
1/13

Dominik Reichel September 6, 2017

Analysing a 10-Year-Old SNOWBALL
researchcenter.paloaltonetworks.com/2017/09/unit42-analysing-10-year-old-snowball/

By Dominik Reichel

September 6, 2017 at 5:00 AM

Category: Unit 42

Tags: Animal Farm, Babar, Bunny, Casper, Dino, NBot, Snowball, Snowman

Much has been written about the malware toolkit dubbed Animal Farm which is made up of several implants known as
Babar, Bunny, NBot, Dino, Casper and Tafacalou. Some of these tools have been used in past attacks against
organizations, companies and individuals.

One of the first tools believed to be used by this adversary to target a potential victim is Babar, also known as SNOWBALL.
Previous samples of SNOWBALL date back to 2011. However, Palo Alto Networks Unit 42 has identified a much older
version. This version of the malware dates back to 2007 according to its compilation time stamp which we believe is valid.

We discovered this sample by coincidence while searching for another unrelated malware in a large malware repository.
While looking at the strings and the structure, we could make a connection to previously published documents and decided
to do a deeper analysis.

Why analyse malware from the past?

Analysing historical malware samples helps us learn about its set of features and technical capabilities. This helps us
compare a tool used by one adversary to that used by similarly adversaries at that time.

This earlier sample of Babar uses many features not present in later versions. The sample also uses a compromised third
party website as a C2 server like later versions. We also found a simple bug and a design flaw in the code you wouldn’t
expect from malware developed by mature actors.

Detailed technical breakdown

The Loader

The PE sample comes in form of a loader which has a compilation time stamp of 11/09/2007 11:37:36 PM. The loader
contains a resource named MYRES (Figure 1) where the payload DLL is stored.

https://researchcenter.paloaltonetworks.com/2017/09/unit42-analysing-10-year-old-snowball/
https://unit42.paloaltonetworks.com/author/dominik-reichel/
https://unit42.paloaltonetworks.com/category/unit42/
https://unit42.paloaltonetworks.com/tag/animal-farm/
https://unit42.paloaltonetworks.com/tag/babar/
https://unit42.paloaltonetworks.com/tag/bunny/
https://unit42.paloaltonetworks.com/tag/casper/
https://unit42.paloaltonetworks.com/tag/dino/
https://unit42.paloaltonetworks.com/tag/nbot/
https://unit42.paloaltonetworks.com/tag/snowball/
https://unit42.paloaltonetworks.com/tag/snowman/
https://securelist.com/animals-in-the-apt-farm/69114/

2/13

Figure 1. PE resource named MYRES with main payload DLL

The version info resource language ID is 1036 which stands for French.

The following clear text strings can be found in the loader:

3/13

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

HTTP\SHELL\open\command
SOFTWARE\Clients\StartMenuInternet
SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths\
%APPDATA%
event.log
Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders
%ALLUSERSPROFILE%
%ALLUSERSPROFILE%
%APPDATA%
%APPDATA%
AppData
SeDebugPrivilege
MYRES
Software\Microsoft\Windows\ShellNoRoam\MUICache\
Software\Classes\Local Settings\Software\Microsoft\Windows\Shell\MuiCache\
\Microsoft\wmimgnt.dll
\Microsoft\wmimgnt.exe
ExitProcess
KERNEL32.DLL
%ProgramFiles%
\Internet Explorer\iexplore.exe -embedding
iexplore.exe
-embedding

At the beginning, it changes the error mode of the process to handle the following errors:

SEM_NOOPENFILEERRORBOX
SEM_NOGPFAULTERRORBOX
SEM_FAILCRITICALERRORS

For this, it sets up an exception handler with the address to ExitProcess(). Thus, if any of the errors occur the malware just
exits.

Next, it tries to gain debug privileges and checks if the major OS version is >= Windows Vista and the platform ID is
VER_PLATFORM_WIN32_NT. If so, if tries to create a file named event.log in the %ALLUSERSPROFILE% folder.
However, the authors forget to append the character "\" before appending the hardcoded string "event.log". This results in
the creation of the following file:

1 C:\ProgramDataevent.log

If the call to CreateFile() fails, it tries to delete this file.

Next, it tries to get the local AppData folder path first by querying the %APPDATA% environment variable and if that fails, it
looks in the shell folders in the registry. This data is then used to create the following file paths with the hardcoded file
names:

1
2

C:\Users_username_\AppData\Roaming\Microsoft\wmimgnt.dll
C:\Users_username_\AppData\Roaming\Microsoft\wmimgnt.exe

The malware also tries to delete any traces it was executed by deleting the corresponding entries in the following registry
keys:

1
2

HKEY_CURRENT_USER\Software\Microsoft\Windows\ShellNoRoam\MUICache\
HKEY_CURRENT_USER\Software\Classes\Local Settings\Software\Microsoft\Windows\Shell\MuiCache

After this, the malware checks if its main module is already present on a victim’s system by trying to open the file:

1 C:\Users_username_\AppData\Roaming\Microsoft\wmimgnt.dll

If the file is present, the malware checks if the module file name of the process is as follows and exits otherwise:

4/13

1 C:\Users_username_\AppData\Roaming\Microsoft\wmimgnt.exe

If it matches the malware creates a temporary file in the local user’s temp folder and copies the resource
named MYRES into it. This file is the payload DLL which then gets moved as wmimgnt.dll to the AppData folder. The file
attributes are changed to hidden and the file time is changed to make it look like an old file. The same procedure is done
with the initial file which gets copied as wmimngt.exe into the AppData folder.

Thereafter, the malware checks again the major OS version and platform ID like previously and opens the following registry
key to get the default internet browser:

1 HKEY_CURRENT_USER\SOFTWARE\Clients\StartMenuInternet

The malware authors assumed the browser string always ends with a ".exe" extension and calculate the string in the
following manner:

1
2
3
4
5
6
7

RegOpenKeyExA(HKEY_CURRENT_USER, "SOFTWARE\\Clients\\StartMenuInternet", 0, 1u, phkResult);
RegQueryValueExA(phkResult, 0, 0, Type, Data, &cbData);
...
v3 = strstr((const char *)Data, ".exe");
...
v4 = v3[-v1] - (char *)Data + 4;
memcpy(a1, Data[v1], v4);

The calculation of the string length in v4 only works if the default browser is for example Internet Explorer or Firefox, as
these browsers have an .exe extension in the registry key:

1
2

IEXPLORE.EXE
FIREFOX.EXE

While a browser like Chrome uses the following string:

1 Google Chrome

In this case, the string length gets wrongly calculated and the subsequent call to memcpy() fails with an error so the
exception handler kicks in to terminate the process. However, as Chrome was first released in 2008 and the malware was
coded earlier, this can't be considered as a bug.

After retrieving the string of the default browser from registry, it builds the following string to get the application path of it:

1 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths

If this was successful it searches for the string "iexplore.exe" in the path and appends the string " -embedding" to it. If it
failed, the malware retrieves the ProgramFiles path via the environment variable "%ProgramFiles%" and appends the string
"\Internet Explorer\iexplore.exe -embedding".

The command line argument "-embedding" does the following according to Microsoft:

1 Starts Windows Internet Explorer through OLE embedding (such as the WebBrowser Control).

At last, it creates a suspended process of Internet Explorer and injects the payload DLL via the infamous
CreateRemoteThread() method.

The Payload DLL

This sample has a compilation time stamp of 11/09/2007 11:37:46 PM (10 seconds after the loader.) It contains an
encrypted resource named XML which contains configuration data. The encryption algorithm RC4 is used with the
key +37:*$pK#s. Both the version info and the XML resource language IDs have again the value 1036 (French).

5/13

Decrypted configuration data:

1
2
3
4
5
6
7
8
9
10

<HOST>cpcc-rdc.org</HOST>
<URL>/wp-pagin/outbase.php</URL>
<PORT>80</PORT>
<MIN>3000</MIN>
<MAX>4000</MAX>
<PREFIX>=#-+ApAcHe_ToMcAt+-#=</PREFIX>
<ENCODE>1</ENCODE>
<PASSWORD>TargetRenegade</PASSWORD>
<CONFIG_KEY>SOFTWARE\Microsoft\MSRPC</CONFIG_KEY>
<RUN_KEY>Windows Management Infrastructure (WMI)</RUN_KEY>

As can be seen, a third-party website was compromised as C2 server to host a script named outbase.php. The domain
(cpcc-rdc.org) is the official site of Permanent Council of Accounting of the Democratic Republic of the Congo. The script is
not online anymore as the attack was most likely carried many years ago.

The following clear text strings can be found in the DLL:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

reboot
shutdown
download
wget
fetch
wput
showconfig
timeout
timeout_main
timeout_safe
newurl_main
newurl_safe
movetosite
listprocess
killprocess
kitkit
uninstall
%s\%s
%d-%d
[+] Timeout set successfully
[-] Timeout error
[+] Timeout_main set successfully
[-] Timeout_main error
[+] Timeout_safe set successfully
[-] Timeout_safe error
! EXECUTION TIME LIMIT EXCEEDED ! You maybe have to kill the process "%s" you launched (Use listprocess
and killprocess...)
cmd.exe /C %s
command.com /c %s
[-] Unable to go to this unit
[-] Cannot reboot
[-] Cannot shutdown
[-] Download error
[%s] > 500 Ko => use "big"
[-] Download error
Upload;%s;
[-] fetch error
[-] fetch error
[+] fetch seems to be OK
[-] fetch error
[+] Uninstalled
[-] Uninstall failed
data=
http://
[+] wput Ok
[-] wput error
http://

6/13

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

[+] wget Ok
[-] wget error
[+] movetosite "%s" Ok
[-] movetosite failed
[+] change main site url Ok
[-] change main site url failed
[+] change safe site url Ok
[-] change safe site url failed
Big in progress... Please wait before downloading the file.
[+] Big finished. You can now download the file
Multi-Part;%d;%s;
MULTI
[-] big error
[-] Can't list partitions
 DRIVE_TYPE LETTER VOLUME_NAME

Fixed
CDRom
Removable
NoRootDir
Remote
Ramdisk
Unknown
%12s %s %s
 PROCESS NAME PID

%22s %4d
[-] Unable to kill the process "%s" with the PID %d
[-] Unable to kill the process "%s" with the PID %d
[+] The process "%s" with the PID %d has been killed
[-] The process with the PID %d was not found
[-] killprocess error
======= CURRENT PARAMS
[+] Url: http://%s%s
[+] Port: %d
[+] Timeout: %d-%d
======= SAVED PARAMS
[Main Site]
[+] Url: http://%s%s
[+] Port: %d
[+] Timeout: %d-%d
[Safe Site]
[+] Url: http://%s%s
[+] Port: %d
[+] Timeout: %d-%d
bad allocation
%APPDATA%
event.log
Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders
%ALLUSERSPROFILE%
%APPDATA%
AppData
MSFirstUpdate
%02d\%02d\%04d %02d:%02d:%02d
:strt
del /F /A "%s"
if EXIST "%s" GOTO strt
del /F /A "%s"
del /F /A %0
\Microsoft\wmimgnt.exe
\Microsoft\wmimgnt.dll
wupdmgr.bat
Software\Microsoft\Windows\ShellNoRoam\MUICache
bad allocation
user=%s;%d;%s;
Default User ID
Identities
sCountry

7/13

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

Control Panel\International
User Agent
Software\Microsoft\Windows\CurrentVersion\Internet Settings
Software\Clients\StartMenuInternet
HTTP\SHELL\open\command
RegisteredOrganization
SOFTWARE\MICROSOFT\WINDOWS NT\CurrentVersion
RegisteredOwner
SOFTWARE\MICROSOFT\WINDOWS NT\CurrentVersion
CSDVersion
SOFTWARE\MICROSOFT\WINDOWS NT\CurrentVersion
CurrentVersion
SOFTWARE\MICROSOFT\WINDOWS NT\CurrentVersion
DefaultUserName
SOFTWARE\MICROSOFT\WINDOWS NT\CurrentVersion\Winlogon
USERNAME
Volatile Environment
DefaultDomainName
SOFTWARE\MICROSOFT\WINDOWS NT\CurrentVersion\Winlogon
USERDOMAIN
Volatile Environment
RegisteredOrganization
SOFTWARE\MICROSOFT\WINDOWS\CurrentVersion
RegisteredOwner
SOFTWARE\MICROSOFT\WINDOWS\CurrentVersion
CSDVersion
SOFTWARE\MICROSOFT\WINDOWS\CurrentVersion
CurrentVersion
SOFTWARE\MICROSOFT\WINDOWS\CurrentVersion
DefaultUserName
SOFTWARE\MICROSOFT\WINDOWS\CurrentVersion\Winlogon
DefaultDomainName
SOFTWARE\MICROSOFT\WINDOWS\CurrentVersion\Winlogon
Default
Login (owner): %s (%s)
Computer name: %s
Organization (country): %s (%s)
OS version (SP): %s (%s)
Default browser: %s
IE version: %s
Timeout: %d(min)
%d(max)
First launch: %s
Last launch : %02d\%02d\%04d %02d:%02d:%02d
bad allocation
\Microsoft\wmimgnt.exe
SeDebugPrivilege
ExitProcess
KERNEL32.DLL
RUN_KEY
CONFIG_KEY
bad allocation
after init
Before transform
After transform
bits: %d %d
buf: %x %x %x %x
bad allocation
Content-Type: application/x-www-form-urlencoded
bad allocation
msupdate32
SOFTWARE\Microsoft\Windows\CurrentVersion\Run
Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0)
+37:*$pK#s

<%s>%s
<%s>%d
PREFIX

8/13

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

ENCODE
PASSWORD
CONFIG_KEY
RUN_KEY
HOST_SAFE
URL_SAFE
PORT_SAFE
MIN_SAFE
MAX_SAFE
PREFIX
=#-+ApAcHe_ToMcAt+-#=
ENCODE
PASSWORD
TargetRenegade
RUN_KEY
Windows Management Infrastructure (WMI)
/outbase.php
127.0.0.1
URL_SAFE
/outbase.php
HOST_SAFE
127.0.0.1
PORT_SAFE
MIN_SAFE
MAX_SAFE

The sample only executes if the reason code why the DLL entry-point function was being called
is DLL_PROCESS_ATTACH.

At first, the malware decrypts the XML configuration data to memory, searches for the XML tags <RUN_KEY> and
<CONFIG_KEY> and extracts their content. With this data, it checks if the malware's persistency is already present in the
registry Run key and creates it if it's not the case:

1
2
3

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Run
Value: Windows Management Infrastructure (WMI)
Value key: C:\Users_username_\AppData\Roaming\Microsoft\wmimgnt.exe

Thereafter, it decrypts the data of the following XML tags and stores them in memory:

1
2
3
4
5
6
7
8
9

PREFIX
ENCODE
PASSWORD
RUN_KEY
URL
HOST
PORT
MIN
MAX

The implementation of this part of the code is somewhat flawed, since the malware contains the encrypted configuration
data, but the same data (except for the C2 domain) is also present as clear text strings. If the decryption didn’t work it uses
the clear text strings.

9/13

Figure 2. Clear text configuration data

It also creates the following new XML tags based on the old ones:

1
2
3
4
5

<MAX_SAFE>4800</MAX_SAFE>
<MIN_SAFE>3600</MIN_SAFE>
<PORT_SAFE>80</PORT_SAFE>
<URL_SAFE>/outbase.php</URL_SAFE>
<HOST_SAFE>127.0.0.1</HOST_SAFE>

All the XML tags are then RC4 encrypted with key +37:*$pK#s and stored in the following registry key:

1
2

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\MSRPC
Value: msupdate32

Then, it tries to get system information from the following registry keys:

10/13

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

HKEY_CURRENT_USER\Identities
Value: Default User ID
HKEY_CURRENT_USER\Control Panel\International
Value: sCountry
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet Settings
Value: User Agent
HKEY_CURRENT_USER\Software\Clients\StartMenuInternet
HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\WINDOWS NT\CurrentVersion
Value: RegisteredOrganization
HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\WINDOWS NT\CurrentVersion
Value: RegisteredOwner
HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\WINDOWS NT\CurrentVersion
Value: CSDVersion
HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\WINDOWS NT\CurrentVersion
Value: CurrentVersion
HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\WINDOWS NT\CurrentVersion\Winlogon
Value: DefaultUserName
HKEY_CURRENT_USER\Volatile Environment
Value: USERNAME
HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\WINDOWS NT\CurrentVersion\Winlogon
Value: DefaultDomainName

The malware also retrieves the current system time, encrypts it with RC4 and the same key and stores it in the following
registry key:

1
2
3

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\MSRPC
Value: MSFirstUpdate
Value key: <RC4encrypteddatetime>

Then, it creates a string with the previously retrieved system information, the configuration data and the following string
template:

1
2
3
4
5
6
7
8
9

Login (owner): %s (%s)
Computer name: %s
Organization (country): %s (%s)
OS version (SP): %s (%s)
Default browser: %s
IE version: %s
Timeout: %d(min) %d(max)
First launch: %s
Last launch : %02d\%02d\%04d %02d:%02d:%02d

Next, the MD5 hash of this string is calculated and encrypted with RC4 and the same key again. This encrypted string gets
then stored in the following registry key:

1
2
3

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\MSRPC
Value: MSID
Value key: <MD5hashedandRC4encryptedsysteminformation>

To send victim information to the C2 server, it prepares a URL query string by entering the "INFO" branch. The other query
branch named "CMD" is entered to send back the result of a command sent by the C2 server.

11/13

Figure 3. URL query string creation branches

At first, the checks if the <ENCODE> XML tag is set to 0x1 and if so it encrypts the previously created string with the
victim’s information with the password contained in the <PASSWORD> XML tag. It does this by bytewise adding 0x80 to
the password string and then using an encoded byte to bytewise XOR the information string. The encrypted string gets then
Base64 encoded and the characters "+", "/" and "=" URL encoded ("%2B", "%2F", "%3D"). The following string template is
then used together with the encrypted data to form the final URL query string:

1 user=%s;%d;%s;

The first string is the previously calculated MD5 hash, the decimal number is made of a random number between
3000/3600 (XML tag) and 4000/4800 (XML tag). The last string is made of the hardcoded "INFO" string along with the
Base64 encoded victim data. For example:

1 user=52ac9e4b389c5b2f8a63af4a126c1c80;3046;INFO;mI7BkjovU%2BoqZi4KTzd%2F0wdqqjJegip2KgYXN6N6inYqV...

To test if the computer is connected to the internet it uses InternetGetConnectedState() API function. Next, it enters either
the "main" or the "safe" branch referring to the XML tags. The main branch is the usual execution path, while the safe
branch only gets used for a specific malware command. If there is no internet connection it sleeps for a certain time,
otherwise it contacts the C2 server present in the <HOST> XML tag together with the URL query string. The malware has
the ability to send data with both HTTP request methods, GET and POST. However, this sample only uses the POST
request method along with the following content type field:

1 Content-Type: application/x-www-form-urlencoded

After contacting the C2 server, the malware copies the response into memory and scans for the marker =#-
+ApAcHe_ToMcAt+-#= taken from the <PREFIX> XML tag. If successful, the response gets Base64 decoded and
decrypted with the same algorithm used to encrypt the victim information string. The PHP script outbase.php can respond
with one of the commands listed below, which the malware then executes.

To process some commands, the malware creates an anonymous pipe and a hidden instance of cmd.exe or
command.com, depending on the platform ID. The command line output gets redirected to the pipe, read into memory and
later send back encrypted and encoded via the "CMD" URL query branch.

Possible malware commands:

12/13

1. pwd
Get current working directory

2. cd
change directory to delivered string

3. part
Get list and type of partitions

4. reboot
Reboot system

5. shutdown
Shutdown system

6. download
Download file < 512,000 bytes delivered in form of a URL ("500 Ko") to disk

7. big
Download file > 512,000 bytes delivered in form of a URL ("500 Ko") to disk

8. wget
Download file with predefined HTTP query string

9. fetch
Download file via URLDownloadToFile()

10. wput
Download data from internet via download command and sent data back via "data=" query

11. info
Send back victim system information (see above)

12. showconfig
Send back current config data with following string template:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

======= CURRENT PARAMS
[+] Url: http://%s%s
[+] Port: %d
[+] Timeout: %d-%d

======= SAVED PARAMS
[Main Site]
[+] Url: http://%s%s
[+] Port: %d
[+] Timeout: %d-%d

[Safe Site]
[+] Url: http://%s%s
[+] Port: %d
[+] Timeout: %d-%d

13. timeout
Change current timeout interval variables

14. timeout_main
Change timeout intervals in main XML configuration

15. timeout_safe
Change timeout intervals in safe XML configuration

13/13

16. newurl_main
Change host URL in main XML configuration

17. newurl_safe
Change host URL in safe XML configuration

18. movetosite
Change current host URL variable

19. listprocess
Get list of current processes with PID

20. killprocess
Terminate process delivered via string

21. kitkit
Terminate itself

22. uninstall
Delete malware files on disk and registry entries

Conclusion

This malware has a small set of features ranging from retrieving system information, to downloading files or killing
processes on a victim’s system. Technically, it is not outstanding and can be considered only average compared to alleged
state sponsored malware written at that time (e.g. Careto or Regin). The code and structure is similar to the Casper implant
which is most likely based on this implant. The malware contains an obvious design flaw leaving the main part of the
configuration data visible in clear text.

AutoFocus customers can identify this, and other samples related to it using the Snowball
WildFire and Traps properly classify Snowball samples as malicious.

Thanks to Esmid Idrizovic for his assistance in this analysis.

Indicators of Compromise:

Hashes (SHA-256)

Loader: c71b1a31bdf3a08fa99ed1f6a1c5ded61e66f3d41e4ed88a12430d1c14ed10ca
 Payload DLL: a9220590d3c35fe22df9d38a066ca8d112b83764b39fea98b38761daa64c77b8

Get updates from
 Palo Alto

 Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy Statement.

https://autofocus.paloaltonetworks.com/
https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

