
1/8

Stealing the LIGHTSHOW (Part Two) — LIGHTSHIFT and
LIGHTSHOW

mandiant.com/resources/blog/lightshift-and-lightshow

In part one on North Korea's UNC2970, we covered UNC2970’s tactics, techniques and

procedures (TTPs) and tooling that they used over the course of multiple intrusions. In this

installment, we will focus on how UNC2970 utilized Bring Your Own Vulnerable Device

(BYOVD) to further enable their operations.

During our investigation, Mandiant consultants identified most of the original compromised

hosts, targeted by UNC2970, contained the files %temp%\<random>_SB_SMBUS_SDK.dll

and suspicious drivers, created around the same time on disk.

At the time Mandiant initially identified these files, we were unable to determine how they

were dropped or the exact use for these files. It wasn't until later in the investigation, during

analysis of a forensic image, where the pieces started falling into place. A consultant noticed

multiple keyword references to the file C:\ProgramData\USOShared\Share.DAT (MD5:

def6f91614cb47888f03658b28a1bda6). Upon initial glance at the Forensic Image, this file

was no longer on disk. However, Mandiant was able to recover the original file, and the initial

analysis of the sample found that Share.DAT was a XORed data blob, which was encoded

with the XOR key 0x59 .

The decoded payload (MD5: 9176f177bd88686c6beb29d8bb05f20c), referred to by

Mandiant as LIGHTSHIFT, is an in-memory only dropper. The LIGHTSHIFT dropper

distributes a payload (MD5: ad452d161782290ad5004b2c9497074f) that Mandiant refers

to as LIGHTSHOW. Once loaded into memory, LIGHTSHIFT invokes the exports Create

then Close in that order. The response from Close is written as a hex formatted address

to the file C:\Windows\windows.ini .

https://www.mandiant.com/resources/blog/lightshift-and-lightshow
https://www.mandiant.com/resources/blog/lightshow-north-korea-unc2970
https://advantage.mandiant.com/actors/threat-actor--90d4205f-c1a0-54ab-9d43-e2a507c82de9
https://advantage.mandiant.com/malware/malware--0d86b906-1974-5d24-a78e-9c771339bc50
https://advantage.mandiant.com/malware/malware--59b3fc08-f453-54e9-8e67-d46f6e3ef57d

2/8

Figure 1: LIGHTSHIFT preparing to load LIGHTSHOW

LIGHTSHOW is a utility that makes use of two primary anti-analysis techniques used to

hinder both dynamic and static analysis. To deter static analysis, LIGHTSHOW was observed

being packed by VM-Protect. In an effort to thwart dynamic analysis, LIGHTSHOW is

targeted to a specific host and requires a specific SHA256 hash corresponding to a specific

computer name or the sample will not fully execute. Once FLARE completed the analysis of

LIGHTSHOW, we were able to understand how the files %temp%\

<random>_SB_SMBUS_SDK.dll and drivers were created on disk.

3/8

LIGHTSHOW is a utility that was used by UNC2970 to manipulate kernel data-structures

and represents an advancement in DPRK’s capabilities to evade detection. To accomplish

this, LIGHTSHOW drops a legitimate version of a driver with known vulnerabilities, with a

SHA256 hash of

175eed7a4c6de9c3156c7ae16ae85c554959ec350f1c8aaa6dfe8c7e99de3347 to

C:\Windows\System32\Drivers with one of the following names chosen at random and

appended with mgr :

circlass

dmvsc

hidir

isapnp

umpass

LIGHTSHOW then creates the registry key

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\<service name> where

<service name> is the same as the chosen filename without appended mgr . It then

creates a registry key with the value name ImagePath , which points to the path of the

driver. The sample then loads the driver using NtLoadDriver . LIGHTSHOW drops and

loads a dummy DLL %temp%\<random>_SB_SMBUS_SDK.dll to register itself to the driver

as a legitimate caller.

Using the vulnerable driver, LIGHTSHOW can perform arbitrary read and write operations

to kernel memory. LIGHTSHOW uses this read/write primitive to patch different kernel

routines, which are related to the type of facilities an Endpoint Detection and Response

(EDR) software may use, to enable evasion of said EDR software. After the read and write

operations to kernel memory, the sample unloads and deletes %temp%\

<random\>_SB_SMBUS_SDK.dll .

Examining the chain of execution, we see further obfuscation techniques being employed in

LIGHTSHOW. UNC2970 has a concerted effort towards obfuscation and employs multiple

methods to do this throughout the entire chain of delivery and execution.

https://swapcontext.blogspot.com/2020/08/ene-technology-inc-vulnerable-drivers.html

4/8

Figure 2: LIGHTSHOW Obfuscation

LIGHTSHOW is another example of tooling that looks to capitalize on the technique of

BYOVD. BYOVD is a technique that utilizes the abuse of legitimate and trusted, but

vulnerable drivers, to bypass kernel level protections. This technique has been utilized by

adversaries ranging from financial actors, such as UNC3944, to espionage actors like

UNC2970, which shows its usefulness during intrusion operations. AHNLab recently

released a report on activity tracked as Lazarus Group that focused largely on the use of

BYOVD. While Mandiant did not observe the hashes included in the AHNLab report, the use

of SB_SMBUS_SDK.dll as well as other similarities, such as the exported functions Create

and Close , indicate an overlap between the activity detailed in this blog post and those

detailed by AHNLab.

https://www.mandiant.com/resources/blog/hunting-attestation-signed-malware
https://asec.ahnlab.com/wp-content/uploads/2022/10/Analysis-Report-on-Lazarus-Groups-Rootkit-Attack-Using-BYOVD_Oct-05-2022-3.pdf

5/8

Throughout several incidents we responded to in 2022 that involved UNC2970, we observed

them utilizing a small set of vulnerable drivers. This includes the Dell DBUtil 2.3 and the

ENE Technology device drivers. UNC2970 utilized both of these drivers in an attempt to

evade detection. These two drivers, and many more, are found in the Kernel Driver Utility

(KDU) toolkit. With this in mind, it is likely that we will continue to see UNC2970 abuse

vulnerable drivers from other vendors.

Mandiant has worked to detect and mitigate BYOVD techniques for a number of years and

has worked closely with industry allies to report vulnerabilities when discovered. During

research being carried out on UNC2970 we discovered a vulnerable driver that the actor had

access to, but did not know was vulnerable - essentially making it a 0day in the wild but not

being actively exploited. This was verified through our Offensive Task Force who

subsequently carried out a notification to the affected organization and reported the

vulnerability to MITRE, which was assigned CVE-2022-42455.

Outlook and Implications

Mandiant continues to observe multiple threat actors utilizing BYOVD during intrusion

operations. Because this TTP provides adversaries an effective means to bypass and mitigate

EDR, we assess that it will continue to be utilized and adapted into actor tooling. The

continued targeting of security researchers by UNC2970 also provides an interesting way that

the group can potentially continue to expand their toolset to gain an upper hand with

BYOVD.

Mitigations

Because attestation signing is a legitimate Microsoft program and the resulting drivers are

signed with Microsoft certificates, execution-time detection is made much more difficult as

most EDR tools and Anti-Viruses will allow binaries signed with Microsoft certificates to

load. The recent blog post released by Mandiant on UNC3944 driver operations details

multiple techniques that can be used by organizations to hunt for the abuse of attestation

signing. If you haven't already, don't forget to read part one on North Korea's UNC2970.

Additionally, Microsoft recently released a report detailing how organizations can harden

their environment against potentially vulnerable third-party developed drivers.

Indicators of Compromise

MD5 Signature

def6f91614cb47888f03658b28a1bda6 XOR’d LIGHTSHIFT

https://www.dell.com/support/kbdoc/nl-nl/000186019/dsa-2021-088-dell-client-platform-security-update-for-an-insufficient-access-control-vulnerability-in-the-dell-dbutil-driver?lang=en
https://github.com/hfiref0x/KDU
https://github.com/mandiant/Vulnerability-Disclosures
https://advantage.mandiant.com/reports/23-00003754
https://github.com/mandiant/Vulnerability-Disclosures/blob/master/2023/MNDT-2023-0003.md
https://www.mandiant.com/resources/blog/hunting-attestation-signed-malware
https://www.mandiant.com/resources/blog/lightshow-north-korea-unc2970
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/microsoft-recommended-driver-block-rules

6/8

9176f177bd88686c6beb29d8bb05f20c LIGHTSHIFT

ad452d161782290ad5004b2c9497074f LIGHTSHOW

7e6e2ed880c7ab115fca68136051f9ce ENE Driver

SB_SMBUS_SDK.dll LIGHTSHOW Dummy DLL

C:\Windows\windows.ini LIGHTSHIFT Output

Signatures

LIGHTSHIFT

rule M_Code_LIGHTSHIFT

{

 meta:

 author = "Mandiant"

 description = "Hunting rule for LIGHTSHIFT"

 sha256 =
"ce501fd5c96223fb17d3fed0da310ea121ad83c463849059418639d211933aa4"

 strings:

 $p00_0 = {488b7c24??448d40??48037c24??488bcfff15[4]817c24[5]74??
488b4b??33d2}

 $p00_1 = {498d7c01??8b47??85c075??496345??85c07e??8b0f41b9}

 condition:

 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and

 (

 ($p00_0 in (750..11000) and $p00_1 in (0..8200))

)

}

LIGHTSHOW

7/8

rule M_Code_LIGHTSHOW

{

 meta:

 author = "Mandiant"

 description = "Hunting rule For LIGHTSHOW."

 md5 =
"ee5057da3e38b934dae15644c6eb24507fb5a187630c75725075b24a70065452"

 strings:

 $E01 = { 46 75 64 4d 6f 64 75 6c 65 2e 64 6c 6c }

 $I01 = { 62 63 72 79 70 74 2e 64 6c 6c }

 $I02 = { 4b 45 52 4e 45 4c 33 32 2e 64 6c 6c }

 $I03 = { 75 73 65 72 33 32 2e 64 6c 6c 00 }

 $H1 = { 4D 5A 90 00 }

 $H2 = { 69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F }

 $F01 = { 47 65 74 4d 6f 64 75 6c 65 46 69 6c 65 4e 61 6d 65
57 }

 $F02 = { 47 65 74 4d 6f 64 75 6c 65 48 61 6e 64 6c 65 41 }

 $F03 = { 47 65 74 46 69 6c 65 54 79 70 65 }

 $F04 = { 47 65 74 56 65 72 73 69 6f 6e }

 $F05 = { 51 75 65 72 79 53 65 72 76 69 63 65 53 74 61 74 75
73 }

 $F06 = { 42 43 72 79 70 74 4f 70 65 6e 41 6c 67 6f 72 69 74
68 6d 50 72 6f 76 69 64 65 72 }

 $M01 = { 68 2d 79 6e b1 }

 $M02 = { 68 ea 71 c2 55 }

 $M03 = { 66 b8 ad eb }

 $M04 = { 4c 8d 2c 6d b3 6c 05 39 }

 $M05 = { 48 8d 2c 95 08 9d ec 9a }

 $S01 = { 48 8d 0c f5 a3 cd 0a eb}

 $S02 = { 81 f9 7f 56 e6 0a}

 condition:

8/8

 ($H1 in (0..2048)) and ($H2 in (0..2048)) and filesize < 100MB
and filesize > 5KB and all of ($M0*) and all of ($E*) and all of ($I0*)
and 6 of ($F0*) and all of ($S0*)

}

