
Baseband Attacks: Remote Exploitation of Memory Corruptions in Cellular
Protocol Stacks

Ralf-Philipp Weinmann
University of Luxembourg

<ralf-philipp.weinmann@uni.lu>

Abstract

Published attacks against smartphones have concentrated
on software running on the application processor. With
numerous countermeasures like ASLR, DEP and code
signing being deployed by operating system vendors,
practical exploitation of memory corruptions on this pro-
cessor has become a time-consuming endeavor. At the
same time, the cellular baseband stack of most smart-
phones runs on a separate processor and is significantly
less hardened, if at all.

In this paper we demonstrate the risk of remotely
exploitable memory corruptions in cellular baseband
stacks. We analyze two widely deployed baseband
stacks and give exemplary cases of memory corruptions
that can be leveraged to inject and execute arbitrary code
on the baseband processor. The vulnerabilities can be
triggered over the air interface using a rogue GSM base
station, for instance using OpenBTS together with a
USRP software defined radio.

Keywords: baseband security; radio firmware; mem-
ory corruption; GSM

1 Introduction

Despite recent deployments of 4G networks, Global Sys-
tem for Mobile Communications (GSM) [7] still is the
prevalent standard for cellular communications. With
billions of GSM handsets deployed, about 70% of all cel-
lular connections in 2011 were estimated to have been
performed using GSM as bearer technology1. More-
over, GSM will not go away soon, as even the majority
of Long Term Evolution (LTE) devices are backwards-
compatible not only with 3G technology but with GSM
to provide connectivity in areas lacking both 4G and 3G
coverage.

1according to market data by Wireless Intelligence

While the cryptographic algorithms A5/1 and A5/2
used for link-level encryption of voice data in GSM have
been practically broken [2, 1, 13] and interception attacks
have been shown to be easily possible [20, 21, 14] with
off-the-shelf hardware, only little effort has been directed
at researching the security of the software directly inter-
facing with the cellular network, the so-called cellular
baseband stack.

In the past, spoofing a GSM network required a signif-
icant investment, which limited the set of possible attack-
ers. When GSM radio stacks were implemented, attacks
against end devices were not much of a concern. Hence
checks on messages arriving over the air interface were
lax as long as the stack passed interoperability tests and
certifications. Open-source solutions such as OpenBTS
[4] allow anyone to run their own GSM network at a frac-
tion of the cost of carrier-grade equipment, using a sim-
ple and cheap software-defined radio. This development
has made GSM security explorations possible for a sig-
nificantly larger set of security researchers. Indeed, as
the reader will see in the following, insufficient verifica-
tion of input parameters transmitted over the air interface
can lead to remotely exploitable memory corruptions in
the baseband stack.

Let us briefly describe our attack scenario: The at-
tacker will operate a rogue Base Transceiver Station
(BTS) in vicinity to the targeted Mobile Station (MS).
The rogue BTS sends out system information messages
announcing the availability of a network that the targeted
mobile station is willing to connect to. As the primary
criterion for network reception is signal strength, the at-
tacker can force the MS to connect to its rogue base sta-
tion by simply transmitting with a stronger signal than
the legitimate base station. This will not happen instan-
taneously, but the process can be sped up by using a GSM
jammer to selectively jam the frequency of the legitimate
BTS. This scenario is very similar to the one used by
IMSI catchers. Since GSM does not provide mutual au-
thentication, there is no protection against fake BTSs.



Mobile stations come in different types: examples
are USB data dongles providing connectivity to laptops,
tablet devices with cellular connectivity and last but not
least, cellular phones. The class of cellular phones can be
divided into two types: so-called “feature phones” which
only offer their users basic functionalities such as mak-
ing and receiving calls and sending and receiving text
messages and “smartphones” which can be considered
as personal assistants. Smartphones allow their users to
perform a wide variety of tasks; such as browsing the
Web, sending and receiving email, installing custom ap-
plications, taking pictures, shooting video, etc. Although
the results described in this paper may apply to all hand-
sets running vulnerable protocol stacks, we made a delib-
erate decision to focus our research on smartphones, as
they are the most interesting targets for real-world attack-
ers. Besides storing valuable personal data, smartphones
have become the gateway to the digital world for many
people. In 2011, the number of smartphones shipped sur-
passed the number of personal PCs and tablet PCs com-
bined.

A paper describing the anatomy of modern GSM tele-
phones has been written by Welte [24]. Although the
line drawn between smartphones and feature phones is
fluid and shifting, we can use the following distinction in
their hardware to separate the two: Feature phones only
have a single CPU that runs an operating system that both
displays the user interface and at the same time runs the
baseband software stack. On the other hand, the majority
of modern smartphones contain at least two CPUs2, the
application processor, which handles the user interface
and runs the applications installed by the user and a sec-
ond CPU, the baseband processor, that handles connec-
tivity to the cellular network. Some smartphone designs
use a shared-memory architecture where the baseband
processor can access all of the application processor’s
memory space while other designs have better isolation,
i.e. the baseband processor and the application processor
have separate memories and exchange messages through
dedicated communication channel, e.g. a serial line or a
small shared-memory segment (see Figure 1).

Publicly demonstrated attacks against smartphones
have concentrated on exploiting vulnerabilities in soft-
ware running on the application processor.

Specialized knowledge and experience is required to
implement standards that are specified across several
hundred documents; this is why baseband chip vendors
usually sell their chips together with the correspond-
ing software to drive it; this piece of software is called
the “baseband software stack”. Companies that cur-
rently sell GSM/3G baseband chips and stacks are: Qual-
comm, Intel (formerly Infineon), Broadcom, Texas In-

2which may or may not be on the same die

Application Processor
(slave)

Digital Baseband Processor
(master)

RAM

Application 
Processor

Digital Baseband 
Processor

RAM

RAM

Serial communication
or shared memory

Shared memory architecture Baseband as modem

Figure 1: Common architectures employed in smart-
phone designs

struments, ST-Ericsson, Renesas (formerly Nokia), Mar-
vell, MediaTek, NVidia (formerly Icera), VIA Telecom
and Spreadtrum.

According to a recent market report published by
Strategy Analytics [15], Qualcomm and Intel (using the
Comneon stack) together captured 60% of the baseband
revenue in 2011, hence we have contentracted our re-
search on cellphones using these chips.

Baseband software stacks however are less hardened
against attacks than the code running on the applica-
tion CPU; this can be witnessed by examining so-called
“software unlocks” written for circumventing the net-
work locks of Apple’s iPhone in a non-permanent man-
ner [16]. These are local exploits executed with each
start-up of the telephone. They work by the application
processor sending a sequence of AT commands to the
baseband. This sequence triggers a memory corruption
vulnerability in the AT command interpreter of the base-
band stack. Most of the vulnerabilities exploited so far
have been stack buffer overflows.

Our contribution We analyze which areas of GSM
baseband stacks most likely contain programming errors
leading to remotely exploitable memory corruptions. To
drive our point home, we describe two bugs for two ven-
dors with a high market share that we found during our
research. We discuss what difficulties had to be over-
come to exploit these memory corruptions and what the
resulting impact is.

Related Work Mulliner, Golde and Seifert [18] sys-
tematically analyzed the resilience of a number of mobile
phones against malformed short messages using fuzzing
and demonstrated numerous remotely exploitable denial
of service attacks using this vector – yet it is unclear
whether any of the described vulnerabilities lead to re-

2



mote code execution. At Black Hat 2009 Miller and
Mulliner presented a vulnerability in the SMS parsing
functionality of iPhone [17] that can lead to remote code
execution; this attack does not require user interaction,
but it exploits a bug in CommCenter, which is running
on the application processor.

Structure of the paper The paper is organized as fol-
lows: Section 2 provides some background and describes
the relevant aspects of GSM. Section 3 describes how we
performed our vulnerability analysis. Section 4 investi-
gates the difficulty of leveraging such vulnerabilities into
remote code execution. Section 5 gives an impact assess-
ment of our research and Section 6 concludes this paper,
giving an outlook where future research in this area is
headed.

2 Background

Until our first presentations in 2010, no one had demon-
strated an attack resulting in remote code execution in
a baseband stack. This is moderately surprising. By
fuzzing handsets, many crashes in the baseband stacks
can be found quickly. However most of these crashes
seem to not be triggered by memory corruptions. To sep-
arate the wheat from the chaff and to leverage the inputs
that indeed cause memory corruptions, a deeper under-
standing of the baseband stack is necessary. This seems
to have been the primary reason hindering security re-
searchers from making progress in this area.

2.1 Local exploits and unlocks

For years, the primary incentive driving the reverse-
engineering of cellphone firmwares has been the “un-
lock scene”. The existence of this scene is owed to the
lock-in model many network operators employ. A so-
called “network lock” causes a handset to only accept
SIM cards of the operator selling the handset whereas
a SIM lock ties the handset to a specific SIM card (ei-
ther identified by the IMSI or the ICCID). Implementing
one of these two restrictions – which are implemented
in the baseband firmware – allows a carrier to sell the
locked handset for a cheaper, subsidized price. These
barriers have been circumvented in a number of ways:
missing integrity checks in bootloaders, broken integrity
verification routines for flashing firmware updates and
other logic errors were exploited. However, more re-
cently memory corruption vulnerabilities (mostly stack
buffer overflows) in AT command parsing routines and
the SIM Toolkit functionality have been used to perform
unlocks for the iPhone and Windows Mobile phones pro-
duced by HTC.

2.2 GSM layers and information elements
The layering of cellular protocols does not cleanly map
to the OSI model. The GSM protocol stack on the MS
consists of several layers (see Figure 2, adapted from [7])
of which only the lowest three are considered in this pa-
per. The physical layer (layer 1) of the air interface uses
Gaussian Minimum Shift Keying (GMSK) for modulat-
ing binary sequences and a combination of Time Divi-
sion Multiple Access (TDMA), Frequency Division Mul-
tiple Access (FDMA) and frequency hopping for trans-
mitting frames. The physical layer also implements log-
ical signalling channels.

The data-link layer (layer 2) uses Link Access Pro-
cedure on Dm Channels (LAPDm) which is a simpli-
fied version of ISDN’s Link Access Protocol Channel
D (LAPD) that has been adapted to the air interface.
LAPDm handles transport of messages between protocol
entities of layer 3 and signaling tasks.

Layer 3 is significantly more complex and can be sub-
divided into the following sublayers (ordered from bot-
tom to top of the stack again):

• Radio Resource Management (RR): e.g. channel
set-up and tear-down

• Mobility Management (MM): e.g. location updates

• Connection Management (CM): call control (call
establishment/release), supplementary services
(e.g. USSD), SMS

The message format of layer 3 messages is specified
in GSM 04.07 [8], the actual messages that can be ex-
changed are defined in GSM 04.08 [9]. A layer 3 mes-
sage is composed of

• Transaction identifier or skip indicator (4 bits)

• Protocol discriminator (4 bits)

• Message type (8 bits)

• Other information elements (potentially variable
length)

Of interest here are Information Elements (IEs), which
come in several flavors: V, LV, T, TV and TLV where T
denotes tag, L denotes length and V denotes value. The
types V, T and TV are for Information Elements of fixed
length, whereas LV and TLV are used for information
elements that have varying length.

3 Vulnerability analysis

Cellular baseband stacks generally are not available in
source form for non-licensees3. However, in 2004 the

3OsmoComBB, a project building an open-source GSM baseband
stack for Calypso chipsets, being the exception here.

3



�������

��	
����������

�������������������

������������������������

��������������������������

�������

Figure 2: Layers of a GSM software stack running on a
Mobile Station

source code tree for the Vitelcom TSM30 mobile phone
was uploaded to a Sourceforge project [19]. Eventu-
ally it was removed, but only after having been avail-
able for download for a number of years. This source
code included an old version of the Condat GSM base-
band stack4 and allowed us to obtain a general under-
standing of the structure of cellular stacks. This knowl-
edge proved to be very helpful for binary analysis of our
target firmwares, even though these stack were written
by completely different companies on different real-time
operating system.

When we began our analysis, we chose two exam-
ple targets, namely the Apple iPhone 4 (using a Com-
neon stack on an Intel chip) and the HTC Dream (us-
ing a Qualcomm stack and chip). As baseband binaries
are fairly large (multiple megabytes), we only reverse-
engineered the parts that we deemed interesting. For al-
most all smartphones, firmware updates are readily avail-
able either from the respective website of the respective
vendor or from the website of a carrier. Most of the time
these updates do not only contain bug fixes or enhance-
ments for the code running on the application CPU, but
also include a full baseband binary blob. To extract this
firmware image, it is necessary unpack – and for older
iPhones to decrypt – the firmware update. Tools and in-
structions on how to do this can usually be found on mes-
sage boards dedicated to tinkering with the firmware of
cellular phones. The reverse-engineering process is sig-
nificantly simplified by error strings and file names of
source code files embedded in the binaries. These ap-
parently are used for diagnosis on production devices us-
ing vendor applications such as Qualcomm’s QXDM and
Comneon’s Mobile Analyzer.

Almost all baseband processors are ARM processors

4Condat was later bought by Texas Instruments. The stack can still
be found in their products.

and therefore well supported by the IDA Pro disassem-
bler. Moreover, Hex-Rays, the company producing IDA
Pro ships a decompiler for the ARM architecture that can
give reverse-engineers a significant speedup in analyzing
larger codebases such as baseband firmware images.

For the iPhone, a thriving scene exists that has already
reverse-engineered parts of its baseband software to cre-
ate “software unlocks”, software that is injected through
a local baseband exploit to allow to circumvent network
locks imposed by the carriers. Some documentation is on
these unlocks available in a wiki [5], a detailed descrip-
tion of the reverse-engineering of ultrasn0w is given in
[16].

Our main tools for identifying “interesting“ code paths
were IDA Pro and Google BinDiff. BinDiff allows us
to re-identify known functions in binaries. By comput-
ing a number of metrics on the flow graphs of a func-
tion, a function “fingerprint” is obtained. A metric on
the function fingerprints then allows to identify “similar”
functions in other binaries. “Symbol porting”, process of
function re-identification, then works by observing that
most functions observed in the wild are equivalent when
their similarity value is high enough.

We used BinDiff to identify functions such as
memcpy(), memmove() and bcopy() and RTOS system
functions by using BinDiff to port symbols from several
standard compiler libraries and RTOS binaries with sym-
bols. This then allowed us to identify functions that used
variable-length memory copies, enabling us to quickly
see which of them employed insufficient length check-
ing for the data copied. In principle, IDA Pro’s FLIRT
signatures can be used for this purpose as well, but they
are less flexible, since they don’t work on the flow graph
abstraction model. For the iPhone 4 it proved to be very
fruitful to start by analyzing the first generation iPhone
(iPhone 2G) and identify security problems here – the
work can later be ported over using BinDiff, a tool de-
scribed below. The advantage of this approach is that one
has to deal with a significantly reduced amount of func-
tions since the iPhone 2G lacks UMTS and GPS func-
tionality.

3.1 Areas of interest

Below layer 3, there usually is little potential for ex-
ploitable memory corruptions, as the messages transmit-
ted are too short. An exception to this rule are voice
codecs. Reading parts of the GSM layer 3 specifica-
tion [9], an inclined reader finds multiple areas that look
promising for exploitation: there are a large number of
messages that specify IEs to be encoded as TLV or LV,
even though in the message description it becomes clear
that the values transmitted are of predefined length. This
can usually lead to a mismatch between different imple-

4



menters and hence to the most classic of all memory cor-
ruptions, the buffer overflow. At one point there may be
a fixed-length buffer allocated, while at another point the
message is copied into the buffer without making sure
that the message indeed is smaller than the buffer, trust-
ing the length argument specified in the information ele-
ment.

Similarly, many explicit state machines exist in [9],
many of which have state transitions depending on timer
expiries. As some of the state transitions involve allo-
cation and deallocation of dynamic memory, dangling
pointers can arise if implementers are not carefully cov-
ering edge cases.

3.2 Classification of bugs found
To get a better understanding of which parts of the cellu-
lar baseband code are most worthwhile auditing, it makes
sense to classify the (memory corruption) vulnerabilities
we have found by type:

Insufficient length checks:
These were by far the most common types of bugs
we encountered. They usually resulted in data on
the heap or on the stack being overwritten, which
can be leveraged by an attacker to gain control over
the execution flow using the usual methods. Ex-
ploitation of heap corruption bugs is vastly more
easy than on current desktop platforms in these em-
bedded systems – initially, we didn’t find a single
example of safe unlinking being employed in heap
implementations of baseband operating systems5.

Object/structure lifecycle issues
Due to the generous use of state machines in GSM,
memory corruptions can arise out of lifecycle is-
sues. These can be use-after-free bugs (e.g. a dan-
gling pointer to a structure that has been deallo-
cated already) or uninitialized variables (most use-
ful when on the stack). Exploiting these issues can
be more difficult than the first kind, but given the
fact that there are no exploitation countermeasures
in place, they shouldn’t be easily discounted as “un-
exploitable”. Common examples of state machines
are the state machine used for handling incoming
SMSes and for Cell Broadcasts.

Integer overflows/underflows
We only found a very small number of these bugs
compared to the other kinds. This may be either
because our methods for detecting them (in binary
code) are not enough or because cellular code base
is inherently less prone to these types of bugs

5in reaction to our results, at least the Qualcomm modem heap now
uses safe-unlinking, though [16].

Memory information leaks
Whilst this class of vulnerabilities is not a memory
corruption issue, memory information leaks can be
highly useful to leverage memory corruptions bet-
ter. Usually, they arise in the same context as the
lifecycle issues mentioned above, at least in base-
band stacks.

We did not find any format string issues; this is not
surprising, given that most uses of sprintf()-like func-
tions are in the diagnostic code and do not allow for ar-
bitrary format strings to be passed.

3.3 Finding insufficient length checks
The majority of bugs found where memory corruptions
that occurred to due insufficient checks on length fields
being performed. In principle, these can be found
by fuzzing all information elements with length fields.
Fuzzing however is a very crude method. Instead the
method we employed was to look at the source code for
the baseband stack of the Vitel TSM30 and see which
types of memory corruption problems were widespread
in this code base. By identifying memcpy(), memmove()
and similar memory-transfer library functions which are
called with a non-constant length parameter, we identi-
fied potentially vulnerable routines and checked them in-
dividually in other baseband stacks.

3.4 Issues with dual-mode
In baseband stacks that support both GSM and UMTS,
code paths between the two are often shared. This means
that in some instances a code path that should only be
reachable when the device is talking to a UMTS base
station also is accessible using well-crafted GSM layer 3
messages (which of course are undefined in GSM 04.08).
An example of this is given in the next subsection. In
other cases this type of bug can lead to uninitialized vari-
ables and object lifecycle issues.

3.5 Examples of exploitable bugs found
• During the registration phase, a TMSI is assigned

to the handset if it has not been seen before. This
TMSI is supposed to be always 32 bits long, but
a variable length field is used. Indeed, sending a
longer TMSI (e.g. 128 bytes) caused the baseband
stack of iPhones with the Intel/Comneon to crash.

• For authentication, the base station transmits a chal-
lenge to the handset. In GSM, this challenge is a
16 byte value called RAND. For UMTS a so-called
AUTN challenge [11] is used – which is encoded as
a variable length IE, but in fact is specified to also

5



be be 16 bytes long. Interestingly, we were able
to force the Qualcomm stack to accept this vari-
able length AUTN challenge even in a GSM layer
3 message by setting the message type to the one
used for UMTS RANDs. This causes a classic stack
overflow (for more than 48 bytes of AUTN), as this
challenge is copied to a buffer on the stack that ap-
parently has only been provisioned for 16 byte chal-
lenges.

The above bugs are just two of many that were found;
more can easily be found by looking at all of the vari-
able length information elements, sending long messages
and subsequently locating the corresponding functions
parsing them in the baseband firmware if the baseband
crashes. Alternatively, one can locate all functions that
copy memory and statically analyze where they are being
called from – most firmware images contain debug infor-
mation that allows an attacker to figure this out using the
binary firmware images only. We will not list all of the
bugs that we have found in this paper as we yet have to
disclose them to the vendors; it currently is unclear how
long it takes to get them fixed. However, bear in mind
that the above examples barely scratch the surface.

4 From bugs to exploits

Developing exploits for embedded systems can be chal-
lenging if the platform is only partially understood, as is
usually the case with large reverse-engineered code bases
such as cellular protocol stacks. Moreover, debugging
capabilities can be very primitive if JTAG access to the
chip has been disabled.

However, to demonstrate the exploitability of a vul-
nerability, it is sufficient to make the phone perform an
unexpected action: We have chosen to use the auto-
answer functionality – defined in GSM specification
07.07 (AT command set for GSM Mobile Equipment) –
which makes the phone automatically pick up an incom-
ing call without user interaction after a predefined num-
ber of rings.

The auto-answer feature is mandatory for cellular
phones and enabled by sending the command ATS0=n
over the AT command interface to the baseband; n indi-
cates the number of rings after which the call should be
automatically picked up with n = 0 disabling the func-
tionality. The above V.25ter command is a relict of the
days of PSTN modems; the register S0 was used to set
the number of rings after which a modem would pick up.

To enable the auto-answer in our exploit, we first lo-
cate the AT command handler for setting the S0 register.
For stack-buffer overflows or other exploits that give us
control over the program counter directly, we then load
the value 1 into register R0 and redirect the execution

flow into this function. Depending on whether this set-
ting is in RAM or whether it is backed by an EEPROM,
we either need to make sure that we continue the execu-
tion correctly or we can crash without any penalties.

For heap buffer overflows that result in the attacker be-
ing able to overwrite an arbitrary location in memory6 it
may be easier to directly overwrite the location that is set
in the AT command handler for S0 instead of redirecting
the execution flow. Alternatively, sometimes heap buffer
overflows are followed by memory copies into a stack
buffer, in which case a heap buffer overflow can propa-
gate and trigger a stack buffer overflow.

Figure 3: Test setup: USRPv1, built-in FA-SY 1 module,
laptop running OpenBTS, test phones (Motorola Back-
flip, Apple iPhone 2G, HTC Dream, BlackBerry Bold
9700)

4.1 Our setup

To verify our research, we used a modified Ettus Re-
search USRPv1 together with 2 RFX-900 daughter-
boards. Since the clock signal of the USRPv1 is impre-
cise (a clock drift of 20ppm is usual) and its standard ref-
erence clock of 64Mhz less suitable than a 52Mhz clock
for GSM (the GSM symbol rate is derived from a 13MHz
clock), we have modified the USRP to use an an exter-
nal clock and feed it clock signal produced by Clock-
Tamer module. The USRP is connected to a Thinkpad
X60 with a Core Duo CPU @1.6GHz that runs OpenBTS
2.6, modified with patches to perform the exploits listed
below. Figure 3 shows a picture our setup 7.

In our tests we did not spoof a carrier but rather op-
erated a test network with MCC 001 and MNC 01 on a
frequency for which we had obtained authorization from
the local regulation authorities.

6a so-called write 4 primitive
7The photo shows the first generation setup, in which we were using

a FA-SY 1 module instead of a ClockTamer

6



4.2 Device fingerprinting

To reliably exploit vulnerabilities in baseband stacks, it
is useful to identify both the device and the exact version
of the stack running on the device. This can be achieved
in multiple ways, the easiest of which is using the In-
ternational Mobile Station Equipment Identity and Soft-
ware Version Number (IMEISV) [10]. The IMEISV has
the format AA-BBBBBB-CCCCCC-DD with decimal digits;
the part AA-BBBBBB designates the GSM Type Approval
Code (TAC), CCCCCC designates the serial number of the
device and DD the software version running on the de-
vice. The IMEISV can be queried by the base station
during the location update, allowing for targeted attacks.
We have modified OpenBTS to query the IMEISV dur-
ing registration. TACs can be mapped to the manufac-
turer and model name using a TAC database. The official
database is maintained by TÜV SÜD BABT for the GSM
Association and can not be queried by the general pub-
lic. However, there exist public databases on the inter-
net which cover a non-negligible portion of the assigned
TAC space.

Alternatively, memory information leaks and minor
protocol variations between baseband revisions could be
used to fingerprint software versions.

4.3 Debugging baseband stacks

To gain a better understanding of the internals of a base-
band stack as well as to write proof-of-concept exploits
it is helpful to be able to examine memory and register
contents at run time. In general, any debugging capabil-
ities will greatly reduce the amount of development time
for any exploit.

Most chipsets in mobile phones allow JTAG access to
be disabled or to be access-protected, for instance with a
secret key. This is done to prevent people from tamper-
ing not only with the baseband firmware but also from
removing SIM locks or changing the IMEI of the phone.
Whether or not JTAG is disabled usually is left up to the
OEM producing the phone and not to the chipset manu-
facturer.

In practice, a large number of cell phones on the mar-
ket do allow JTAG access as can be witnessed from the
list of phones supported by dedicated cellphone repair
boxes like the RIFF Box. Indeed, the HTC Dream we
have chosen as an object of study for this paper does al-
low JTAG access to the baseband processor. However,
during the boot process, JTAG access is disabled in the
secondary bootloader, the OSBL. The decision to disable
JTAG is made based on a flag and can be patched out by
setting a breakpoint and changing the register the flag is
loaded into, allowing us to have JTAG access to the base-
band CPU at run time as well.

A second way to debug devices with Qualcomm stacks
is through the so called DIAG interface. This is an inter-
face usually used for device diagnostics, however it can
also be used to peek and poke into memory at run time.
Guillaume Delugré wrote an excellent debugger for older
Qualcomm basebands [6] that has been released as open-
source software. As-is this version will only work on
pre-OKL4 chipsets. The HTC Dream on the other hand
uses a baseband stack that runs on top of the OKL4 mi-
crokernel. This means that the DIAG task is running in
ARM user mode and hence has insufficient privileges to
access the needed debug registers. This situation can be
remedied using a local privilege escalation in OKL4.

On Apple iPhones, JTAG access seems to be com-
pletely locked down. Hence, our debugging capabil-
ities are limited. Baseband crash logs and baseband
crash dumps are the only debugging facilities we found
(an example of a baseband crash log is given in Ap-
pendix B). These are copied from the iPhone to a
computer during the sync process. Alternatively crash
logs can be obtained directly on jailbroken phones us-
ing an AT command, AT+XLOG. Baseband crash dumps
can be enabled by dialing *5005*CORE# in the phone
dialer. These can be extracted from the directory
/Library/Logs/CrashReporter/Baseband on jail-
broken phones.

4.4 Example target: HTC Dream

Turning on auto-answer on the HTC Dream turned out
to be easy once we had identified the AT command func-
tion changing the S0 register. We have written an exploit
for the AUTN stack buffer overflow previously described
that overwrites the program counter and the register R0 of
a stack frame. The program counter with the entry point
of the S0 register handler, the register R0with the value 1.
Since the ring counter is only stored in volatile memory,
we cannot simply crash after writing this setting. Hence-
forth, we also needed to overwrite the program counter
in the subsequent stack frame (which corresponds to the
function that is the caller of the function corresponding
to the stack frame we overwrote above) to make sure that
execution of the thread continued normally.

To execute this exploit, no modification of the
OpenBTS code base was necessary. Rather, given this
single layer 3 message – less than 100 bytes long – ex-
ploitation of the AUTN bug becomes almost trivial. This
payload is sent to a running OpenBTS instance to the
testcall UDP port after establishing a channel using
the OpenBTS testcall command. The bug will be ex-
ploited and auto-answer enabled without the user being
able to notice anything.

7



4.5 Example target: Apple iPhone 4
Auto-answer is an undocumented feature on all iPhones
that can be enabled by dialing *5005*AANS# in the
iPhone dialer, which in turn is translated into a ATS0=1

command by CommCenter and sent to the baseband mo-
dem device. Auto-answer is a permanent setting that is
stored in non-volatile memory on the application proces-
sor, i.e. a reboot of the iPhone/crash of the baseband
preserves this change.

All iPhones except the iPhone 4 CDMA and the
iPhone 4S employ Intel (formerly Infineon) baseband
chipsets running a Comneon stack. This stack is built on
top of the ThreadX RTOS for the iPhone 48. The TMSI
overflow we previously described is a heap-based over-
flow that allows us to overwrite an arbitrary location of
memory.

We have written a proof-of-concept exploit that
uses malformed LOCATION UPDATING ACCEPT requests
containing a TMSI that overwrites heap metadata of an
allocation in a ThreadX memory block pool. To be
able to send this to targets we had to slightly mod-
ify the OpenBTS code base to facilitate TMSIs longer
than 4 bytes. A LOCATION UPDATING REQUEST is sent
by the phone as soon as it connects to our network to
which OpenBTS will send the malformed LOCATION

UPDATING ACCEPT containing the payload. This results
in auto-answer to be enabled and our phone to briefly
lose connectivity to the network.

A more detailed description on how to exploit the
same bug on the iPhone 2G (which also uses a Com-
neon stack, but running on a different RTOS), albeit in
an easier way, is described in [16].

5 Impact

Successful exploitation of memory corruption in GSM
baseband software stacks provides an attacker with ac-
cess to privacy-relevant hardware of the telephone. Au-
dio routing on the majority of chipsets is done on the
baseband CPU, which means that it has access to the
built-in microphone; similarly for built-in cameras. An
attacker that has taken control over the baseband side of
a telephone can monitor a user completely transparently
– without visibility of the compromise from the side of
the application CPU. Furthermore, given the large quan-
tities of RAM available to the baseband on some phones,
surreptitious room monitoring is possible: Simply record
the audio from the microphone and store the compressed
audio data to ring buffer in RAM. The payload then waits
until a data connection is established and piggy-backs
onto it, sending out the compressed recording to a server
of its choice. A second obvious set of problems revolves

8Nucleus PLUS is used for earlier models

around billing issues: once the attacker has control over
the baseband he can place calls, send premium SMSes or
cause large data transfers unbeknownst to the owner of
the phone. This obviously can cause problems for both
carriers and end-users. Compared to the above issues the
fact that an attacker can arbitrarily and permanently brick
devices by writing to regions of NVRAM that contain
important device data like the IMEI looks almost like a
minor problem.

The impact can be even more devastating on shared-
memory designs such as the Qualcomm MSM7200 and
similar platforms. On these, an ARM9 for the digital
baseband and an ARM11 for the application side share
the same memory, with the baseband core being the mas-
ter. This means that no matter how well the operating
system running on the application CPU is secured, bugs
in the baseband stack with subsequent privilege escala-
tions in OKL4 allow an attacker to take control over the
whole device. In designs where the application CPU and
the baseband CPU access separate memories the attacker
however may still be able to elevate his access to the ap-
plication CPU by exploiting bugs in one of the compo-
nents interfacing the application processor with the base-
band processor.

Forensics of volatile memory of the baseband stack is
difficult without leveraging another exploit – protections
against unlockers have made hardware forensics such as
dumping RAM contents of a live chip via JTAG on most
production phones hard.

6 Conclusions and Outlook

We have demonstrated that memory corruptions in base-
band firmwares exist and can be practically exploited.
These security problems are to be taken seriously: prac-
tical exploitation of these completely compromises the
integrity of the attacked handset. Merely coming into
the proximity of a malicious base station is is sufficient
to take over any vulnerable handset – no user interac-
tion is required by the bugs we have outlined above. The
cost of exploitation is low enough to make these attacks
a reality even for attackers with a limited budget: for the
price of a mid-range laptop – USD 1500 – an attacker
can buy the hardware to operate a malicious GSM cell
with OpenBTS.

We have disclosed the bugs described in this paper to
the affected baseband stack vendors. The TMSI overflow
has been assigned the CVE identifier CVE-2010-3832
and has been fixed in the baseband firmware shipped
with Apple’s iOS 4.2. Although no public documenta-
tion on this matter exists, we understand that the AUTN
overflow has been patched in Qualcomm’s tree and up-
dates have been sent out to the OEMs. In December 2010
we reverse-engineered an updated baseband for the HTC

8



Desire and confirmed that it did indeed contain a length
check in the function parsing the AUTN parameter.

While we did not investigate 3G stacks in detail, we
expect even handsets that operate in 3G-only mode to
be vulnerable to similar memory corruption problems –
even though they require mutual authentication. Fem-
tocells with modified software allow attackers to oper-
ate rogue 3G base stations [3]. The specification of the
3GPP Radio Resource Control layer gives a significantly
increased attack surface: On almost 1500 pages the most
basic layer 3 protocol for 3GPP is defined [12]. More-
over, in contrast to the simple TLV encoding employed
in GSM, the information elements of the RRC are ASN.1
encoded, using Packed Encoding Rules (PER). As the
message parsing functions of the RRC layer can be trig-
gered before the authentication process has completed,
this gives a large attack surface.

To increase the security of baseband stacks, we sug-
gest to vendors that baseband operating stacks undergo
a systematic and continuous code audit and use harden-
ing options similar to the ones used in desktop operating
systems. This will make practical exploitation of security
vulnerabilities in baseband stacks more difficult [23, 22].
Also, privilege-separation for establishing well-defined
boundaries between the different portions of a baseband
stack can be a very effective measure for making bugs
that can be triggered by consuming untrusted data much
harder to exploit; this however requires a design overhaul
of the respective baseband stack.

We understand that our findings have caused extensive
code reviews of multiple baseband stacks to happen.

Acknowledgements: We’re grateful to Joshua Lackey
and Harald Welte for providing detailed and thoughtful
comments on an early draft of the paper. André Stemper
(University of Luxembourg) helped in practical ways by
applying his excellent soldering skills! Without the prod-
ucts and support of the ex-Zynamics teams, many code
paths would have been much harder to analyze. Planet-
being and MuscleNerd provided invaluable tips about the
iPhone 4 baseband. Last but not least, we are indebted
to the WOOT reviewers for their constructive comments
and to Aurélien Francillon for being an extremely kind
an knowledgable shepherd to this paper.

References
[1] BARKAN, E., BIHAM, E., AND KELLER, N. Instant ciphertext-

only cryptanalysis of GSM encrypted communication. In
CRYPTO 2003 (2003), D. Boneh, Ed., vol. 2729 of Lecture Notes
in Computer Science, Springer, pp. 600–616.

[2] BIRYUKOV, A., SHAMIR, A., AND WAGNER, D. Real time
cryptanalysis of A5/1 on a PC. In FSE 2000 (2001), B. Schneier,
Ed., vol. 1978 of Lecture Notes in Computer Science, Springer,
pp. 1–18.

[3] BORGAONKAR, R., GOLDE, N., AND REDON, K. Femtocells:
A poisonous needle in the operators hay stack. presented at Black
Hat Las Vegas 2011, July 2011.

[4] BURGESS, D. A., AND SAMRA, H. S. The Open BTS project.
http://openbts.sourceforge.net/, Aug. 2008.

[5] COLLABORATIVE EFFORT. The iPhone Wiki. http://

theiphonewiki.com, November 2010.

[6] DELUGRÉ, G. Rétroconception et débogage dun baseband
qualcomm. In Symposium sur la scurit des technologies de
l’information et des communications (SSTIC 2012) (June 2012),
pp. 393–411.

[7] EBERSPÄCHER, J., VÖGEL, H.-J., BETTSTETTER, C., AND
HARTMANN, C. GSM – Architecture, Protocols and Services,
3rd ed. Wiley, 2009. ISBN 0470030704.

[8] ETSI. Digital cellular telecommunications system (Phase 2+)
(GSM); Mobile radio interface signalling layer 3;General aspects
(GSM 04.07 version 7.3.0 Release 1998), Dec. 1999. ETSI EN
300 940 V7.7.1.

[9] ETSI. Digital cellular telecommunications system (Phase 2+)
(GSM); Mobile radio interface layer 3 specification (GSM 04.08
version 7.7.1 Release 1998), Oct. 2000. ETSI EN 300 940 V7.7.1.

[10] ETSI. Digital cellular telecommunications system (Phase 2+);
Numbering, addressing and identification (3GPP TS 03.03 ver-
sion 7.8.0 Release 1998), Sept. 2003. ETSI TS 100 927 V7.8.0.

[11] ETSI. 3rd Generation Partnership Project; Technical Specifica-
tion Group Core Network and Terminals; Mobile radio interface
Layer 3 specification; Core network protocols; Stage 3 (Release
8), Dec. 2008. 3GPP TS 24.008 V8.4.0.

[12] ETSI. Universal Mobile Telecommunications System (UMTS);
Radio Resource Control (RRC); Protocol specification (3GPP TS
25.331 version 7.17.0 Release 7), July 2010. ETSI TS 125 331
V7.17.0.

[13] GÜNEYSU, T., KASPER, T., NOVOTNÝ, M., PAAR, C., AND
RUPP, A. Cryptanalysis with COPACOBANA. IEEE Transac-
tions on Computers 57, 11 (2008), 1498–1513.

[14] KRISSLER, S., NOHL, K., AND STEVENSON, F. A. The A5/1
security project. http://reflextor.com/trac/a51.

[15] KUNDOJJALA, S. Baseband market share tracker: Qual-
comm and Intel together capture 60 percent of 2011 baseband
revenue. http://www.strategyanalytics.com/default.

aspx?mod=reportabstractviewer&a0=7261, April 2012.

[16] MILLER, C., BLAZAKIS, D., ZOVI, D. D., ESSER, S., IOZZO,
V., AND WEINMANN, R.-P. iOS Hacker’s Handbook. Wiley,
2012, ch. 11, p. 408.

[17] MILLER, C., AND MULLINER, C. Fuzzing the
phone in your phone. presented at Black Hat
Las Vegas 2009, July 2009. https://www.

blackhat.com/presentations/bh-usa-09/MILLER/

BHUSA09-Miller-FuzzingPhone-PAPER.pdf.

[18] MULLINER, C., GOLDE, N., AND SEIFERT, J.-P. SMS of
Death: From analyzing to attacking mobile phones on a large
scale. In USENIX Security Symposium 2011 (2011), USENIX
Association.

[19] PURPLELABS. TSM30 firmware. http://web.archive.

org/web/20060627121308/http://sourceforge.net/

projects/plabs, Nov 2004. Sourceforge project has been
deleted.

[20] STEVENSON, F. A. [A51] The call of Kraken. Mailing list
post: http://lists.lists.reflextor.com/pipermail/

a51/2010-July/000683.html, July 2010.

[21] THE AIRPROBE TEAM. AirProbe – an air-interface analysis tool
for GSM. http://www.airprobe.org.

9



[22] THE PAX TEAM. Documentation for the PaX project: Adress
Space Layout Randomization design & implementation. http:

//pax.grsecurity.net/docs/aslr.txt, Apr. 2003.

[23] THE PAX TEAM. Documentation for the PaX project: Non-
executable pages design & implementation. http://pax.

grsecurity.net/docs/noexec.txt, May 2003.

[24] WELTE, H. Anatomy of contemporary GSM cellphone
hardware. http://laforge.gnumonks.org/papers/gsm_

phone-anatomy-latest.pdf, Apr. 2010.

A Example stack overflow: AUTN stack
buffer overflow, Qualcomm stacks

Graph of copy_auth_IE
copy_auth_IE:
PUSH    {R3-R7,LR}
MOVS    R7, R0
MOVS    R6, R1
MOVS    R5, R2
MOVS    R0, #0
STRB    R0, [R5]
MOVS    R4, #0
LDR     R0, =unk_17695952
LDRB    R1, [R0]
CMP     R1, #0
BLS     j_exit_loop

j_loop_over_IEs:
LDR     R2, =unk_17884340
LSLS    R0, R4, #3
ADDS    R1, R0, R2
LDRB    R1, [R1,#4]     ; check type of IE
CMP     R1, #0
BEQ     j_is_GSM_RAND   ; GSM RAND?

false

j_exit_loop:
MOVS    R0, #1
POP     {R3-R7,PC}

true

172501FC:
CMP     R1, #0x20       ; UMTS RAND?
BEQ     j_is_UMTS_RAND

false

j_is_GSM_RAND:
MOVS    R1, #0x10       ; store constant len (16)
STRB    R1, [R6]
LDR     R1, [R2,R0]
MOVS    R2, #0x10       ; len = 16
ADDS    R1, R1, #1
ADDS    R0, R6, #1
BLX     memcpy          ; constant len copy
B       j_continue

true

17250200:
CMP     R1, #0xF0       ; key seq #
BNE     j_continue

false

j_is_UMTS_RAND:
LDR     R1, [R2,R0]
LDRB    R1, [R1,#1]
STRB    R1, [R5]        ; copy length from IE
LDR     R0, [R2,R0]
MOVS    R2, R1          ; R2 = len
ADDS    R0, R0, #2
MOVS    R1, R0          ; R1 = src
ADDS    R0, R5, #1      ; R0 = dest
BLX     memcpy          ; unbounded memcpy() !

true

17250204:
LDR     R0, [R2,R0]
LDRB    R0, [R0]
LSLS    R0, R0, #0x1C
LSRS    R0, R0, #0x1C   ; mask lower nibble
STRB    R0, [R7]
B       j_continue

false

j_continue:
ADDS    R4, R4, #1
LSLS    R4, R4, #0x18
LSRS    R4, R4, #0x18
LDR     R0, =unk_17695952
LDRB    R0, [R0]
CMP     R4, R0
BCC     j_loop_over_IEs

true

true

false

Figure 4: Disassembly of a vulnerable routine handling
AUTHENTICATE REQUEST taken from HTC Dream radio
firmware version 2.22.23.02

+XLOG: Exception Number: 1

Trap Class: 0xAAAA (HW DATAABORT TRAP)

Date: 06.08.2010

Time: 14:39:07

Magic: 55809

Task name: mmc:1

System Stack:

0x73182120

0x73183000

0x73182120

0x0009D0A8

[........]

Fault registers:

DFAR: 0x73183002 DFSR: 0x00000017

IFAR: 0x00000000 IFSR: 0x00000000

Abort Mode registers:

r13: 0x0009B9C0 r14: 0x6028AA1E SPSR: 0x00000073

System/User Mode registers:

r0: 0x73182120 r1: 0x73183000 r2: 0x73182120

r3: 0x00000070 r4: 0x0000018A r5: 0x731829D4

r6: 0x73182120 r7: 0x00000001 r8: 0x00000000

r9: 0x00000000 r10: 0x73181000 r11: 0x00000000

r12: 0x00000000 r13: 0xFFFF3B00 r14: 0x430F295B

r15: 0x6028AA14 CPSR: 0x800001D7

FIQ Mode registers:

r8: 0x3FB98490 r9: 0x9F120729 r10: 0x49331CF4

r11: 0xCAC11D04 r12: 0xF5A4FA4A r13: 0x60BDDE10

r14: 0x38490410 SPSR: 0x00000010

SVC Mode registers:

r13: 0x73181934 r14: 0x6028054D SPSR: 0x20000053

IRQ Mode registers:

r13: 0xFFFF2F20 r14: 0xFFFF1104 SPSR: 0x80000053

Undefined Mode registers:

r13: 0x0009BCC0 r14: 0x6606A0A2 SPSR: 0x00000010

Secure Monitor Mode registers:

r13: 0xD986A74C r14: 0x22883490 SPSR: 0x00000010

Figure 5: Baseband crash log of an iPhone 4 running
baseband revision 01.59.00, triggered by a long TMSI in
a LOCATION UPDATING ACCEPT message

10


