A hand-made diagram I wrote was actually describing the whole process of the shellcode injected via
powershell.exe, which also having the process traced of the second shellcode. The both shellcode are in interaction
during the infection process.

...now it started to sound like a mouse too..it is a mouse!

Up to this point, there is no doubt this is a Poison Ivy.

６．ＣＮＣ６．ＣＮＣ and Network Traffic

Save web pages as PDF with PDFmyURL

http://i.imgur.com/q8kRDKv.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

Since time is somewhat limited lets ignore the small stuff and focus on WS2_32.DLL cause it looks interesting. It
seems that there is a socket(),gethostbyname() and a connect() call. These revealed hostname and IP address for the
callback, along with minor information.

The IP address is a dial-up IP in South Korea.↓

Network/BGP Information→「61.97.243.15||4766 | 61.97.243.0/24 | KIXS-AS | KR | kisa.or.kr | KRNIC」

So the hacker was utilizing another country for the CNC purpose, let's see more:

Hostname: web.outlooksysm.net

Save web pages as PDF with PDFmyURL

http://i.imgur.com/wNxH5K3.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

This is the used domain's WHOIS info:

Domain Name: outlooksysm.net
Registry Domain ID: 10632213
Registrar WHOIS Server: grs-whois.cndns.com
Registrar URL: http://www.cndns.com
Updated Date: 2016-05-27T11:24:02Z
Create Date: 2016-05-27T11:19:45Z
Registrar Registration Expiration Date: 2017-05-27T11:19:45Z
Registrar: SHANGHAI MEICHENG TECHNOLOGY INFORMATION DEVELOPMENT CO., LTD.
Registrar IANA ID: 1621
Registrar Abuse Contact Email: domain@cndns.com
Registrar Abuse Contact Phone: +86.2151697771
Reseller: (null)
Domain Status: ok https://icann.org/epp#ok
Registry Registrant ID:
Registrant Name: Liu Ying
Registrant Organization: Liu Ying
Registrant Street: Nan An Shi Jing Hua Lu 88Hao
Registrant City: NanAnShi
Registrant State/Province: FuJian
Registrant Postal Code: 009810
Registrant Country: CN
Registrant Phone : +86.13276905963
Registrant Phone Ext:
Registrant Fax: +86.13276905963

Save web pages as PDF with PDFmyURL

http://i.imgur.com/MLgqXhr.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

Registrant Fax Ext:
Registrant Email: missliu6@sina.com

So we know where this asshole is coming from...

Just analyzing the code is not enough evidence, I needed a safe way to execute PE file to conduct further behavioral
analysis. This way I could capture all the CNC/C2 traffic.↓

In this traffic was sent my test PC info (knew this after decoded) （＠。＠；；

Save web pages as PDF with PDFmyURL

http://i.imgur.com/fQzBYeK.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

The first transmission has a size of 256 bytes…this looks interesting…↓

Save web pages as PDF with PDFmyURL

http://i.imgur.com/eWy4cVO.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

So by looking ups some reference material turns out that this 256 byte transmission is an identifiable traffic pattern
for the Poison Ivy RAT. (The Challenge and Response Traffic for Poison Ivy) ↓

Save web pages as PDF with PDFmyURL

http://i.imgur.com/fgh2FXc.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

Poison Ivy: Poison Ivy also known as PIVY is a RAT (Remote Administration Tool) , its a back door style malware.
Many espionage related malware utilize this Poison Ivy kit in APT(Targeted Attacks)

This APT campaign utilized many variants to falsely have the victim download a malicious VBScript , which then
downloaded a secondary staged attack .doc file and opening it. Behind this action it quietly executes a
PowerShell(PowerSploit) attack to infect the victims with Poison Ivy into a process running in memory.
This was an unique instance where a modified PowerSploit PoC code was utilized in an APT infection and shows the
potential dangers of such an attack.

７．７．Conclusion

Save web pages as PDF with PDFmyURL

http://i.imgur.com/SE9aE4F.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

Poison IVY malware is what was actually injected in the malicious process userinit.exe created or prepared by the
PowerSploit used shellcode. The concept of infection is fileless, it's avoiding known signature for detection by multiple
encodings and wraps, and it is also 100% avoiding the original attacker's working territory. This will make the current
APT campaign has better chance of success other cases caused by similar payload.

This APT campaign utilized multiple accounts on Geocities Japan, leading to the possibility that there is a larger APT
campaign being conducted. The TPPs of this attack were the first to be recognized in Japan, and after discussing the
attack with my friends and fellow researchers we have named it “Free Hosting (pivoted) APT PowerSploit Poison Ivy”
(FHAPPI)

Credit: El Kentaro (FHAPPI Idea and logo、credit), Luffy, Syota Shinogi 、Ino Yuji (credit) ++

To avoid further victims I really hope that the vbiayay1 account on Geocities.jp gets taken down quickly and the
malware deleted. I hope that this analysis can help in the investigation and the countering of this threat.
Also from the analysis I am certain that the Korean IP address 61.97.243.15 is a CNC for Poison Ivy therefore
recommend blocking access to and from this IP.

I also have already contacted Gmail regarding the email sender , the following address were used:
1. wisers.data@gmail.com
2. health.pro.demo30@gmail.com

These accounts can be used in other APT campaigns, so I suggest blocking & start tracing these addresses.
I also hope that malware source codes and PoC are not shared in public.

I’m still working on this , so I will only share the hashes for the samples.
I will add the VT URLs once I am done.

８．８．Sample

1
2
3
4
5
6
7
8
9

10

1.MD5 (Meeting_sumｘｘ.doc) = 0011fb4f42ee9d68c0f2dc62562f53e0
2.MD5 (ｘｘｘ0301.ps1) = b862a2cfe8f79bdbb4e1d39e0cfcae3a
3.MD5 (Meeting_ｘｘｘ.doc) = 0011fb4f42ee9d68c0f2dc62562f53e0
4.MD5 (ｘｘｘ0301.ps1) = b862a2cfe8f79bdbb4e1d39e0cfcae3a
5.MD5 (ｘｘｘ0301.wsc) = 7c9689e015563410d331af91e0a0be8c
6.MD5 (shellcode-bin) = cb9a199fc68da233cec9d2f3d4deb081
7.MD5 (stupid-shellcode.exe) = 661d4e056c8c0f6804cac7e6b24a79ec

Other samples. (credit: Syota Shinogi)
MD5 (f0921.ps1) = e798a7c33a58fc249965ac3de0fee67b

９．９．Update.

?

Save web pages as PDF with PDFmyURL

https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

９．１．９．１．Finding other Geocities accounts.

Thanks to Syota Shinogi’s help (credit) in further researching he found another Geocities Japan account.
It uses the same PowerSploit shell code and the .doc file was a document in Mongolian , possibly targeting users in or
related to Mongol.

Screen shot ↓

Save web pages as PDF with PDFmyURL

http://i.imgur.com/QfwOuV9.jpg
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

９，２．９，２．File name contains the APT information

URL and attack campaign related information : ↓

This shows the attack date, target ID and some form of versioning/series type of information.

９．３．９．３．The Deletion process of the APT malware files

With the help of the Yahoo Incident Response Division (YIRD) and JP-CERT/CC and other great security folks in Japan
the files was successfully deleted.

The following files were deleted.↓

Save web pages as PDF with PDFmyURL

http://i.imgur.com/SYoBnVB.jpg
http://i.imgur.com/Dm4WyrG.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

※）Deletion confirmed time : 2017 March. 11th 10:00 am

thank you all for your help.

９．４．９．４．FHAPPI Campaign targeting Mongol

The user lgxpoy6」contains data for Mongolian APT target. The infection vector is the same, judging from the date it
started sometime in September of last year. Many artifacts and web sigs has gone or faded but, what the heck, so
lets analyze this too for the malware improvement comparison..

The first installer script was not obfuscated using base 64.

It utilizes VBscript but not encoded, and executes powershell.exe directly however the execution process itself is the

Save web pages as PDF with PDFmyURL

http://i.imgur.com/i5DOtHw.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

same as the campaign explained in above.↓

The encode command executed by powershell.exe has the same format ↓

Mongolian Decoy Document ↓

Save web pages as PDF with PDFmyURL

http://i.imgur.com/M2O5zMM.png
http://i.imgur.com/8F5zkea.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

Still uses PowerSploit to inject the malware into memory , no changes here.↓

Save web pages as PDF with PDFmyURL

http://i.imgur.com/uPHouIb.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

A slightly different shell code design ↓

Save web pages as PDF with PDFmyURL

http://i.imgur.com/FN1hUjs.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

The Mongolia related campaign also uses XOR but a different key “0xd4” but the byte length is the same “0x2183”

Save web pages as PDF with PDFmyURL

http://i.imgur.com/T37kSn3.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

The CNC is in the mainland of China, with the hostname(S) that I will expose later can be seen in screenshots in next
part)

IP/BGP Information: 116.193.154.28 | 116-193-154-28.pacswitch.net. | AS4766 | JIULINGQIHANG-CN | CN

Save web pages as PDF with PDFmyURL

http://i.imgur.com/ozr0lvO.png
http://i.imgur.com/RDSUsVW.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

(Room 413, No.188, Dong Han Men Nan Lu, CHINA)

The Poison Ivy version used in the Mongolia campaign is the same as the main analysis shown above that aims "other"
country.

The interesting part is the hostnames used in the Mongolia campaign were hardcoded two hostnames instead of one
(the main analysis APT is only have one hardcoded domains). However please see the template used, this version of
PIVY can contains up to 3 (three) hostnames (or IPs).

Save web pages as PDF with PDFmyURL

http://i.imgur.com/vEvM3iS.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

PS: Did you see what domains that was used? ;)

Hmm, okay, good, now we know exactly who is behind this attack..

#MalwareMustDie!

Save web pages as PDF with PDFmyURL

http://i.imgur.com/d2B9Ppk.png
http://i.imgur.com/ACHbf0Q.png
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

ホーム

登録: 投稿 (Atom)

Wed Mar 15 01:17:48 JST 2017 @unixfreaxjp / MalwareMustDie,NPO - Reversed and published the report
Thu Mar 15 05:42:14 JST 2017 @luffy(credit) corrected some Japanese wording in documentation. (thank you)
Fri Mar 17 00:48:30 JST 2017 @elkentaro translated the whole documents into English

※）PS: I might update this later with more material.

コメントを入力...

コメントの記入者コメントの記入者: Google アカウント

公開公開公開公開

プレビュープレビュープレビュープレビュー

0 件のコメント件のコメント:

コメントを投稿コメントを投稿

#OCJP-098： 【警告】 285件日本国内のウェブサイトが「Darkleech Apache Module」に感染されて、IEでアクセスすると「Blackhole」マルウェア感染サイトに転送され
てしまいます！
日本国内の285件ウェブサイトが「Darkleech Apache Module」マルウェアに感染し、もし感染されたサイトをInternet ExplorerブラウザでアクセスしたらBlackholeの感
染サイトに転送されてしまいます。転送されたらパソコンにあるPDF/Java/...

人気の投稿人気の投稿

Save web pages as PDF with PDFmyURL

https://twitter.com/unixfreaxjp
https://en.wikipedia.org/wiki/MalwareMustDie
https://twitter.com/elkentaro
https://www.blogger.com/email-post.g?blogID=31816458&pageID=8874761909483540838
https://www.blogger.com/share-post.g?blogID=31816458&pageID=8874761909483540838&target=email
https://www.blogger.com/share-post.g?blogID=31816458&pageID=8874761909483540838&target=blog
https://www.blogger.com/share-post.g?blogID=31816458&pageID=8874761909483540838&target=twitter
https://www.blogger.com/share-post.g?blogID=31816458&pageID=8874761909483540838&target=facebook
https://www.blogger.com/share-post.g?blogID=31816458&pageID=8874761909483540838&target=pinterest
http://blog.0day.jp/
http://blog.0day.jp/feeds/posts/default
http://blog.0day.jp/2013/03/ocjp-098-285blackhole-exploit-kit.html
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

bash 0dayマルウェア感染の「real time」リバースエンジニアリング
ゼロデイが出るといつも大忙し。 特にリバースエンジニアリングの僕らの手が回らない状態です。 《一日目》 CVE-2014-6271（bash 0day）の発表後24時間
以内にMalwareMustDieのチームメートから連絡があり、私が調査してマルウェア感染攻撃を発見し...

【警告】新規Linux/Mayhemマルウェアの感染
下記のＩＰアドレスから Linux/Mayhemマルウェア の感染動きを発見、wordpressのサイトが狙われています。 wordpressの安全性が低いパスワードを狙いbruteで攻撃さ
れ、クラッキングされるとＰＨＰマルウェアインストーラーファイルをサーバーにアップロードさ...

#OCJP-128: ロシア系マルウェアボットネットのカムバック
以前の 0day.jp記事に も日本国内に対して「Kelihosマルウェア・ボットネット」の感染を報告しましたが 今回このロシア系マルウェア感染ボットネットが
「カムバック」しましたので、 今日我々「MalwareMustDie」が12時間モニターしたら、日本国内の感染IP1...

(c) 2017, ZeroDay Japan | http://blog.0day.jp |. 「シンプル」テーマ. Powered by Blogger.

Save web pages as PDF with PDFmyURL

http://blog.0day.jp/2013/03/ocjp-098-285blackhole-exploit-kit.html
http://blog.0day.jp/2014/09/bash-0dayreal-time.html
http://blog.0day.jp/2014/09/bash-0dayreal-time.html
http://blog.0day.jp/2015/06/linuxmayhem.html
http://blog.0day.jp/2015/10/ocjp-128-11.html
http://blog.0day.jp/2015/10/ocjp-128-11.html
https://www.blogger.com
https://pdfmyurl.com/save-as-pdf?src=pdf
https://pdfmyurl.com/?src=pdf

