
1/18

March 22, 2022

Operation Dragon Castling: APT group targeting betting companies
decoded.avast.io/luigicamastra/operation-dragon-castling-apt-group-targeting-betting-companies

Introduction

We recently discovered an APT campaign we are calling Operation Dragon Castling . The campaign is

targeting what appears to be betting companies in South East Asia , more specifically companies located

in Taiwan , the Philippines , and Hong Kong . With moderate confidence, we can attribute the campaign

to a Chinese speaking APT group , but unfortunately cannot attribute the attack to a specific group and

are not sure what the attackers are after.

We found notable code similarity between one of the modules used by this APT group (the MulCom

backdoor) and the FFRat samples described by the BlackBerry Cylance Threat Research Team in

their 2017 report and Palo Alto Networks in their 2015 report. Based on this, we suspect that the

FFRat codebase is being shared between several Chinese adversary groups. Unfortunately, this is not

sufficient for attribution as FFRat itself was never reliably attributed.

In this blogpost we will describe the malware used in these attacks and the backdoor planted by the APT

group, as well as other malicious files used to gain persistence and access to the infected machines. We will

also discuss the two infection vectors we saw being used to deliver the malware: an infected installer and

exploitation of a vulnerable legitimate application, WPS Office .

We identified a new vulnerability (CVE-2022-24934) in the WPS Office updater wpsupdate.exe, which we

suspect that the attackers abused.

We would like to thank Taiwan’s TeamT5 for providing us with IoCs related to the infection vector.

Infrastructure and toolset

https://decoded.avast.io/luigicamastra/operation-dragon-castling-apt-group-targeting-betting-companies/
https://blogs.blackberry.com/en/2017/06/breaking-down-ff-rat-malware
https://researchcenter.paloaltonetworks.com/2015/04/unit-42-identifies-new-dragonok-backdoor-malware-deployed-against-japanese-targets/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24934
https://teamt5.org/en/

2/18

In the diagram above, we describe the relations between the malicious files. Some of the relations might not

be accurate, e.g. we are not entirely sure if the MulCom backdoor is loaded by the CorePlugin . However, we

strongly believe that it is one of the malicious files used in this campaign.

Infection Vector

We’ve seen multiple infection vectors used in this campaign. Among others, an attacker sent an email with an

infected installer to the support team of one of the targeted companies asking to check for a bug in their

software. In this post, we are going to describe another vector we’ve seen: a fake WPS Office update

package. We suspect an attacker exploited a bug in the WPS updater wpsupdate.exe , which is a part of the

WPS Office installation package. We have contacted WPS Office team about the vulnerability (CVE-2022-

24934), which we discovered, and it has since been fixed.

During our investigation we saw suspicious behavior in the WPS updater process. When analyzing the binary

we discovered a potential security issue that allows an attacker to use the updater to communicate with a

server controlled by the attacker to perform actions on the victim’s system, including downloading and

running arbitrary executables. To exploit the vulnerability, a registry key under HKEY_CURRENT_USER needs

to be modified, and by doing this an attacker gains persistence on the system and control over the update

process. In the case we analyzed, the malicious binary was downloaded from the domain update.wps[.]cn ,

which is a domain belonging to Kingsoft , but the serving IP (103.140.187.16) has no relationship to the

company, so we assume that it is a fake update server used by the attackers.

The downloaded binary (setup_CN_2052_11.1.0.8830_PersonalDownload_Triale.exe -

B9BEA7D1822D9996E0F04CB5BF5103C48828C5121B82E3EB9860E7C4577E2954) drops two files for

https://decoded.avast.io/wp-content/uploads/sites/2/2022/03/final.drawio.png
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24934

3/18

sideloading: a signed QMSpeedupRocketTrayInjectHelper64.exe - Tencent Technology

(a3f3bc958107258b3aa6e9e959377dfa607534cc6a426ee8ae193b463483c341) and a malicious DLL

QMSpeedupRocketTrayStub64.dll.

Dropper 1 (QMSpeedupRocketTrayStub64.dll)

76adf4fd93b70c4dece4b536b4fae76793d9aa7d8d6ee1750c1ad1f0ffa75491

The first stage is a backdoor communicating with a C&C (mirrors.centos.8788912[.]com). Before

contacting the C&C server, the backdoor performs several preparational operations. It hooks three functions:

GetProcAddress , FreeLibrary , LdrUnloadDll . To get the C&C domain, it maps itself to the memory

and reads data starting at the offset 1064 from the end. The domain name is not encrypted in any way and

is stored as a wide string in clear text in the binary.

Then it initializes an object for a JScript class with the named item ScriptHelper . The dropper uses the

ImpersonateLoggedOnUser API Call to re-use a token from explorer.exe so it effectively runs under the

same user. Additionally, it uses RegOverridePredefKey to redirect the current HKEY_CURRENT_USER to

HKEY_CURRENT_USER of an impersonated user. For communication with C&C it constructs a UserAgent

string with some system information e.g. Mozilla/4.0 (compatible; MSIE 9.0; Windows NT 6.1;.NET
CLR 2.0). The information that is exfiltrated is: Internet Explorer version, Windows

version, the value of the “User Agent\Post Platform” registry values.

After that, the sample constructs JScript code to execute. The header of the code contains definitions of

two variables: server with the C&C domain name and a hardcoded key . Then it sends the HTTP GET

request to /api/connect, the response should be encrypted JScript code that is decrypted, appended to

the constructed header and executed using the JScript class created previously.

At the time of analysis, the C&C was not responding, but from the telemetry data we can conclude that it was

downloading the next stage from

hxxp://mirrors.centos.8788912.com/upload/ea76ad28a3916f52a748a4f475700987.exe to

%ProgramData%\icbc_logtmp.exe and executing it.

Dropper 2 (IcbcLog)

a428351dcb235b16dc5190c108e6734b09c3b7be93c0ef3d838cf91641b328b3

The second dropper is a runner that, when executed, tries to escalate privileges via the COM Session

Moniker Privilege Escalation (MS17-012) , then dropping a few binaries, which are stored with the

following resource IDs:

https://decoded.avast.io/wp-content/uploads/sites/2/2022/03/Untitled.png
https://docs.microsoft.com/en-us/security-updates/securitybulletins/2017/ms17-012

4/18

Resource ID Filename Description

1825 smcache.dat List of C&C domains

1832 log.dll Loader (CoreX) 64bit

1840 bdservicehost.exe Signed PE for sideloading 64bit

1841 N/A Filenames for sideloading

1817 inst.dat Working path

1816 hostcfg.dat Used in the Host header, in C&C communication

1833 bdservicehost.exe Signed PE for sideloading 32bit – N/A

1831 log.dll Loader (32bit) – N/A

The encrypted payloads have the following structure:

The encryption key is a wide string starting from offset 0x8 . The encrypted data starts at the offset 0x528 .

To decrypt the data, a SHA256 hash of the key is created using CryptHashData API, and is then used with a

hard-coded IV 0123456789abcde to decrypt the data using CryptDecrypt API with the AES256

algorithm. After that, the decrypted data is decompressed with RtlDecompressBuffer . To verify that the

decryption went well, the CRC32 of the data is computed and compared to the value at the offset 0x4 of

the original resource data. When all the payloads are dropped to the disk, bdservicehost.exe is executed

to run the next stage.

Loader (CoreX)

97c392ca71d11de76b69d8bf6caf06fa3802d0157257764a0e3d6f0159436c42

The Loader (CoreX) DLL is sideloaded during the previous stage (Dropper 2) and acts as a dropper.

Similarly to Dropper 1 , it hooks the GetProcAddress and FreeLibrary API functions. These hooks

execute the main code of this library. The main code first checks whether it was loaded by regsvr32.exe

and then it retrieves encrypted data from its resources. This data is dropped into the same folder as

syscfg.dat . The file is then loaded and decrypted using AES-256 with the following options for setup:

Key is the computer name and IV is qwertyui12345678

AES-256 setup parameters are embedded in the resource in the format <key>#<IV> . So you may e.g.

see cbfc2vyuzckloknf#8o3yfn0uee429m8d

AES-256 setup parameters

The main code continues to check if the process ekrn.exe is running. ekrn.exe is an ESET Kernel

service. If the ESET Kernel service is running, it will try to remap ntdll.dll . We assume that this is used to

bypass ntdll.dll hooking.

5/18

After a service check, it will decompress and execute shellcode, which in turn loads a DLL with the next stage.

The DLL is stored, unencrypted, as part of the shellcode. The shellcode enumerates exports of ntdll.dll

and builds an array with hashes of names of all Zw* functions (windows native API system calls) then sorts

them by their RVA. By doing this, the shellcode exploits the fact that the order of RVAs of Zw* functions

equals the order of the corresponding syscalls, so an index of the Zw* function in this array is a syscall

number, which can be called using the syscall instruction. Security solutions can therefore be bypassed based

on the hooking of the API in userspace. Finally, the embedded core module DLL is loaded and executed.

Proto8 (Core module)

f3ed09ee3fe869e76f34eee1ef974d1b24297a13a58ebff20ea4541b9a2d86c7

The core module is a single DLL that is responsible for setting up the malware’s working directory, loading

configuration files, updating its code, loading plugins, beaconing to C&C servers and waiting for commands.

It has a cascading structure with four steps:

Step 1

The first part is dedicated to initial checks and a few evasion techniques. At first, the core module verifies that

the DLL is being run by spdlogd.exe (an executable used for persistence, see below) or that it is not being

run by rundll32.exe. If this check fails, the execution terminates. The DLL proceeds by hooking the

GetProcAddress and FreeLibrary functions in order to execute the main function, similarly to the

previous infection stages.

The GetProcAddress hook contains an interesting debug output “in googo”.

The malware then creates a new window (named Sample) with a custom callback function. A message with

the ID 0x411 is sent to the window via SendMessageW which causes the aforementioned callback to

execute the main function. The callback function can also process the 0x412 message ID, even though no

specific functionality is tied to it.

Exported function Core2 sends message 0x411

https://decoded.avast.io/wp-content/uploads/sites/2/2022/03/in-googo.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/03/411.png

6/18

Exported function Ldr2 sends message 0x412

The window callback only contains implementation for message 0x411

but there is a check for 0x412 as well

Step 2

In the second step, the module tries to self-update, load configuration files and set up its working directory

(WD).

Self-update

https://decoded.avast.io/wp-content/uploads/sites/2/2022/03/412.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/03/window-msg.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/03/step-2-dark-w-logo.png

7/18

The malware first looks for a file called new_version.dat – if it exists, its content is loaded into memory,

executed in a new thread and a debug string “run code ok” is printed out. We did not come across this file,

but based on its name and context, this is most likely a self update functionality.

Load configuration file inst.dat and set up working directory. First, the core module configuration file

inst.dat is searched for in the following three locations:

the directory where the core module DLL is located

the directory where the EXE that loaded the core module DLL it is located

C:\ProgramData\

It contains the path to the malware’s working directory in plaintext. If it is not found, a hard-coded directory

name is used and the directory is created. The working directory is a location the malware uses to drop or

read any files it uses in subsequent execution phases.

Load configuration file smcache.dat .

After the working directory is set up, the sample will load the configuration file smcache.dat from it. This

file contains the domains, protocols and port numbers used to communicate with C&C servers (details in Step

4) plus a “comment” string. This string is likely used to identify the campaign or individual victims. It is

used to create an empty file on the victim’s computer (see below) and it’s also sent as a part of the initial

beacon when communicating with C&C servers. We refer to it as the “comment string” because we have

seen a few versions of smcache.dat where the content of the string was “the comment string here” and

it is also present in another configuration file with the name comment.dat which has the INI file format and

contains this string under the key COMMENT.

Create a log file

Right after the sample finds and reads smcache.dat, it creates a file based on the victim’s username and the

comment string from smcache.dat. If the comment string is not present, it will use a default hard-coded value

(for example M86_99.lck). Based on the extension it could be a log of some sort, but we haven’t seen any

part of the malware writing into it so it could just serve as a lockfile. After the file is successfully created, the

malware creates a mutex and goes on to the next step.

Step 3

Next, the malware collects information about the infected environment (such as username, DNS and NetBios

computer names as well as OS version and architecture) and sets up its internal structures, most notably a list

of “call objects” . Call objects are structures each associated with a particular function and saved into a

“dispatcher” structure in a map with hard-coded 4-byte keys. These keys are later used to call the

functions based on commands from C&C servers.

The key values (IDs) seem to be structured, where the first three bytes are always the same within a given

sample, while the last byte is always the same for a given usage across all the core module samples that we’ve

seen. For example, the function that calls the RevertToSelf function is identified by the number

https://decoded.avast.io/wp-content/uploads/sites/2/2022/03/run-code-ok.png

8/18

0x20210326 in some versions of the core module that we’ve seen and 0x19181726 in others. This

suggests that the first three bytes of the ID number are tied to the core module version, or more likely the

infrastructure version, while the last byte is the actual ID of a function.

ID (last byte) Function description

0x02 unimplemented function

0x19 retrieves content of smcache.dat and sends it to the C&C server

0x1A writes data to smcache.dat

0x25 impersonates the logged on user or the explorer.exe process

0x26 function that calls RevertToSelf

0x31 receives data and copies it into a newly allocated executable buffer

0x33 receives core plugin code, drops it on disk and then loads and calls it

0x56 writes a value into comment.dat

Webdav

While initializing the call objects the core module also tries to connect to the URL

hxxps://dav.jianguoyun.com/dav/ with the username 12121jhksdf and password 121121212 by

calling WNetAddConnection3W . This address was not responsive at the time of analysis but

jianguoyun[.]com is a Chinese file sharing service. Our hypothesis is that this is either a way to get plugin

code or an updated version of the core module itself.

Plugins

The core module contains a function that receives a buffer with plugin DLL data, saves it into a file with the

name kbg<tick_count>.dat in the malware working directory, loads it into memory and then calls its

exported function InitCorePlug . The plugin file on disk is set to be deleted on reboot by calling

MoveFileExW with the parameter MOVEFILE_DELAY_UNTIL_REBOOT . For more information about the

plugins, see the dedicated Plugins section.

Step 4

In the final step, the malware will iterate over C&C servers contained in the smcache.dat configuration file

and will try to reach each one. The structure of the smcache.dat config file is as follows:

The protocol string can have one of nine possible values:

TCP

HTTPS

UDP

DNS

ICMP

HTTPSIPV6

WEB

SSH

HTTP

9/18

The structure of the smcache.dat config

file

Depending on the protocol tied to the particular C&C domain, the

malware sets up the connection, sends a beacon to the C&C and

waits for commands.

In this blogpost, we will mainly focus on the HTTP protocol option

as we’ve seen it being used by the attackers.

When using the HTTP protocol, the core module first opens two persistent request handles – one for POST

and one for GET requests, both to “/connect” . These handles are tested by sending an empty buffer in the

POST request and checking the HTTP status code of the GET request. Following this, the malware sends

the initial beacon to the C&C server by calling the InternetWriteFile API with the previously opened

POST request handle and reads data from the GET request handle by calling InternetReadFile .

HTTP packet order

https://decoded.avast.io/wp-content/uploads/sites/2/2022/03/struct.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/03/HTTP-vftable.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/03/wireshark-1.png

10/18

HTTP POST beacon

The core module uses the following (mostly hard-coded) HTTP headers:

Accept: */*

x-cid: {<uuid>} – new uuid is generated for each GET/POST request pair

Pragma: no-cache

Cache-control: no-transform

User-Agent: <user_agent> – generated from registry or hard-coded (see below)

Host: <host_value> – C&C server domain or the value from hostcfg.dat (see below)

Connection: Keep-Alive

Content-Length: 4294967295 (max uint, only in the POST request)

User-Agent header

The User-Agent string is constructed from the registry the same way as in the Dropper 1 module (including

the logged-on user impersonation when accessing registry) or a hard-coded string is used if the registry access

fails: “Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64; Trident/4.0; SLCC2; .NET

CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0)” .

Host header

When setting up this header, the malware looks for either a resource with the ID 1816 or a file called

hostcfg.dat if the resource is not found. If the resource or file is found, the content is used as the value in

the Host HTTP header for all C&C communication instead of the C&C domain found in smcache.dat . It

does not change the actual C&C domain to which the request is made – this suggests the possibility of the

C&C server being behind a reverse proxy.

Initial beacon

The first data packet the malware sends to a C&C server contains a base64 encoded LZNT1-compressed

buffer, including a newly generated uuid (different from the uuid used in the x-cid header), the victim’s

username, OS version and architecture, computer DNS and BIOS names and the comment string found in

smcache.dat or comment.dat . The value from comment.dat takes precedence if this file exists.

In the core module sample we analyzed, there was actually a typo in the function that reads the value from

comment.dat – it looks for the key “COMMNET” instead of “COMMENT” .

https://decoded.avast.io/wp-content/uploads/sites/2/2022/03/wireshark-2.png

11/18

After this, the malware enters a loop waiting for commands from the C&C server in the form of the ID value of

one of the call objects.

Each message sent to the C&C server contains a hard-coded four byte number value with the same structure

as the values used as keys in the call-object map. The ID numbers associated with messages sent to C&C

servers that we’ve seen are:

ID (last byte) Usage

0x1B message to C&C which contains smcache.dat content

0x24 message to C&C which contains a debug string

0x2F general message to C&C

0x30 message to C&C, unknown specific purpose

0x32 message to C&C related to plugins

0x80 initial beacon to a C&C server

Interesting observations about the protocols, other than the HTTP protocol:

HTTPS does not use persistent request handles

HTTPS uses HTTP GET request with data Base64-encoded in the cookie header to send the initial

beacon

HTTPS, TCP and UDP use a custom “magic” header: Magic-Code: hhjjdfgh

General observations on the core module

The core samples we observed often output debug strings via OutputDebugStringA and

OutputDebugStringW or by sending them to the C&C server. Examples of debug strings used by the core

module are: its filepath at the beginning of execution, “run code ok” after self-update, “In googo” in

the hook of GetProcAddress , “recv bomb” and “sent bomb” in the main C&C communicating

function, etc.

String obfuscation

We came across samples of the core module with only cleartext strings but also samples with certain strings

obfuscated by XORing them with a unique (per sample) hard-coded key.

Even within the samples that contain obfuscated strings, there are many cleartext strings present and there

seems to be no logic in deciding which string will be obfuscated and which won’t. For example, most format

strings are obfuscated, but important IoCs such as credentials or filenames are not.

To illustrate this: most strings in the function that retrieves a value from the comment.dat file are obfuscated

and the call to GetPrivateProfileStringW is dynamically resolved by the GetProcAddress API, but all

the strings in the function that writes into the same config file are in cleartext and there is a direct call to

https://decoded.avast.io/wp-content/uploads/sites/2/2022/03/nothing.png

12/18

WritePrivateProfileStringW .

Overall, the core module code is quite robust and contains many failsafes and options for different scenarios

(for example, the amount of possible protocols used for C&C communication), however, we probably only saw

samples of this malware that are still in active development as there are many functions that are not yet

implemented and only serve as placeholders.

Plugins

In the section below, we will describe the functionality of the plugins used by the Core Module (Proto8) to

extend its functionality.

We are going to describe three plugins with various functionalities, such as:

Achieving persistence

Bypassing UAC

Registering an RPC interface

Creating a new account

Backdoor capabilities

Core Plugin

0985D65FA981ABD57A4929D8ECD866FC72CE8C286BA9EB252CA180E280BD8755

This plugin is a DLL binary loaded by the fileless core module (Proto8) as mentioned above. It extends the

malware’s functionality by adding methods for managing additional plugins. These additional plugins export

the function "GetPlugin" which the core plugin executes.

This part uses the same command ID based calling convention as the core module (see above), adding three

new methods:

ID (last byte) Function description

0x2B send information about plugin location to the to C&C server

0x2C remove a plugin

0x2A load a plugin

All plugin binaries used by the core module are stored in the working directory under the name

kbg<tick_count>.dat . After the Core Plugin is loaded, it first removes all plugins from the working

directory – see the image below.

13/18

Zload(Atomx.dll,xps1.dll)

2ABC43865E49F8835844D30372697FDA55992E5A6A13808CFEED1C37BA8F7876

The DLL we call Zload is an example of a plugin loaded by the Core Plugin . It exports four functions:

“GetPlugin” , “Install” , “core_zload” and ”zload” . The main functionality of this plugin is setting

up persistence, creating a backdoor user account, and concealing itself on the infected system. We will focus

on the exported functions zload , core_zload and the default DllMain function, as they contain the

most interesting functionality.

Zload (process starter)

This function is fairly simple, its main objective is to execute another binary. It first retrieves the path to the

directory where the Zload plugin binary is located (<root_folder>) and creates a new subfolder called

"mec" in it. After this it renames and moves three files into it:

the Zload plugin binary itself as <root_folder>\mec\logexts.dll ,

<root_folder>\spdlogd.exe as <root_folder>\mec\spdagent.exe and

<root_folder>\kb.ini as <root_folder>\mec\kb.ini

After the files are renamed and moved, it creates a new process by executing the binary

<root_folder>\mec\spdagent.exe (originally <root_folder>\spdlogd.exe).

core_zload (persistence setup)

This function is responsible for persistence which it achieves by registering itself into the list of security

support providers (SSPs). Windows SSP DLLs are loaded into the Local Security Authority (LSA)

process when the system boots. The code of this function is notably similar to the

mimikat_ssp/AddSecurityPackage_RawRPC source code found on github.

DllMain (sideloading, setup)

The default DllMain function leverages several persistence and evasion techniques. It also allows the attacker

to create a backdoor account on the infected system and lower the overall system security.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/03/search_for_file_and_push_path_to_vector.png
https://github.com/jas502n/mimikat_ssp/blob/master/AddSecurityPackage_RawRPC.cpp

14/18

Persistence

The plugin first checks if its DLL was loaded either by the processes “lsass.exe” or “spdagent.exe” . If

the DLL was loaded by “spdagent.exe” , it will adjust the token privileges of the current process.

If it was loaded by “lsass.exe” , it will retrieve the path “kb<num>.dll” from the configuration file

“kb.ini” and write it under the registry key

HKEY_LOCAL_MACHINE\\SYSTEM\\CurrentControlSet\\Services\\WinSock2\\Parameters

AutodialDLL . This ensures persistence, as it causes the DLL “kb<num>.dll” to be loaded each time the

Winsock 2 library (ws2_32.dll) is invoked.

Evasion

To avoid detection, the plugin first checks the list of running processes for “avp.exe” (Kaspersky Antivirus)

or “NortonSecurity.exe” and exits if either of them is found. If these processes are not found on the

system, it goes on to conceal itself by changing its own process name to “explorer.exe” .

The plugin also has the capability to bypass the UAC mechanisms and to elevate its process privileges through

CMSTP COM interfaces, such as CMSTPLUA {3E5FC7F9-9A51-4367-9063-A120244FBEC7} .

Backdoor user account creation

Next, the plugin carries out registry manipulation (details can be found in the appendix), that lowers the

system’s protection by:

Allowing local accounts to have full admin rights when they are authenticating via network logon

Enabling RDP connections to the machine without the user password

Disabling admin approval on an administrator account, which means that all applications run with full

administrative privileges

Enabling anonymous SID to be part of the everyone group in Windows

Allowing “Null Session” users to list users and groups in the domain

Allowing “Null Session” users to access shared folders

Setting the name of the pipe that will be accessible to “Null Session” users

After this step, the plugin changes the WebClient service startup type to “Automatic” . It creates a new

user with the name “DefaultAccount” and the password “Admin@1999!” which is then added to the

“Administrator” and “Remote Desktop Users” groups. It also hides the new account on the logon

screen.

As the last step, the plugin checks the list of running processes for process names “360tray.exe” and

“360sd.exe” and executes the file "spdlogd.exe" if neither of them is found.

MecGame(kb%num%.dll)

4C73A62A9F19EEBB4FEFF4FDB88E4682EF852E37FFF957C9E1CFF27C5E5D47AD

MecGame is another example of a plugin that can be loaded by the Core Plugin . Its main purpose is

similar to the previously described Zload plugin – it executes the binary “spdlogd.exe” and achieves

persistence by registering an RPC interface with UUID {1052E375-2CE2-458E-AA80-F3B7D6EA23AF} . This

RPC interface represents a function that decodes and executes a base64 encoded shellcode.

The MecGame plugin has several methods for executing spdlogd.exe depending on the level of available

privileges. It also creates a lockfile with the name MSSYS.lck or <UserName>-XPS.lck depending on the

name of the process that loaded it, and deletes the files atomxd.dll and logexts.dll .

15/18

It can be installed as a service with the service name “inteloem” or can be loaded by any executable that

connects to the internet via the Winsock2 library.

MulCom

ABA89668C6E9681671A95B3D7A08AAE2A067DEED2D835BA6F6FD18556C88A5F2

This DLL is a backdoor module which exports four functions: “OperateRoutineW” , “StartRoutineW” ,

“StopRoutineW” and ”WorkRoutineW” ; the main malicious function being “StartRoutineW” .

For proper execution, the backdoor needs configuration data accessed through a shared object with the file

mapping name either “Global\\4ED8FD41-2D1B-4CC3-B874-02F0C60FF9CB” or "Local\\4ED8FD41-

2D1B-4CC3-B874-02F0C60FF9CB” . Unfortunately we didn’t come across the configuration data, so we are

missing some information such as the C&C server domains this module uses.

There are 15 commands supported by this backdoor (although some of them are not implemented) referred to

by the following numerical identifiers:

Command
ID

Function description

1 Sends collected data from executed commands. It is used only if the authentication with a
proxy is done through NTLM

2 Finds out information about the domain name, user name and security identifier of the
process explorer.exe . It finds out the user name, domain name, and computer name of
all Remote Desktop sessions.

3 Enumerates root disks

4 Enumerates files and finds out their creation time, last access time and last write time

5 Creates a process with a duplicated token. The token is obtained from one of the processes
in the list (see Appendix).

6 Enumerates files and finds out creation time, last time access, last write time

7 Renames files

8 Deletes files

9 Creates a directory

101 Sends an error code obtained via GetLastError API function

102 Enumerates files in a specific folder and finds out their creation time, last access time and
last write time

103 Uploads a file to the C&C server

104 Not implemented (reserved)

Combination
of
105/106/107

Creates a directory and downloads files from the C&C server

Communication protocol

16/18

The MulCom backdoor is capable of communicating via HTTP and TCP protocols. The data it exchanges

with the C&C servers is encrypted and compressed by the RC4 and aPack algorithms respectively, using the

RC4 key loaded from the configuration data object.

It is also capable of proxy server authentication using schemes such as Basic, NTLM, Negotiate or to

authenticate via either the SOCKS4 and SOCKS5 protocols.

After successful authentication with a proxy server, the backdoor sends data xorred by the constant 0xBC .

This data is a set with the following structure:

Data structure

Another interesting capability of this backdoor is the usage of layered C&C servers. If this option is enabled in

the configuration object (it is not the default option), the first request goes to the first layer C&C server, which

returns the IP address of the second layer. Any subsequent communication goes to the second layer directly.

As previously stated, we found several code similarities between the MulCom DLL and the FFRat (a.k.a.

FormerFirstRAT).

Conclusion

We have described a robust and modular toolset used most likely by a Chinese speaking APT group targeting

gambling-related companies in South East Asia. As we mentioned in this blogpost, there are notable code

similarities between FFRat samples and the MulCom backdoor. FFRat or "FormerFirstRAT'' has

been publicly associated with the DragonOK group according to the Palo Alto Network report, which has in

turn been associated with backdoors like PoisonIvy and PlugX – tools commonly used by Chinese

speaking attackers.

We also described two different infection vectors, one of which weaponized a vulnerable WPS Office updater.

We rate the threat this infection vector represents as very high, as WPS Office claims to have 1.2 billion

installations worldwide, and this vulnerability potentially allows a simple way to execute arbitrary code on

any of these devices. We have contacted WPS Office about the vulnerability we discovered and it has since

been fixed.

Our research points to some unanswered questions, such as reliable attribution and the attackers’ motivation.

Appendix

List of processes:

360sd.exe

360rp.exe

360Tray.exe

360Safe.exe

360rps.exe

https://decoded.avast.io/wp-content/uploads/sites/2/2022/03/getacp.png
https://www.wps.com/about-us/

17/18

ZhuDongFangYu.exe

kxetray.exe

kxescore.exe

KSafeTray.exe

KSafe.exe

audiodg.exe

iexplore.exe

MicrosoftEdge.exe

MicrosoftEdgeCP.exe

chrome.exe

Registry values changed by the Zload plugin:

Registry path in HKEY_LOCAL_MACHINE Registry key

SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Policies\\System LocalAccountTokenFilterPolicy
= 1 FilterAdministratorToken =
0

SYSTEM\\CurrentControlSet\\Control\\Lsa LimitBlankPasswordUse = 0
EveryoneIncludesAnonymous
= 1 RestrictAnonymous = 0

System\\CurrentControlSet\\Services\\LanManServer\\Parameters RestrictNullSessAccess = 0
NullSessionPipes =
RpcServices

Core module working directory (WD)

Default hard-coded WD names (created either in C:\ProgramData\ or in %TEMP%):

spptools

NewGame

TspSoft

InstallAtomx

File used to test permissions: game_<tick_count>.log – the WD path is written into it and then the file is

deleted.

Hard-coded security descriptor used for WD access: “D:(A;;GA;;;WD)(A;OICIIO;GA;;;WD)” .

Lockfile name format: “<working_dir>\<victim_username>-<comment_string>.log”

Core module mutexes:

Global\sysmon-windows-%x (%x is a CRC32 of an MD5 hash of the victim’s username)

Global\IntelGameSpeed-%x (%x is a CRC32 of an MD5 hash of the victim’s username

Global\TencentSecuriryAgent-P01-%s (%s is the victim’s username)

Indicators of Compromise (IoC)

 Repository: https://github.com/avast/ioc/tree/master/OperationDragonCastling

https://github.com/avast/ioc/tree/master/OperationDragonCastling

18/18

 List of SHA-

256: https://github.com/avast/ioc/blob/master/OperationDragonCastling/samples.sha256

Avast Threat Intelligence Team has found a remote access tool (RAT) actively being used in the wild in the

Philippines that uses what appears to be a compromised digital certificate belonging to the Philippine Navy.

This is the story of piecing together information and research leading to the discovery of one of the largest

botnet-as-a-service cybercrime operations we’ve seen in a while. This research reveals that a cryptomining

malware campaign we...

https://github.com/avast/ioc/blob/master/OperationDragonCastling/samples.sha256

