
1/6

View all posts by marcoramilli June 6, 2019

APT34: Jason project
marcoramilli.com/2019/06/06/apt34-jason-project/

Today I want to share a quick analysis on a new leaked APT34 Tool in order to track
similarities between APT34 public available toolsets. This time is the APT34 Jason –
Exchange Mail BF project to be leaked by Lab Dookhtegan on June 3 2019.

https://marcoramilli.com/2019/06/06/apt34-jason-project/

2/6

Original Leak

Context

According to FireEye, APT 34 has been active since 2014. APT 34, also referred to as
“OilRig” or Helix Kitten, has been known to target regional corporations and industries.
Although there was information about APT34 prior to 2019, a series of leaks on the website
Telegram by an individual named “Lab Dookhtegan”, including Jason project, exposed many
names and activities of the organization.

“APT34 conducts cyber espionage on behalf of Iran. Iran seeks to diminish the
capabilities of other regional powers to create leverage and better establish itself. This
strategy is especially important against nations it sees as a threat to its regional power
such as Saudi Arabia and the United Arab Emirates.”

Michael Lortz

Analysis

Jason is a graphic tool implemented to perform Microsoft exchange account brute-force in
order to “harvest” the highest possible emails and accounts information. Distributed in a ZIP
container (a copy is available here) the interface is quite intuitive: the Microsoft exchange

https://github.com/marcoramilli/APT34

3/6

address and its version shall be provided (even if in the code a DNS-domain discovery mode
function is available). Three brute-force methods could be selected: EWS (Exchange Web
Service), OAB (Offline Address Book) or both (All). Username and password list can be
selected (included in the distributed ZIP file) and threads number should be provided in order
to optimize the attack balance.

Jason Project GUI

Deflating the ZIP container three artifacts are facing out. Jason.exe representing the
graphic user interface and the main visible tool. Microsoft.Exchange.WebService.dll
which includes the real functionalities used by Jason.exe , it’s a Microsoft developed
library, PassSample which includes some patterns implementation of possible Passwords
(ie.[User@first]@@[user@first]123) and a folder named PasswordPatters which includes
building blocks for password guessing. For example it wraps up a file called Year.txt
including numbers from 1900 to 2020, a file called numspecial.txt including special
numbers patterns and special chars patterns, a file called num4.txt including numbers
from 0 to 999 and from 0002 (why not 0001 or 0000?) to 9998 (why not 9999?) and finally a
file called num4special.txt including special number patters like: 1234,7890,0707, and so
on and so forth.

Leaked ZIP content

Digging a little bit into the two Microsoft artifacts we might find out that both of them (
Jason.exe and Microsoft.Exchange.WebService.dll) have been written using .NET

framework. The used .dll provides a managed interface for developing .NET client
applications that use EWS. By using the EWS Managed API, the developer can access
almost all the information stored in an Office 365, Exchange Online, or Exchange Server
mailbox. The attacker used an old version of Microsoft.Exchange.WebService.dll
tagged as 15.0.0.0 which according to Microsoft documentation dates back to 2012.

https://www.microsoft.com/en-gb/download/details.aspx?id=35371

4/6

WebService.dll

assemply version
The last available Microsoft.Exchange.WebService.dll dates back to 2015, as shown
in the following image, which might suggest a Jason dating period, even if it’s not an
irrefutable evidence.

Last Microsoft

Exchange WebServices dll version dates to 2015
Analyzing the reversed byte-code a real eye catcher (at least in my persona point of view) is
in the “exception securities” that have been placed. In other words, the developer used many
checks such as: variable checks, Nullbytes avoidance, objects indexes and object key
checks in order to reduce the probability of not managed software exceptions. These
“exception protections” are usually adopted in two main scenarios: (i) the end-user is not a
super “techy” guy, so he might end-up with some unexpected conditions or (ii) the attacker is
a professional developer who is trained to write product oriented code and not simple
working software (which is what attackers usually do). The following images show a couple
of code snippets in where the developer decided to protect codes from unexpected user
behavior.

5/6

Basic exception

prevention 1

Basic exception

prevention 2
Comparing the code style with my previous analyses on APT34 (OilRig) which you might find
here and here, we might observe a similar code protection. Even if the code language is
different the similarity in the basic exception prevention from Jason and -for example- the
“ICAP.py script injection” function is very close. Another weak similarity is in the logging style.
Jason and -for example- Glimpse project have a similar file logging function which includes
string concatenation using special operators (no “flying casting” or “safe conversions”, ie:
“%s”) and one line file logging into function focal points.

I am aware that these are weak similarities and there is no additional evidence or ties with
previous leaked APT34 except for the trusted source (Lab Dookhtegan), so I am not giving
any personal attribution since it gets very hard to attribute Jason directly to APT34 for what is
known.

On the other hand Jason project doesn’t share the main source code language with previous
APT34 analyses, it doesn’t include DNS tricks and or DNS usage evidences, it doesn’t
include distinguishing patterns or language mistakes, it have been recompiled on January
2019 but using older technology. As already discussed it shares just few code style
similarities with Glimpse and WebMask.

IoC

https://marcoramilli.com/2019/04/23/apt34-webmask-project/
https://marcoramilli.com/2019/05/02/apt34-glimpse-project/
https://marcoramilli.com/2019/04/23/apt34-webmask-project/
https://marcoramilli.com/2019/05/02/apt34-glimpse-project/

6/6

9762444b94fa6cc5a25c79c487bbf97e007cb680118afeab0f5643d211fa3f78
(Jason.exe)
0cf66c68c265191d36fc9648b4ef879a80be0c3b6da289de5891ede1554de48d (Original
ZIP File)

YARA

rule _APT34_Jason {
 meta:
 description = "APT34 Jason"
 date = "2019-06-05"
 hash1 = "9762444b94fa6cc5a25c79c487bbf97e007cb680118afeab0f5643d211fa3f78"
 strings:
 $s1 = "lSystem.Resources.ResourceReader, mscorlib, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089#System.Resources.R" ascii
 $s2 = "D:\\Project\\Jason\\obj\\Release\\Jason.pdb" fullword ascii
 $s3 = "Jason.exe" fullword wide
 $s4 = "get_PasswordPattern" fullword ascii
 $s5 = "get_PasswordFile" fullword ascii
 $s6 = "get_pCurrentPassword" fullword ascii
 $s7 = "Microsoft.Exchange.WebServices.Data" fullword ascii
 $s8 = "Total Login Successful :" fullword wide
 $s9 = "Login Successful" fullword wide
 $s10 = "<PasswordPattern>k__BackingField" fullword ascii
 $s11 = "<pCurrentPassword>k__BackingField" fullword ascii
 $s12 = "Jason - Exchange Mail BF - v 7.0" fullword wide
 $s13 = "Please enter Password File" fullword wide
 $s14 = "get_UsernameStart" fullword ascii
 $s15 = "get_UserPassFile" fullword ascii
 $s16 = "get_pCurrentUsername" fullword ascii
 $s17 = "set_pCurrentPassword" fullword ascii
 $s18 = "set_PasswordFile" fullword ascii
 $s19 = "set_PasswordPattern" fullword ascii
 $s20 = "connection was closed" fullword wide
 condition:
 uint16(0) == 0x5a4d and filesize < 100KB and
 8 of them
}

