
1/14

September 12, 2019

The tangle of WiryJMPer’s obfuscation
decoded.avast.io/adolfstreda/the-tangle-of-wiryjmpers-obfuscation/

by Adolf Středa and Luigino CamastraSeptember 12, 201913 min read

The story of how we conquered WiryJMPer’s obfuscation begins with a simple binary file
posing as an ABBC Coinwallet. We found the file suspicious, as the file size was three-
times as big as it should be, and the strings in the file corresponded to other software
WinBin2Iso(version 3.16) from SoftwareOK. ABBC Coin (originally Alibaba Coin, not
affiliated with Alibaba Group) is an altcoin, one of many blockchain-based cryptocurrencies.
WinBin2Iso, on the other hand, is software that converts various binary images of
CD/DVD/Blu-ray media into the ISO format. Behavioral analysis revealed that the binary,
posing as an ABBC Coin wallet, is a dropper, which we will, from now on, refer to as
WiryJMPer. WiryJMPer hides a Netwire payload between two benign binaries.

The first stage of the payload innocently appears as a regular WinBin2Iso binary with a
suspiciously large .rsrc section. The JMP instruction, which is normally part of a loop
handling window messages, jumps into the .rsrc section where a roller-coaster of control
flow begins. This causes an unresponsive WinBin2Iso window to appear briefly before
being replaced by a ABBC Coin wallet window. This window is always shown at startup and
thus it is a good indicator of infection.

While this functionality isn’t novel in any sense and no sandbox evasion was utilized, the
obfuscation was uncommon enough to gain our attention. The combination of control flow
obfuscation and low level code abstraction made the analysis of the malware’s workflow
rather tedious. This, in combination with the low detection rate on VirusTotal (6 out of 66 as
of 7/8/2019), provided us a great excuse to rummage through our toolbox to perform the
analysis. Moreover, during the analysis, we found that the obfuscated loader also utilises a
(possibly) custom stack-based virtual machine during the RC4 key schedule, which aroused
our interest even more.

https://decoded.avast.io/adolfstreda/the-tangle-of-wiryjmpers-obfuscation/
https://decoded.avast.io/adolfstreda/the-tangle-of-wiryjmpers-obfuscation/

2/14

Due to the aforementioned reasons and low overall prevalence, this analysis will focus on
the obfuscation itself. Resulting side-effects and the malware’s functionality, will be mostly
mentioned as side-notes.

High-level overview

The malware starts in the WinBin2Iso binary that has a patched jump. This jump leads to
the .rsrc section, where a loader is decrypted, loaded into memory and relocations are
made.

 Original

WinBin2Iso binary, note that the jump leads back to GetMessageA

3/14

Patched WinBin2Iso binary, notice that the jump leads to totally different address range
This loader then handles everything until the control flow is redirected to Netwire. It loads
ntdll.dll into the memory, decrypts some auxiliary data such as LNK filename or RC4
decryption password. Afterwards, it decrypts Netwire, which is also loaded into the memory,
and the “decoy” binary (ABBC Coin wallet in this case), which is saved onto the disk.

4/14

High-level overview of WiryJMPer’s workflow
Subsequently, the control flow is redirected into Netwire. Netwire is a pretty much standard
remote access tool, no significant modifications were made. The Netwire C&C lies at
46.166.160[.]158 , this address was unfortunately unresponsive at the time we

performed our analysis.

5/14

The loader also tries to achieve persistence by copying the original binary to
%APPDATA%\abbcdriver.exe and by creating an LNK file, leading to this binary, in the

startup folder.

Accessing the loader

The code following the patched jump consists of many small code blocks connected by a
network of jumps. This makes the binary rather hard to (statically) analyze without any
preprocessing. With the help of an emulator, we are able to reconstruct the call graph and
concatenate some of these blocks. While this approach still yields rather unpleasant results,
it allowed us to get rid of some dummy instructions and simplify the control flow. Note that
this obfuscation also utilises so called opaque predicates, i.e. conditional jumps with one
branch that will never be reached. If we wanted to keep the analysis static, we would have
to employ e.g. symbolic execution or other heuristics to resolve these jumps. However, for
the purpose of our analysis, a simple heuristic, where the code following the conditional
branch should lead to “reasonable” instructions, was good enough.

 Several concatenated consecutive blocks, note the

conditional jump that has predetermined result.
Brief inspection of the sandbox behavioral log reveals two calls of RtlDecompressBuffer ,
the second one decompressing our Netwire payload. Unfortunately, addresses of the
compressed buffers lead to addresses allocated during the execution, meaning that we
cannot access them directly during static analysis, and thus we will have to dive deeper in
order to retrieve the payload.

6/14

Finding content of ESI is easy, we just have to dig under ESP. Note that superfluous jumps
were removed.
The first RtlDecompressBuffer call takes data loaded by rep movsb at 0x01e6d44f . This
instruction loads the data from the binary itself into an allocated memory (VirtualAlloc).
Since user-space debuggers were probably detected by the sample, we decided to use a
kernel debugger that got us to the offset that’s under ESI (0x004f9000), which leads to
data in the .rsrc section. A brief check whether this data matches the input to
RtlDecompressBuffer reveals that the data is encrypted. Fortunately, the decryption loop is
located right after the block with rep movsb .

Decryption routine.

Looking at the XORing at 0x1e75ad6 we see that our key is hidden in EBX which is
coincidentally loaded just before our rep movsb at 0x01e727a5 . Furthermore, we can
see that the key is static and thus the whole buffer is XORed by 0xca81c398 . This buffer
is then decompressed by the aforementioned RtlDecompressedBuffer.

This resolved our first question: where is the compressed loader located? Now two
questions remain unresolved: where can we find Netwire payload and where is the “decoy”
(ABBC Coin wallet) binary that is launched at the end?

Loader relocation

7/14

Before the execution flow moves into the loader from the .rsrc section, the relocation has to
be made due to the undeterministic nature of VirtualAlloc (and the presence of absolute
jumps in the loader). The relocation is implemented in the same way as standard
relocations in PE files. The relocation table has the following structure:

The offset of the instruction to be patched is calculated in the following way:
reloc_high + reloc_low[i] & 0xfff + allocated_memory_base

Unsurprisingly, the difference between the original base (0x10000000) and the base of the
VirtualAlloc-ed memory is added to the residing 32-bit value. The list of reloc_low is
iterated until the iterator points to the next row of the relocation table.

Accessing the payloads

Since Netwire payload is unpacked using RtlDecompressBuffer, it should be easily
trackable using the very same tricks we used before. However, since there is other stuff
being dropped or extracted, we used VirtualAlloc for our breakpoints instead.

The first VirtualAlloc, coming after the unpacked loader, prepares space for ntdll.dll that is
loaded with NtReadFile. This is becoming a rather common anti-debugging trick as
debuggers mostly do not recognize calls into this manually copied DLL.

Now this is where it gets more interesting. The second VirtualAlloc is made for some
internal configuration (LNK file name, RC4 key that will be used later on) that is located in
the .rsrc section (0x01e632ac). Again, this binary blob is encrypted by a simple XOR
cipher with a key 0x98c381ca . From now on, we’ll start with an assumption that
everything is encrypted by the XOR cipher with a hardcoded key, this may simplify the
analysis as it is straightforward to recover the key from the plaintext-ciphertext pair.

Our assumption failed immediately on the next payload (0x004899B6), its decryption loop
contained the following instructions (note that we have removed superfluous jumps):

8/14

This is a keystream generation loop of the RC4 cipher. This brings us to another problem –
we would like to find the key that was used to instantiate the table at 0x09458248 .
Unfortunately, the key schedule for the RC4 cipher is obfuscated by a stack-based virtual
machine and thus we started to debug again. To illustrate the following process, we will
recall the RC4 key schedule algorithm (see Python implementation below).

 RC4 key schedule in

Python
This time, we have set a breakpoint on the virtual machine’s instruction that is used to write
to the table which allows us to recover the state of registers and thus access addresses of
S[i] and S[j] . By subtracting the RC4 table’s base address, we obtained the respective

indices i and j . Now, it’s trivial to step through the RC4 key schedule and recover bytes
of the key from the index j . More specifically, we obtain a sequence:

9/14

105 , 120, 89, 105, 77, 70, 82, 88, 56, 83, 78, 70, 68, 74, 112, 72, 104,
85, 82, 121, 105 , 120, 89, 105, 77, 70, 82, 88, 56, 83, 78, 70, 68, 74,
112, 72, 104, 85, 82, 121, 105 , 120, 89, 105, 77, 70, 82, 88, 56, 83,
78, 70, 68, 74, 112, 72, 104, ...

This sequence obviously has repetitions (highlighted in bold) and these values seem to fall
into the printable ASCII range. Using these observations, we recover the RC4 key:
ixYiMFRX8SNFDJpHhURy . This key was loaded from the buffer, located in the second

VirtualAlloc-ed memory (containing the internal configuration), into the loader. The
decryption of this blob yields the ABBC Coin wallet binary.

Interestingly, the extracted binary matches the real ABBC Coin wallet (version 3.9.1). Later
on, this binary will be extracted into the temporary directory under a name matching the
following regular expression: [A-Za-z]{5}\.exe , and executed right away. We suppose
that this is intended to mask the real purpose of the original binary. This payload will not be
executed if the original binary is already in the %APPDATA% directory. Incidentally, this is the
location where the original binary is copied to and thus it won’t launch the ABBC Coin wallet
if ran at startup (through the aforementioned LNK file).

While we will discuss the virtual machine itself in the Virtual Machine section, we will have a
brief look at its part, which is called a dispatcher (actually WiryJMPer has three more similar
dispatchers). You may notice one detail:

 One of the four VM

dispatchers that are used during RC4 key-schedule. The correspondence between
highlighted parts is not accidental.
Recall that the memory, where the loader resides, had been allocated by VirtualAlloc before
calling the RtlDecompressBuffer and the virtual machine is in the loader. Therefore, bytes at
the address 0x0034AF8C couldn’t have been set with this offset from the beginning and

https://github.com/abbc-foundation/abbc/tree/fa087fc3fcd9ed395c49fb70a3453a94ae09ad8e/binaries/Windows

10/14

had to be patched during runtime as the address range for the loader is not known
beforehand. This also indicates the need for relocations.

Now, we just need to find Netwire in the sample. We used the same approach to find
VirtualAlloc that allocates memory for Netwire, we set a breakpoint on the write and then
found a location from which Netwire is copied (offset 0x01e585b6 in .rsrc section). Luckily
for us, it was encrypted using RC4 with the same key. The decryption yields a UPX packed
Netwire, thus concluding the payload extraction and confirming its presence hinted by the
sandbox behavioral log.

Virtual machine

During the analysis, we discovered that the RC4 key schedule was implemented in a
custom stack-based virtual machine.

11/14

Schematic of common stack-based virtual machine
The first part of every virtual machine is a dispatcher. WiryJMPer’s virtual machine uses
four distinct switch dispatchers. In general, switch dispatchers jump to the code
corresponding to the desired instruction via switch statements or similar constructions. The
instruction is translated into a specific address or offset via a jump table, pushed onto the
stack and the instruction ret is called, although other constructions are also possible. The
typical setting is shown on the diagram below, but note that WiryJMPer’s virtual machine is
more complex as it has more dispatchers and the stack-overflow check does not follow all
instructions.

12/14

 Another dispatcher of the

virtual machine.
Since every virtual instruction has to deterministically reach either the dispatcher or exit the
virtual machine, we tried to reach these instructions by tracking references leading to these
dispatchers. As this virtual machine is stack-based, arguments are passed through stack
instead of registers. General purpose registers are mostly used locally, although some
registers, such ESI (instruction pointer), ESP (stack frame base) or EBP (stack top), have a
global effect on the virtual machine.

Instructions are rather similar to, for instance, the WProtect virtual machine – arithmetic
operations, jumps, memory/stack writes and reads, etc. We assumed a typical setting
where registers are put onto specific positions in the stack during the initialization and then
loaded back from these positions on exit. Due to the amount of instructions (and some
duplicities), we will only provide a few examples of these instructions.

 Read DWORD from stack

https://github.com/xiaoweime/WProtect

13/14

 Jump

 Write DWORD to memory

Similar files

We found files utilising the same scheme – WinBin2Iso binary patched to unpack Netwire
and another binary. For example, the decoy payload led to a different, yet legitimate,
installer of Bitcoin Core (version 0.18.0). Others led to the Yoroi wallet, Neon wallet,
ZecWallet, DigiByte Core, OWallet, Verge core wallet and others. The common denominator
seems to be cryptocurrency wallets.

Conclusion

While the malware’s functionality isn’t very innovative, it has managed to pass under the
radar for some time, probably due to obfuscation and rather low prevalence. The utilised
obfuscation was easily overcome by behavioral analysis, nevertheless it served well in
obfuscating details of the malware’s operation. Rather slow setup of the decoy showing
multiple windows with unrelated titles may be suspicious enough for power-users, on the
other hand, providing the “decoy” binary might be comforting enough for ordinary users.

Indicators of Compromise (IoC)

Repository: https://github.com/avast/ioc/tree/master/WiryJMPer
List of SHA-256: https://github.com/avast/ioc/blob/master/WiryJMPer/samples.sha256

Analyzed sample

https://github.com/avast/ioc/tree/master/WiryJMPer
https://github.com/avast/ioc/blob/master/WiryJMPer/samples.sha256

14/14

File SHA-256

WiryJMPer f1963b44a9c887f02f6e9574aea863974be57a033600047b8e0911f9dbcb9914

ABBC
Coin
Wallet

7477159797a7f06e3c153662bfef624d056e64b552f455fe53e80f0afb0a1860

Netwire
payload

6daa1ff03fdbbb58b1f41d2f7dc550ee97fc5b957252b7f1703c81c50b3d406f

Netwire payload C&C: 46.166.160[.]158

Similar samples

SHA-256

6e1cfde5278d03c6df204d845d165673df89cfd047f4eda97816ee351115a652

4b7bd8581b85bb33d4748aaeda6a3e5ec8f930751688ffb6854522411f3ad275

81740ad6a3f0e5c1698132524e0d4b23b4f4773761bca68fdaef33748ef299e3

880de7e64c0678a38ef6964b6ff2f48e426449426b58a516556285421c223374

125cf6b01deb86df16e0961021a57b28177b8efedc6bf4f617bef940cf4b9d74

04a92a7e171b583c40cee9d2760b20fa8324e45f3938f7d41f48065829103ebd

4a3d3e85d09074ed1e1de5e48c97c4e42fbcb3cfb44b213c0224ffb191dcd1c2

0631ace562e077814c7788b9fe10c865579a29cf180654658f30ab38387a13e3

d1457c238b99ca8904693551f92310acae561c68c20a8caafe3391d927d7618e

ea855c2b53419dcd81e677520d4e55d41cb5ce2933f550edd6520cce15da93fc

Tagged asanalysis, obfuscation, reversing

https://decoded.avast.io/tag/analysis/
https://decoded.avast.io/tag/obfuscation/
https://decoded.avast.io/tag/reversing/

